Properties

Label 2142.2.p.f.1891.3
Level $2142$
Weight $2$
Character 2142.1891
Analytic conductor $17.104$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,2,Mod(1135,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1135"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1039561130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 36x^{10} + 450x^{8} + 2400x^{6} + 5385x^{4} + 4428x^{2} + 1156 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 714)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1891.3
Root \(3.11211i\) of defining polynomial
Character \(\chi\) \(=\) 2142.1891
Dual form 2142.2.p.f.1135.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +(-0.240016 + 0.240016i) q^{5} +(0.707107 + 0.707107i) q^{7} +1.00000i q^{8} +(0.240016 + 0.240016i) q^{10} +(-1.93791 - 1.93791i) q^{11} +1.80644 q^{13} +(0.707107 - 0.707107i) q^{14} +1.00000 q^{16} +(-0.467090 - 4.09656i) q^{17} +1.82303i q^{19} +(0.240016 - 0.240016i) q^{20} +(-1.93791 + 1.93791i) q^{22} +(2.41421 + 2.41421i) q^{23} +4.88478i q^{25} -1.80644i q^{26} +(-0.707107 - 0.707107i) q^{28} +(5.19217 - 5.19217i) q^{29} +(2.39223 - 2.39223i) q^{31} -1.00000i q^{32} +(-4.09656 + 0.467090i) q^{34} -0.339434 q^{35} +(-3.69156 + 3.69156i) q^{37} +1.82303 q^{38} +(-0.240016 - 0.240016i) q^{40} +(-3.56009 - 3.56009i) q^{41} -5.52893i q^{43} +(1.93791 + 1.93791i) q^{44} +(2.41421 - 2.41421i) q^{46} +4.30442 q^{47} +1.00000i q^{49} +4.88478 q^{50} -1.80644 q^{52} -8.11455i q^{53} +0.930261 q^{55} +(-0.707107 + 0.707107i) q^{56} +(-5.19217 - 5.19217i) q^{58} +2.78067i q^{59} +(0.162466 + 0.162466i) q^{61} +(-2.39223 - 2.39223i) q^{62} -1.00000 q^{64} +(-0.433575 + 0.433575i) q^{65} +9.62930 q^{67} +(0.467090 + 4.09656i) q^{68} +0.339434i q^{70} +(10.8682 - 10.8682i) q^{71} +(5.33650 - 5.33650i) q^{73} +(3.69156 + 3.69156i) q^{74} -1.82303i q^{76} -2.74062i q^{77} +(-1.30165 - 1.30165i) q^{79} +(-0.240016 + 0.240016i) q^{80} +(-3.56009 + 3.56009i) q^{82} -3.31585i q^{83} +(1.09535 + 0.871133i) q^{85} -5.52893 q^{86} +(1.93791 - 1.93791i) q^{88} +5.45410 q^{89} +(1.27735 + 1.27735i) q^{91} +(-2.41421 - 2.41421i) q^{92} -4.30442i q^{94} +(-0.437557 - 0.437557i) q^{95} +(9.53533 - 9.53533i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 12 q^{13} + 12 q^{16} + 12 q^{23} - 12 q^{29} + 12 q^{31} + 12 q^{34} - 12 q^{35} - 12 q^{37} + 12 q^{46} + 24 q^{47} - 24 q^{50} + 12 q^{52} + 12 q^{55} + 12 q^{58} - 12 q^{61} - 12 q^{62}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2142\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1667\) \(1837\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −0.240016 + 0.240016i −0.107339 + 0.107339i −0.758736 0.651398i \(-0.774183\pi\)
0.651398 + 0.758736i \(0.274183\pi\)
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.240016 + 0.240016i 0.0758999 + 0.0758999i
\(11\) −1.93791 1.93791i −0.584303 0.584303i 0.351780 0.936083i \(-0.385576\pi\)
−0.936083 + 0.351780i \(0.885576\pi\)
\(12\) 0 0
\(13\) 1.80644 0.501017 0.250508 0.968114i \(-0.419402\pi\)
0.250508 + 0.968114i \(0.419402\pi\)
\(14\) 0.707107 0.707107i 0.188982 0.188982i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.467090 4.09656i −0.113286 0.993562i
\(18\) 0 0
\(19\) 1.82303i 0.418232i 0.977891 + 0.209116i \(0.0670586\pi\)
−0.977891 + 0.209116i \(0.932941\pi\)
\(20\) 0.240016 0.240016i 0.0536693 0.0536693i
\(21\) 0 0
\(22\) −1.93791 + 1.93791i −0.413164 + 0.413164i
\(23\) 2.41421 + 2.41421i 0.503398 + 0.503398i 0.912492 0.409094i \(-0.134155\pi\)
−0.409094 + 0.912492i \(0.634155\pi\)
\(24\) 0 0
\(25\) 4.88478i 0.976957i
\(26\) 1.80644i 0.354272i
\(27\) 0 0
\(28\) −0.707107 0.707107i −0.133631 0.133631i
\(29\) 5.19217 5.19217i 0.964161 0.964161i −0.0352187 0.999380i \(-0.511213\pi\)
0.999380 + 0.0352187i \(0.0112128\pi\)
\(30\) 0 0
\(31\) 2.39223 2.39223i 0.429657 0.429657i −0.458855 0.888511i \(-0.651740\pi\)
0.888511 + 0.458855i \(0.151740\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −4.09656 + 0.467090i −0.702555 + 0.0801053i
\(35\) −0.339434 −0.0573749
\(36\) 0 0
\(37\) −3.69156 + 3.69156i −0.606889 + 0.606889i −0.942132 0.335243i \(-0.891182\pi\)
0.335243 + 0.942132i \(0.391182\pi\)
\(38\) 1.82303 0.295735
\(39\) 0 0
\(40\) −0.240016 0.240016i −0.0379499 0.0379499i
\(41\) −3.56009 3.56009i −0.555992 0.555992i 0.372171 0.928164i \(-0.378613\pi\)
−0.928164 + 0.372171i \(0.878613\pi\)
\(42\) 0 0
\(43\) 5.52893i 0.843153i −0.906793 0.421577i \(-0.861477\pi\)
0.906793 0.421577i \(-0.138523\pi\)
\(44\) 1.93791 + 1.93791i 0.292151 + 0.292151i
\(45\) 0 0
\(46\) 2.41421 2.41421i 0.355956 0.355956i
\(47\) 4.30442 0.627864 0.313932 0.949445i \(-0.398354\pi\)
0.313932 + 0.949445i \(0.398354\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 4.88478 0.690813
\(51\) 0 0
\(52\) −1.80644 −0.250508
\(53\) 8.11455i 1.11462i −0.830305 0.557309i \(-0.811834\pi\)
0.830305 0.557309i \(-0.188166\pi\)
\(54\) 0 0
\(55\) 0.930261 0.125436
\(56\) −0.707107 + 0.707107i −0.0944911 + 0.0944911i
\(57\) 0 0
\(58\) −5.19217 5.19217i −0.681765 0.681765i
\(59\) 2.78067i 0.362013i 0.983482 + 0.181007i \(0.0579355\pi\)
−0.983482 + 0.181007i \(0.942064\pi\)
\(60\) 0 0
\(61\) 0.162466 + 0.162466i 0.0208016 + 0.0208016i 0.717431 0.696629i \(-0.245318\pi\)
−0.696629 + 0.717431i \(0.745318\pi\)
\(62\) −2.39223 2.39223i −0.303813 0.303813i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −0.433575 + 0.433575i −0.0537784 + 0.0537784i
\(66\) 0 0
\(67\) 9.62930 1.17641 0.588203 0.808713i \(-0.299835\pi\)
0.588203 + 0.808713i \(0.299835\pi\)
\(68\) 0.467090 + 4.09656i 0.0566430 + 0.496781i
\(69\) 0 0
\(70\) 0.339434i 0.0405702i
\(71\) 10.8682 10.8682i 1.28982 1.28982i 0.354921 0.934896i \(-0.384508\pi\)
0.934896 0.354921i \(-0.115492\pi\)
\(72\) 0 0
\(73\) 5.33650 5.33650i 0.624590 0.624590i −0.322112 0.946702i \(-0.604393\pi\)
0.946702 + 0.322112i \(0.104393\pi\)
\(74\) 3.69156 + 3.69156i 0.429135 + 0.429135i
\(75\) 0 0
\(76\) 1.82303i 0.209116i
\(77\) 2.74062i 0.312323i
\(78\) 0 0
\(79\) −1.30165 1.30165i −0.146447 0.146447i 0.630082 0.776529i \(-0.283021\pi\)
−0.776529 + 0.630082i \(0.783021\pi\)
\(80\) −0.240016 + 0.240016i −0.0268346 + 0.0268346i
\(81\) 0 0
\(82\) −3.56009 + 3.56009i −0.393146 + 0.393146i
\(83\) 3.31585i 0.363962i −0.983302 0.181981i \(-0.941749\pi\)
0.983302 0.181981i \(-0.0582510\pi\)
\(84\) 0 0
\(85\) 1.09535 + 0.871133i 0.118808 + 0.0944876i
\(86\) −5.52893 −0.596200
\(87\) 0 0
\(88\) 1.93791 1.93791i 0.206582 0.206582i
\(89\) 5.45410 0.578133 0.289067 0.957309i \(-0.406655\pi\)
0.289067 + 0.957309i \(0.406655\pi\)
\(90\) 0 0
\(91\) 1.27735 + 1.27735i 0.133902 + 0.133902i
\(92\) −2.41421 2.41421i −0.251699 0.251699i
\(93\) 0 0
\(94\) 4.30442i 0.443967i
\(95\) −0.437557 0.437557i −0.0448924 0.0448924i
\(96\) 0 0
\(97\) 9.53533 9.53533i 0.968166 0.968166i −0.0313425 0.999509i \(-0.509978\pi\)
0.999509 + 0.0313425i \(0.00997826\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 4.88478i 0.488478i
\(101\) −4.60749 −0.458462 −0.229231 0.973372i \(-0.573621\pi\)
−0.229231 + 0.973372i \(0.573621\pi\)
\(102\) 0 0
\(103\) 8.84243 0.871270 0.435635 0.900123i \(-0.356524\pi\)
0.435635 + 0.900123i \(0.356524\pi\)
\(104\) 1.80644i 0.177136i
\(105\) 0 0
\(106\) −8.11455 −0.788154
\(107\) 2.12122 2.12122i 0.205066 0.205066i −0.597101 0.802166i \(-0.703681\pi\)
0.802166 + 0.597101i \(0.203681\pi\)
\(108\) 0 0
\(109\) 1.74173 + 1.74173i 0.166827 + 0.166827i 0.785583 0.618756i \(-0.212363\pi\)
−0.618756 + 0.785583i \(0.712363\pi\)
\(110\) 0.930261i 0.0886969i
\(111\) 0 0
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) −5.65951 5.65951i −0.532402 0.532402i 0.388885 0.921286i \(-0.372860\pi\)
−0.921286 + 0.388885i \(0.872860\pi\)
\(114\) 0 0
\(115\) −1.15890 −0.108068
\(116\) −5.19217 + 5.19217i −0.482080 + 0.482080i
\(117\) 0 0
\(118\) 2.78067 0.255982
\(119\) 2.56642 3.22699i 0.235264 0.295818i
\(120\) 0 0
\(121\) 3.48899i 0.317181i
\(122\) 0.162466 0.162466i 0.0147090 0.0147090i
\(123\) 0 0
\(124\) −2.39223 + 2.39223i −0.214828 + 0.214828i
\(125\) −2.37251 2.37251i −0.212204 0.212204i
\(126\) 0 0
\(127\) 11.4578i 1.01671i −0.861147 0.508357i \(-0.830253\pi\)
0.861147 0.508357i \(-0.169747\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0.433575 + 0.433575i 0.0380271 + 0.0380271i
\(131\) −4.06938 + 4.06938i −0.355544 + 0.355544i −0.862167 0.506624i \(-0.830893\pi\)
0.506624 + 0.862167i \(0.330893\pi\)
\(132\) 0 0
\(133\) −1.28908 + 1.28908i −0.111777 + 0.111777i
\(134\) 9.62930i 0.831845i
\(135\) 0 0
\(136\) 4.09656 0.467090i 0.351277 0.0400527i
\(137\) −21.7675 −1.85972 −0.929859 0.367915i \(-0.880072\pi\)
−0.929859 + 0.367915i \(0.880072\pi\)
\(138\) 0 0
\(139\) 2.21924 2.21924i 0.188234 0.188234i −0.606698 0.794932i \(-0.707506\pi\)
0.794932 + 0.606698i \(0.207506\pi\)
\(140\) 0.339434 0.0286874
\(141\) 0 0
\(142\) −10.8682 10.8682i −0.912039 0.912039i
\(143\) −3.50072 3.50072i −0.292745 0.292745i
\(144\) 0 0
\(145\) 2.49241i 0.206983i
\(146\) −5.33650 5.33650i −0.441651 0.441651i
\(147\) 0 0
\(148\) 3.69156 3.69156i 0.303444 0.303444i
\(149\) 0.0163825 0.00134210 0.000671052 1.00000i \(-0.499786\pi\)
0.000671052 1.00000i \(0.499786\pi\)
\(150\) 0 0
\(151\) 7.33169i 0.596644i 0.954465 + 0.298322i \(0.0964269\pi\)
−0.954465 + 0.298322i \(0.903573\pi\)
\(152\) −1.82303 −0.147867
\(153\) 0 0
\(154\) −2.74062 −0.220846
\(155\) 1.14835i 0.0922375i
\(156\) 0 0
\(157\) 10.0288 0.800388 0.400194 0.916431i \(-0.368943\pi\)
0.400194 + 0.916431i \(0.368943\pi\)
\(158\) −1.30165 + 1.30165i −0.103554 + 0.103554i
\(159\) 0 0
\(160\) 0.240016 + 0.240016i 0.0189750 + 0.0189750i
\(161\) 3.41421i 0.269078i
\(162\) 0 0
\(163\) −13.4512 13.4512i −1.05358 1.05358i −0.998481 0.0551008i \(-0.982452\pi\)
−0.0551008 0.998481i \(-0.517548\pi\)
\(164\) 3.56009 + 3.56009i 0.277996 + 0.277996i
\(165\) 0 0
\(166\) −3.31585 −0.257360
\(167\) −3.55746 + 3.55746i −0.275285 + 0.275285i −0.831223 0.555939i \(-0.812359\pi\)
0.555939 + 0.831223i \(0.312359\pi\)
\(168\) 0 0
\(169\) −9.73677 −0.748982
\(170\) 0.871133 1.09535i 0.0668128 0.0840096i
\(171\) 0 0
\(172\) 5.52893i 0.421577i
\(173\) −4.77128 + 4.77128i −0.362754 + 0.362754i −0.864826 0.502072i \(-0.832571\pi\)
0.502072 + 0.864826i \(0.332571\pi\)
\(174\) 0 0
\(175\) −3.45406 + 3.45406i −0.261103 + 0.261103i
\(176\) −1.93791 1.93791i −0.146076 0.146076i
\(177\) 0 0
\(178\) 5.45410i 0.408802i
\(179\) 3.58407i 0.267886i 0.990989 + 0.133943i \(0.0427639\pi\)
−0.990989 + 0.133943i \(0.957236\pi\)
\(180\) 0 0
\(181\) 17.9339 + 17.9339i 1.33301 + 1.33301i 0.902661 + 0.430353i \(0.141611\pi\)
0.430353 + 0.902661i \(0.358389\pi\)
\(182\) 1.27735 1.27735i 0.0946832 0.0946832i
\(183\) 0 0
\(184\) −2.41421 + 2.41421i −0.177978 + 0.177978i
\(185\) 1.77207i 0.130285i
\(186\) 0 0
\(187\) −7.03360 + 8.84396i −0.514348 + 0.646734i
\(188\) −4.30442 −0.313932
\(189\) 0 0
\(190\) −0.437557 + 0.437557i −0.0317438 + 0.0317438i
\(191\) 4.50725 0.326133 0.163066 0.986615i \(-0.447861\pi\)
0.163066 + 0.986615i \(0.447861\pi\)
\(192\) 0 0
\(193\) 2.98733 + 2.98733i 0.215033 + 0.215033i 0.806401 0.591369i \(-0.201412\pi\)
−0.591369 + 0.806401i \(0.701412\pi\)
\(194\) −9.53533 9.53533i −0.684597 0.684597i
\(195\) 0 0
\(196\) 1.00000i 0.0714286i
\(197\) −1.09775 1.09775i −0.0782117 0.0782117i 0.666919 0.745130i \(-0.267613\pi\)
−0.745130 + 0.666919i \(0.767613\pi\)
\(198\) 0 0
\(199\) 14.0544 14.0544i 0.996287 0.996287i −0.00370606 0.999993i \(-0.501180\pi\)
0.999993 + 0.00370606i \(0.00117968\pi\)
\(200\) −4.88478 −0.345406
\(201\) 0 0
\(202\) 4.60749i 0.324182i
\(203\) 7.34283 0.515366
\(204\) 0 0
\(205\) 1.70896 0.119359
\(206\) 8.84243i 0.616081i
\(207\) 0 0
\(208\) 1.80644 0.125254
\(209\) 3.53287 3.53287i 0.244374 0.244374i
\(210\) 0 0
\(211\) −0.183324 0.183324i −0.0126206 0.0126206i 0.700768 0.713389i \(-0.252841\pi\)
−0.713389 + 0.700768i \(0.752841\pi\)
\(212\) 8.11455i 0.557309i
\(213\) 0 0
\(214\) −2.12122 2.12122i −0.145003 0.145003i
\(215\) 1.32703 + 1.32703i 0.0905029 + 0.0905029i
\(216\) 0 0
\(217\) 3.38312 0.229661
\(218\) 1.74173 1.74173i 0.117965 0.117965i
\(219\) 0 0
\(220\) −0.930261 −0.0627182
\(221\) −0.843771 7.40020i −0.0567582 0.497791i
\(222\) 0 0
\(223\) 24.8385i 1.66331i −0.555292 0.831655i \(-0.687394\pi\)
0.555292 0.831655i \(-0.312606\pi\)
\(224\) 0.707107 0.707107i 0.0472456 0.0472456i
\(225\) 0 0
\(226\) −5.65951 + 5.65951i −0.376465 + 0.376465i
\(227\) 10.7733 + 10.7733i 0.715048 + 0.715048i 0.967587 0.252539i \(-0.0812656\pi\)
−0.252539 + 0.967587i \(0.581266\pi\)
\(228\) 0 0
\(229\) 22.9959i 1.51961i −0.650149 0.759807i \(-0.725293\pi\)
0.650149 0.759807i \(-0.274707\pi\)
\(230\) 1.15890i 0.0764157i
\(231\) 0 0
\(232\) 5.19217 + 5.19217i 0.340882 + 0.340882i
\(233\) 12.1448 12.1448i 0.795632 0.795632i −0.186772 0.982403i \(-0.559802\pi\)
0.982403 + 0.186772i \(0.0598025\pi\)
\(234\) 0 0
\(235\) −1.03313 + 1.03313i −0.0673941 + 0.0673941i
\(236\) 2.78067i 0.181007i
\(237\) 0 0
\(238\) −3.22699 2.56642i −0.209175 0.166357i
\(239\) 14.0808 0.910813 0.455407 0.890284i \(-0.349494\pi\)
0.455407 + 0.890284i \(0.349494\pi\)
\(240\) 0 0
\(241\) −13.7186 + 13.7186i −0.883695 + 0.883695i −0.993908 0.110213i \(-0.964847\pi\)
0.110213 + 0.993908i \(0.464847\pi\)
\(242\) −3.48899 −0.224281
\(243\) 0 0
\(244\) −0.162466 0.162466i −0.0104008 0.0104008i
\(245\) −0.240016 0.240016i −0.0153341 0.0153341i
\(246\) 0 0
\(247\) 3.29320i 0.209541i
\(248\) 2.39223 + 2.39223i 0.151907 + 0.151907i
\(249\) 0 0
\(250\) −2.37251 + 2.37251i −0.150051 + 0.150051i
\(251\) −27.7237 −1.74990 −0.874952 0.484210i \(-0.839107\pi\)
−0.874952 + 0.484210i \(0.839107\pi\)
\(252\) 0 0
\(253\) 9.35707i 0.588274i
\(254\) −11.4578 −0.718925
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 27.8870i 1.73955i 0.493452 + 0.869773i \(0.335735\pi\)
−0.493452 + 0.869773i \(0.664265\pi\)
\(258\) 0 0
\(259\) −5.22065 −0.324396
\(260\) 0.433575 0.433575i 0.0268892 0.0268892i
\(261\) 0 0
\(262\) 4.06938 + 4.06938i 0.251407 + 0.251407i
\(263\) 30.0521i 1.85309i 0.376184 + 0.926545i \(0.377236\pi\)
−0.376184 + 0.926545i \(0.622764\pi\)
\(264\) 0 0
\(265\) 1.94762 + 1.94762i 0.119642 + 0.119642i
\(266\) 1.28908 + 1.28908i 0.0790384 + 0.0790384i
\(267\) 0 0
\(268\) −9.62930 −0.588203
\(269\) 1.34283 1.34283i 0.0818738 0.0818738i −0.664984 0.746858i \(-0.731562\pi\)
0.746858 + 0.664984i \(0.231562\pi\)
\(270\) 0 0
\(271\) −2.70813 −0.164507 −0.0822536 0.996611i \(-0.526212\pi\)
−0.0822536 + 0.996611i \(0.526212\pi\)
\(272\) −0.467090 4.09656i −0.0283215 0.248391i
\(273\) 0 0
\(274\) 21.7675i 1.31502i
\(275\) 9.46628 9.46628i 0.570838 0.570838i
\(276\) 0 0
\(277\) −20.4512 + 20.4512i −1.22880 + 1.22880i −0.264375 + 0.964420i \(0.585166\pi\)
−0.964420 + 0.264375i \(0.914834\pi\)
\(278\) −2.21924 2.21924i −0.133101 0.133101i
\(279\) 0 0
\(280\) 0.339434i 0.0202851i
\(281\) 26.7565i 1.59616i 0.602551 + 0.798080i \(0.294151\pi\)
−0.602551 + 0.798080i \(0.705849\pi\)
\(282\) 0 0
\(283\) 10.0171 + 10.0171i 0.595456 + 0.595456i 0.939100 0.343644i \(-0.111661\pi\)
−0.343644 + 0.939100i \(0.611661\pi\)
\(284\) −10.8682 + 10.8682i −0.644909 + 0.644909i
\(285\) 0 0
\(286\) −3.50072 + 3.50072i −0.207002 + 0.207002i
\(287\) 5.03473i 0.297190i
\(288\) 0 0
\(289\) −16.5637 + 3.82693i −0.974333 + 0.225114i
\(290\) 2.49241 0.146359
\(291\) 0 0
\(292\) −5.33650 + 5.33650i −0.312295 + 0.312295i
\(293\) 4.48392 0.261954 0.130977 0.991385i \(-0.458189\pi\)
0.130977 + 0.991385i \(0.458189\pi\)
\(294\) 0 0
\(295\) −0.667408 0.667408i −0.0388580 0.0388580i
\(296\) −3.69156 3.69156i −0.214568 0.214568i
\(297\) 0 0
\(298\) 0.0163825i 0.000949011i
\(299\) 4.36113 + 4.36113i 0.252211 + 0.252211i
\(300\) 0 0
\(301\) 3.90954 3.90954i 0.225342 0.225342i
\(302\) 7.33169 0.421891
\(303\) 0 0
\(304\) 1.82303i 0.104558i
\(305\) −0.0779890 −0.00446563
\(306\) 0 0
\(307\) 16.2491 0.927384 0.463692 0.885996i \(-0.346524\pi\)
0.463692 + 0.885996i \(0.346524\pi\)
\(308\) 2.74062i 0.156161i
\(309\) 0 0
\(310\) 1.14835 0.0652218
\(311\) 17.7089 17.7089i 1.00418 1.00418i 0.00419081 0.999991i \(-0.498666\pi\)
0.999991 0.00419081i \(-0.00133398\pi\)
\(312\) 0 0
\(313\) −8.00508 8.00508i −0.452474 0.452474i 0.443701 0.896175i \(-0.353665\pi\)
−0.896175 + 0.443701i \(0.853665\pi\)
\(314\) 10.0288i 0.565960i
\(315\) 0 0
\(316\) 1.30165 + 1.30165i 0.0732236 + 0.0732236i
\(317\) −8.93918 8.93918i −0.502074 0.502074i 0.410008 0.912082i \(-0.365526\pi\)
−0.912082 + 0.410008i \(0.865526\pi\)
\(318\) 0 0
\(319\) −20.1239 −1.12672
\(320\) 0.240016 0.240016i 0.0134173 0.0134173i
\(321\) 0 0
\(322\) 3.41421 0.190267
\(323\) 7.46816 0.851520i 0.415540 0.0473799i
\(324\) 0 0
\(325\) 8.82407i 0.489472i
\(326\) −13.4512 + 13.4512i −0.744995 + 0.744995i
\(327\) 0 0
\(328\) 3.56009 3.56009i 0.196573 0.196573i
\(329\) 3.04369 + 3.04369i 0.167804 + 0.167804i
\(330\) 0 0
\(331\) 6.15048i 0.338061i 0.985611 + 0.169031i \(0.0540637\pi\)
−0.985611 + 0.169031i \(0.945936\pi\)
\(332\) 3.31585i 0.181981i
\(333\) 0 0
\(334\) 3.55746 + 3.55746i 0.194656 + 0.194656i
\(335\) −2.31119 + 2.31119i −0.126274 + 0.126274i
\(336\) 0 0
\(337\) 5.26410 5.26410i 0.286754 0.286754i −0.549041 0.835795i \(-0.685007\pi\)
0.835795 + 0.549041i \(0.185007\pi\)
\(338\) 9.73677i 0.529611i
\(339\) 0 0
\(340\) −1.09535 0.871133i −0.0594038 0.0472438i
\(341\) −9.27185 −0.502099
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 5.52893 0.298100
\(345\) 0 0
\(346\) 4.77128 + 4.77128i 0.256506 + 0.256506i
\(347\) 8.84658 + 8.84658i 0.474909 + 0.474909i 0.903499 0.428590i \(-0.140989\pi\)
−0.428590 + 0.903499i \(0.640989\pi\)
\(348\) 0 0
\(349\) 2.30228i 0.123238i 0.998100 + 0.0616190i \(0.0196264\pi\)
−0.998100 + 0.0616190i \(0.980374\pi\)
\(350\) 3.45406 + 3.45406i 0.184627 + 0.184627i
\(351\) 0 0
\(352\) −1.93791 + 1.93791i −0.103291 + 0.103291i
\(353\) 7.77879 0.414023 0.207012 0.978338i \(-0.433626\pi\)
0.207012 + 0.978338i \(0.433626\pi\)
\(354\) 0 0
\(355\) 5.21709i 0.276894i
\(356\) −5.45410 −0.289067
\(357\) 0 0
\(358\) 3.58407 0.189424
\(359\) 14.7356i 0.777713i 0.921298 + 0.388856i \(0.127130\pi\)
−0.921298 + 0.388856i \(0.872870\pi\)
\(360\) 0 0
\(361\) 15.6766 0.825082
\(362\) 17.9339 17.9339i 0.942583 0.942583i
\(363\) 0 0
\(364\) −1.27735 1.27735i −0.0669512 0.0669512i
\(365\) 2.56169i 0.134085i
\(366\) 0 0
\(367\) −2.81236 2.81236i −0.146804 0.146804i 0.629885 0.776689i \(-0.283102\pi\)
−0.776689 + 0.629885i \(0.783102\pi\)
\(368\) 2.41421 + 2.41421i 0.125850 + 0.125850i
\(369\) 0 0
\(370\) −1.77207 −0.0921255
\(371\) 5.73785 5.73785i 0.297894 0.297894i
\(372\) 0 0
\(373\) −15.8364 −0.819979 −0.409990 0.912090i \(-0.634468\pi\)
−0.409990 + 0.912090i \(0.634468\pi\)
\(374\) 8.84396 + 7.03360i 0.457310 + 0.363699i
\(375\) 0 0
\(376\) 4.30442i 0.221984i
\(377\) 9.37934 9.37934i 0.483061 0.483061i
\(378\) 0 0
\(379\) −5.66927 + 5.66927i −0.291211 + 0.291211i −0.837559 0.546348i \(-0.816018\pi\)
0.546348 + 0.837559i \(0.316018\pi\)
\(380\) 0.437557 + 0.437557i 0.0224462 + 0.0224462i
\(381\) 0 0
\(382\) 4.50725i 0.230611i
\(383\) 30.7579i 1.57165i 0.618447 + 0.785827i \(0.287762\pi\)
−0.618447 + 0.785827i \(0.712238\pi\)
\(384\) 0 0
\(385\) 0.657794 + 0.657794i 0.0335243 + 0.0335243i
\(386\) 2.98733 2.98733i 0.152051 0.152051i
\(387\) 0 0
\(388\) −9.53533 + 9.53533i −0.484083 + 0.484083i
\(389\) 8.15477i 0.413463i −0.978398 0.206732i \(-0.933717\pi\)
0.978398 0.206732i \(-0.0662827\pi\)
\(390\) 0 0
\(391\) 8.76232 11.0176i 0.443130 0.557186i
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) −1.09775 + 1.09775i −0.0553040 + 0.0553040i
\(395\) 0.624835 0.0314389
\(396\) 0 0
\(397\) 13.1845 + 13.1845i 0.661709 + 0.661709i 0.955783 0.294074i \(-0.0950112\pi\)
−0.294074 + 0.955783i \(0.595011\pi\)
\(398\) −14.0544 14.0544i −0.704481 0.704481i
\(399\) 0 0
\(400\) 4.88478i 0.244239i
\(401\) 3.96168 + 3.96168i 0.197837 + 0.197837i 0.799072 0.601235i \(-0.205325\pi\)
−0.601235 + 0.799072i \(0.705325\pi\)
\(402\) 0 0
\(403\) 4.32142 4.32142i 0.215265 0.215265i
\(404\) 4.60749 0.229231
\(405\) 0 0
\(406\) 7.34283i 0.364419i
\(407\) 14.3078 0.709213
\(408\) 0 0
\(409\) 10.4073 0.514610 0.257305 0.966330i \(-0.417165\pi\)
0.257305 + 0.966330i \(0.417165\pi\)
\(410\) 1.70896i 0.0843995i
\(411\) 0 0
\(412\) −8.84243 −0.435635
\(413\) −1.96623 + 1.96623i −0.0967520 + 0.0967520i
\(414\) 0 0
\(415\) 0.795859 + 0.795859i 0.0390672 + 0.0390672i
\(416\) 1.80644i 0.0885681i
\(417\) 0 0
\(418\) −3.53287 3.53287i −0.172799 0.172799i
\(419\) 1.30036 + 1.30036i 0.0635265 + 0.0635265i 0.738156 0.674630i \(-0.235697\pi\)
−0.674630 + 0.738156i \(0.735697\pi\)
\(420\) 0 0
\(421\) −37.4523 −1.82532 −0.912658 0.408724i \(-0.865974\pi\)
−0.912658 + 0.408724i \(0.865974\pi\)
\(422\) −0.183324 + 0.183324i −0.00892409 + 0.00892409i
\(423\) 0 0
\(424\) 8.11455 0.394077
\(425\) 20.0108 2.28164i 0.970668 0.110676i
\(426\) 0 0
\(427\) 0.229761i 0.0111189i
\(428\) −2.12122 + 2.12122i −0.102533 + 0.102533i
\(429\) 0 0
\(430\) 1.32703 1.32703i 0.0639952 0.0639952i
\(431\) 6.92272 + 6.92272i 0.333456 + 0.333456i 0.853897 0.520442i \(-0.174233\pi\)
−0.520442 + 0.853897i \(0.674233\pi\)
\(432\) 0 0
\(433\) 3.12042i 0.149958i 0.997185 + 0.0749788i \(0.0238889\pi\)
−0.997185 + 0.0749788i \(0.976111\pi\)
\(434\) 3.38312i 0.162395i
\(435\) 0 0
\(436\) −1.74173 1.74173i −0.0834137 0.0834137i
\(437\) −4.40119 + 4.40119i −0.210537 + 0.210537i
\(438\) 0 0
\(439\) −12.7659 + 12.7659i −0.609283 + 0.609283i −0.942759 0.333476i \(-0.891778\pi\)
0.333476 + 0.942759i \(0.391778\pi\)
\(440\) 0.930261i 0.0443485i
\(441\) 0 0
\(442\) −7.40020 + 0.843771i −0.351992 + 0.0401341i
\(443\) −36.6892 −1.74316 −0.871578 0.490258i \(-0.836903\pi\)
−0.871578 + 0.490258i \(0.836903\pi\)
\(444\) 0 0
\(445\) −1.30907 + 1.30907i −0.0620560 + 0.0620560i
\(446\) −24.8385 −1.17614
\(447\) 0 0
\(448\) −0.707107 0.707107i −0.0334077 0.0334077i
\(449\) −6.08539 6.08539i −0.287187 0.287187i 0.548780 0.835967i \(-0.315093\pi\)
−0.835967 + 0.548780i \(0.815093\pi\)
\(450\) 0 0
\(451\) 13.7983i 0.649736i
\(452\) 5.65951 + 5.65951i 0.266201 + 0.266201i
\(453\) 0 0
\(454\) 10.7733 10.7733i 0.505615 0.505615i
\(455\) −0.613168 −0.0287458
\(456\) 0 0
\(457\) 1.66033i 0.0776669i 0.999246 + 0.0388334i \(0.0123642\pi\)
−0.999246 + 0.0388334i \(0.987636\pi\)
\(458\) −22.9959 −1.07453
\(459\) 0 0
\(460\) 1.15890 0.0540341
\(461\) 18.1548i 0.845551i −0.906234 0.422776i \(-0.861056\pi\)
0.906234 0.422776i \(-0.138944\pi\)
\(462\) 0 0
\(463\) −6.89976 −0.320659 −0.160330 0.987064i \(-0.551256\pi\)
−0.160330 + 0.987064i \(0.551256\pi\)
\(464\) 5.19217 5.19217i 0.241040 0.241040i
\(465\) 0 0
\(466\) −12.1448 12.1448i −0.562596 0.562596i
\(467\) 11.5008i 0.532192i 0.963947 + 0.266096i \(0.0857338\pi\)
−0.963947 + 0.266096i \(0.914266\pi\)
\(468\) 0 0
\(469\) 6.80895 + 6.80895i 0.314408 + 0.314408i
\(470\) 1.03313 + 1.03313i 0.0476548 + 0.0476548i
\(471\) 0 0
\(472\) −2.78067 −0.127991
\(473\) −10.7146 + 10.7146i −0.492657 + 0.492657i
\(474\) 0 0
\(475\) −8.90512 −0.408595
\(476\) −2.56642 + 3.22699i −0.117632 + 0.147909i
\(477\) 0 0
\(478\) 14.0808i 0.644042i
\(479\) 26.7468 26.7468i 1.22209 1.22209i 0.255203 0.966887i \(-0.417858\pi\)
0.966887 0.255203i \(-0.0821424\pi\)
\(480\) 0 0
\(481\) −6.66859 + 6.66859i −0.304061 + 0.304061i
\(482\) 13.7186 + 13.7186i 0.624867 + 0.624867i
\(483\) 0 0
\(484\) 3.48899i 0.158591i
\(485\) 4.57727i 0.207843i
\(486\) 0 0
\(487\) 17.7810 + 17.7810i 0.805735 + 0.805735i 0.983985 0.178251i \(-0.0570437\pi\)
−0.178251 + 0.983985i \(0.557044\pi\)
\(488\) −0.162466 + 0.162466i −0.00735449 + 0.00735449i
\(489\) 0 0
\(490\) −0.240016 + 0.240016i −0.0108428 + 0.0108428i
\(491\) 25.2378i 1.13897i −0.822003 0.569483i \(-0.807143\pi\)
0.822003 0.569483i \(-0.192857\pi\)
\(492\) 0 0
\(493\) −23.6952 18.8448i −1.06718 0.848728i
\(494\) 3.29320 0.148168
\(495\) 0 0
\(496\) 2.39223 2.39223i 0.107414 0.107414i
\(497\) 15.3699 0.689436
\(498\) 0 0
\(499\) 28.0346 + 28.0346i 1.25500 + 1.25500i 0.953449 + 0.301553i \(0.0975051\pi\)
0.301553 + 0.953449i \(0.402495\pi\)
\(500\) 2.37251 + 2.37251i 0.106102 + 0.106102i
\(501\) 0 0
\(502\) 27.7237i 1.23737i
\(503\) 24.8897 + 24.8897i 1.10978 + 1.10978i 0.993179 + 0.116600i \(0.0371995\pi\)
0.116600 + 0.993179i \(0.462800\pi\)
\(504\) 0 0
\(505\) 1.10587 1.10587i 0.0492107 0.0492107i
\(506\) −9.35707 −0.415972
\(507\) 0 0
\(508\) 11.4578i 0.508357i
\(509\) −6.32811 −0.280489 −0.140244 0.990117i \(-0.544789\pi\)
−0.140244 + 0.990117i \(0.544789\pi\)
\(510\) 0 0
\(511\) 7.54694 0.333857
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 27.8870 1.23004
\(515\) −2.12233 + 2.12233i −0.0935209 + 0.0935209i
\(516\) 0 0
\(517\) −8.34159 8.34159i −0.366863 0.366863i
\(518\) 5.22065i 0.229382i
\(519\) 0 0
\(520\) −0.433575 0.433575i −0.0190135 0.0190135i
\(521\) −16.5607 16.5607i −0.725536 0.725536i 0.244191 0.969727i \(-0.421477\pi\)
−0.969727 + 0.244191i \(0.921477\pi\)
\(522\) 0 0
\(523\) 21.4372 0.937384 0.468692 0.883362i \(-0.344725\pi\)
0.468692 + 0.883362i \(0.344725\pi\)
\(524\) 4.06938 4.06938i 0.177772 0.177772i
\(525\) 0 0
\(526\) 30.0521 1.31033
\(527\) −10.9173 8.68252i −0.475565 0.378217i
\(528\) 0 0
\(529\) 11.3431i 0.493180i
\(530\) 1.94762 1.94762i 0.0845994 0.0845994i
\(531\) 0 0
\(532\) 1.28908 1.28908i 0.0558886 0.0558886i
\(533\) −6.43109 6.43109i −0.278561 0.278561i
\(534\) 0 0
\(535\) 1.01825i 0.0440229i
\(536\) 9.62930i 0.415923i
\(537\) 0 0
\(538\) −1.34283 1.34283i −0.0578936 0.0578936i
\(539\) 1.93791 1.93791i 0.0834718 0.0834718i
\(540\) 0 0
\(541\) 3.27906 3.27906i 0.140978 0.140978i −0.633096 0.774074i \(-0.718216\pi\)
0.774074 + 0.633096i \(0.218216\pi\)
\(542\) 2.70813i 0.116324i
\(543\) 0 0
\(544\) −4.09656 + 0.467090i −0.175639 + 0.0200263i
\(545\) −0.836087 −0.0358140
\(546\) 0 0
\(547\) 23.2835 23.2835i 0.995529 0.995529i −0.00446133 0.999990i \(-0.501420\pi\)
0.999990 + 0.00446133i \(0.00142009\pi\)
\(548\) 21.7675 0.929859
\(549\) 0 0
\(550\) −9.46628 9.46628i −0.403644 0.403644i
\(551\) 9.46548 + 9.46548i 0.403243 + 0.403243i
\(552\) 0 0
\(553\) 1.84081i 0.0782793i
\(554\) 20.4512 + 20.4512i 0.868889 + 0.868889i
\(555\) 0 0
\(556\) −2.21924 + 2.21924i −0.0941168 + 0.0941168i
\(557\) −39.9988 −1.69481 −0.847403 0.530951i \(-0.821835\pi\)
−0.847403 + 0.530951i \(0.821835\pi\)
\(558\) 0 0
\(559\) 9.98768i 0.422434i
\(560\) −0.339434 −0.0143437
\(561\) 0 0
\(562\) 26.7565 1.12866
\(563\) 5.95374i 0.250920i 0.992099 + 0.125460i \(0.0400407\pi\)
−0.992099 + 0.125460i \(0.959959\pi\)
\(564\) 0 0
\(565\) 2.71675 0.114294
\(566\) 10.0171 10.0171i 0.421051 0.421051i
\(567\) 0 0
\(568\) 10.8682 + 10.8682i 0.456019 + 0.456019i
\(569\) 15.5842i 0.653322i 0.945141 + 0.326661i \(0.105924\pi\)
−0.945141 + 0.326661i \(0.894076\pi\)
\(570\) 0 0
\(571\) 10.5646 + 10.5646i 0.442113 + 0.442113i 0.892722 0.450608i \(-0.148793\pi\)
−0.450608 + 0.892722i \(0.648793\pi\)
\(572\) 3.50072 + 3.50072i 0.146373 + 0.146373i
\(573\) 0 0
\(574\) −5.03473 −0.210145
\(575\) −11.7929 + 11.7929i −0.491798 + 0.491798i
\(576\) 0 0
\(577\) 25.4088 1.05778 0.528891 0.848690i \(-0.322608\pi\)
0.528891 + 0.848690i \(0.322608\pi\)
\(578\) 3.82693 + 16.5637i 0.159179 + 0.688957i
\(579\) 0 0
\(580\) 2.49241i 0.103492i
\(581\) 2.34466 2.34466i 0.0972730 0.0972730i
\(582\) 0 0
\(583\) −15.7253 + 15.7253i −0.651274 + 0.651274i
\(584\) 5.33650 + 5.33650i 0.220826 + 0.220826i
\(585\) 0 0
\(586\) 4.48392i 0.185229i
\(587\) 7.57429i 0.312624i 0.987708 + 0.156312i \(0.0499606\pi\)
−0.987708 + 0.156312i \(0.950039\pi\)
\(588\) 0 0
\(589\) 4.36111 + 4.36111i 0.179696 + 0.179696i
\(590\) −0.667408 + 0.667408i −0.0274767 + 0.0274767i
\(591\) 0 0
\(592\) −3.69156 + 3.69156i −0.151722 + 0.151722i
\(593\) 17.6670i 0.725497i 0.931887 + 0.362748i \(0.118162\pi\)
−0.931887 + 0.362748i \(0.881838\pi\)
\(594\) 0 0
\(595\) 0.158547 + 1.39051i 0.00649978 + 0.0570055i
\(596\) −0.0163825 −0.000671052
\(597\) 0 0
\(598\) 4.36113 4.36113i 0.178340 0.178340i
\(599\) −44.4534 −1.81632 −0.908159 0.418625i \(-0.862512\pi\)
−0.908159 + 0.418625i \(0.862512\pi\)
\(600\) 0 0
\(601\) 25.6822 + 25.6822i 1.04760 + 1.04760i 0.998809 + 0.0487900i \(0.0155365\pi\)
0.0487900 + 0.998809i \(0.484463\pi\)
\(602\) −3.90954 3.90954i −0.159341 0.159341i
\(603\) 0 0
\(604\) 7.33169i 0.298322i
\(605\) 0.837415 + 0.837415i 0.0340458 + 0.0340458i
\(606\) 0 0
\(607\) 10.6018 10.6018i 0.430315 0.430315i −0.458421 0.888735i \(-0.651585\pi\)
0.888735 + 0.458421i \(0.151585\pi\)
\(608\) 1.82303 0.0739337
\(609\) 0 0
\(610\) 0.0779890i 0.00315768i
\(611\) 7.77568 0.314571
\(612\) 0 0
\(613\) −2.21309 −0.0893859 −0.0446930 0.999001i \(-0.514231\pi\)
−0.0446930 + 0.999001i \(0.514231\pi\)
\(614\) 16.2491i 0.655759i
\(615\) 0 0
\(616\) 2.74062 0.110423
\(617\) −7.40060 + 7.40060i −0.297937 + 0.297937i −0.840205 0.542268i \(-0.817566\pi\)
0.542268 + 0.840205i \(0.317566\pi\)
\(618\) 0 0
\(619\) 14.5663 + 14.5663i 0.585468 + 0.585468i 0.936401 0.350933i \(-0.114135\pi\)
−0.350933 + 0.936401i \(0.614135\pi\)
\(620\) 1.14835i 0.0461188i
\(621\) 0 0
\(622\) −17.7089 17.7089i −0.710064 0.710064i
\(623\) 3.85663 + 3.85663i 0.154513 + 0.154513i
\(624\) 0 0
\(625\) −23.2850 −0.931402
\(626\) −8.00508 + 8.00508i −0.319947 + 0.319947i
\(627\) 0 0
\(628\) −10.0288 −0.400194
\(629\) 16.8470 + 13.3984i 0.671734 + 0.534230i
\(630\) 0 0
\(631\) 29.1584i 1.16078i −0.814339 0.580390i \(-0.802900\pi\)
0.814339 0.580390i \(-0.197100\pi\)
\(632\) 1.30165 1.30165i 0.0517769 0.0517769i
\(633\) 0 0
\(634\) −8.93918 + 8.93918i −0.355020 + 0.355020i
\(635\) 2.75006 + 2.75006i 0.109133 + 0.109133i
\(636\) 0 0
\(637\) 1.80644i 0.0715738i
\(638\) 20.1239i 0.796714i
\(639\) 0 0
\(640\) −0.240016 0.240016i −0.00948748 0.00948748i
\(641\) −26.2647 + 26.2647i −1.03739 + 1.03739i −0.0381213 + 0.999273i \(0.512137\pi\)
−0.999273 + 0.0381213i \(0.987863\pi\)
\(642\) 0 0
\(643\) −0.665070 + 0.665070i −0.0262278 + 0.0262278i −0.720099 0.693871i \(-0.755904\pi\)
0.693871 + 0.720099i \(0.255904\pi\)
\(644\) 3.41421i 0.134539i
\(645\) 0 0
\(646\) −0.851520 7.46816i −0.0335026 0.293831i
\(647\) 28.8151 1.13284 0.566420 0.824117i \(-0.308328\pi\)
0.566420 + 0.824117i \(0.308328\pi\)
\(648\) 0 0
\(649\) 5.38870 5.38870i 0.211525 0.211525i
\(650\) 8.82407 0.346109
\(651\) 0 0
\(652\) 13.4512 + 13.4512i 0.526791 + 0.526791i
\(653\) −0.282235 0.282235i −0.0110447 0.0110447i 0.701563 0.712608i \(-0.252486\pi\)
−0.712608 + 0.701563i \(0.752486\pi\)
\(654\) 0 0
\(655\) 1.95344i 0.0763271i
\(656\) −3.56009 3.56009i −0.138998 0.138998i
\(657\) 0 0
\(658\) 3.04369 3.04369i 0.118655 0.118655i
\(659\) −9.98709 −0.389042 −0.194521 0.980898i \(-0.562315\pi\)
−0.194521 + 0.980898i \(0.562315\pi\)
\(660\) 0 0
\(661\) 21.5683i 0.838908i 0.907777 + 0.419454i \(0.137778\pi\)
−0.907777 + 0.419454i \(0.862222\pi\)
\(662\) 6.15048 0.239045
\(663\) 0 0
\(664\) 3.31585 0.128680
\(665\) 0.618800i 0.0239960i
\(666\) 0 0
\(667\) 25.0700 0.970714
\(668\) 3.55746 3.55746i 0.137642 0.137642i
\(669\) 0 0
\(670\) 2.31119 + 2.31119i 0.0892891 + 0.0892891i
\(671\) 0.629689i 0.0243089i
\(672\) 0 0
\(673\) −24.4532 24.4532i −0.942600 0.942600i 0.0558396 0.998440i \(-0.482216\pi\)
−0.998440 + 0.0558396i \(0.982216\pi\)
\(674\) −5.26410 5.26410i −0.202766 0.202766i
\(675\) 0 0
\(676\) 9.73677 0.374491
\(677\) −30.7462 + 30.7462i −1.18167 + 1.18167i −0.202360 + 0.979311i \(0.564861\pi\)
−0.979311 + 0.202360i \(0.935139\pi\)
\(678\) 0 0
\(679\) 13.4850 0.517507
\(680\) −0.871133 + 1.09535i −0.0334064 + 0.0420048i
\(681\) 0 0
\(682\) 9.27185i 0.355038i
\(683\) −1.16832 + 1.16832i −0.0447045 + 0.0447045i −0.729106 0.684401i \(-0.760064\pi\)
0.684401 + 0.729106i \(0.260064\pi\)
\(684\) 0 0
\(685\) 5.22455 5.22455i 0.199620 0.199620i
\(686\) 0.707107 + 0.707107i 0.0269975 + 0.0269975i
\(687\) 0 0
\(688\) 5.52893i 0.210788i
\(689\) 14.6584i 0.558442i
\(690\) 0 0
\(691\) −3.85442 3.85442i −0.146629 0.146629i 0.629981 0.776610i \(-0.283063\pi\)
−0.776610 + 0.629981i \(0.783063\pi\)
\(692\) 4.77128 4.77128i 0.181377 0.181377i
\(693\) 0 0
\(694\) 8.84658 8.84658i 0.335812 0.335812i
\(695\) 1.06531i 0.0404095i
\(696\) 0 0
\(697\) −12.9212 + 16.2470i −0.489427 + 0.615399i
\(698\) 2.30228 0.0871424
\(699\) 0 0
\(700\) 3.45406 3.45406i 0.130551 0.130551i
\(701\) −11.4410 −0.432121 −0.216061 0.976380i \(-0.569321\pi\)
−0.216061 + 0.976380i \(0.569321\pi\)
\(702\) 0 0
\(703\) −6.72983 6.72983i −0.253820 0.253820i
\(704\) 1.93791 + 1.93791i 0.0730378 + 0.0730378i
\(705\) 0 0
\(706\) 7.77879i 0.292759i
\(707\) −3.25798 3.25798i −0.122529 0.122529i
\(708\) 0 0
\(709\) −3.58597 + 3.58597i −0.134674 + 0.134674i −0.771230 0.636556i \(-0.780358\pi\)
0.636556 + 0.771230i \(0.280358\pi\)
\(710\) 5.21709 0.195794
\(711\) 0 0
\(712\) 5.45410i 0.204401i
\(713\) 11.5507 0.432577
\(714\) 0 0
\(715\) 1.68046 0.0628457
\(716\) 3.58407i 0.133943i
\(717\) 0 0
\(718\) 14.7356 0.549926
\(719\) 8.16781 8.16781i 0.304608 0.304608i −0.538206 0.842814i \(-0.680898\pi\)
0.842814 + 0.538206i \(0.180898\pi\)
\(720\) 0 0
\(721\) 6.25254 + 6.25254i 0.232857 + 0.232857i
\(722\) 15.6766i 0.583421i
\(723\) 0 0
\(724\) −17.9339 17.9339i −0.666507 0.666507i
\(725\) 25.3626 + 25.3626i 0.941944 + 0.941944i
\(726\) 0 0
\(727\) −5.63439 −0.208968 −0.104484 0.994527i \(-0.533319\pi\)
−0.104484 + 0.994527i \(0.533319\pi\)
\(728\) −1.27735 + 1.27735i −0.0473416 + 0.0473416i
\(729\) 0 0
\(730\) 2.56169 0.0948125
\(731\) −22.6496 + 2.58251i −0.837726 + 0.0955175i
\(732\) 0 0
\(733\) 11.0582i 0.408444i 0.978925 + 0.204222i \(0.0654665\pi\)
−0.978925 + 0.204222i \(0.934534\pi\)
\(734\) −2.81236 + 2.81236i −0.103806 + 0.103806i
\(735\) 0 0
\(736\) 2.41421 2.41421i 0.0889891 0.0889891i
\(737\) −18.6607 18.6607i −0.687377 0.687377i
\(738\) 0 0
\(739\) 6.14152i 0.225920i 0.993600 + 0.112960i \(0.0360331\pi\)
−0.993600 + 0.112960i \(0.963967\pi\)
\(740\) 1.77207i 0.0651426i
\(741\) 0 0
\(742\) −5.73785 5.73785i −0.210643 0.210643i
\(743\) 8.12217 8.12217i 0.297973 0.297973i −0.542246 0.840220i \(-0.682426\pi\)
0.840220 + 0.542246i \(0.182426\pi\)
\(744\) 0 0
\(745\) −0.00393206 + 0.00393206i −0.000144060 + 0.000144060i
\(746\) 15.8364i 0.579813i
\(747\) 0 0
\(748\) 7.03360 8.84396i 0.257174 0.323367i
\(749\) 2.99985 0.109612
\(750\) 0 0
\(751\) 1.80430 1.80430i 0.0658397 0.0658397i −0.673420 0.739260i \(-0.735176\pi\)
0.739260 + 0.673420i \(0.235176\pi\)
\(752\) 4.30442 0.156966
\(753\) 0 0
\(754\) −9.37934 9.37934i −0.341575 0.341575i
\(755\) −1.75972 1.75972i −0.0640429 0.0640429i
\(756\) 0 0
\(757\) 18.4814i 0.671719i −0.941912 0.335859i \(-0.890973\pi\)
0.941912 0.335859i \(-0.109027\pi\)
\(758\) 5.66927 + 5.66927i 0.205917 + 0.205917i
\(759\) 0 0
\(760\) 0.437557 0.437557i 0.0158719 0.0158719i
\(761\) −27.9865 −1.01451 −0.507255 0.861796i \(-0.669340\pi\)
−0.507255 + 0.861796i \(0.669340\pi\)
\(762\) 0 0
\(763\) 2.46318i 0.0891730i
\(764\) −4.50725 −0.163066
\(765\) 0 0
\(766\) 30.7579 1.11133
\(767\) 5.02312i 0.181375i
\(768\) 0 0
\(769\) −24.3818 −0.879230 −0.439615 0.898186i \(-0.644885\pi\)
−0.439615 + 0.898186i \(0.644885\pi\)
\(770\) 0.657794 0.657794i 0.0237053 0.0237053i
\(771\) 0 0
\(772\) −2.98733 2.98733i −0.107516 0.107516i
\(773\) 4.72562i 0.169969i 0.996382 + 0.0849843i \(0.0270840\pi\)
−0.996382 + 0.0849843i \(0.972916\pi\)
\(774\) 0 0
\(775\) 11.6855 + 11.6855i 0.419756 + 0.419756i
\(776\) 9.53533 + 9.53533i 0.342298 + 0.342298i
\(777\) 0 0
\(778\) −8.15477 −0.292363
\(779\) 6.49015 6.49015i 0.232534 0.232534i
\(780\) 0 0
\(781\) −42.1232 −1.50729
\(782\) −11.0176 8.76232i −0.393990 0.313340i
\(783\) 0 0
\(784\) 1.00000i 0.0357143i
\(785\) −2.40708 + 2.40708i −0.0859125 + 0.0859125i
\(786\) 0 0
\(787\) −0.262150 + 0.262150i −0.00934463 + 0.00934463i −0.711764 0.702419i \(-0.752103\pi\)
0.702419 + 0.711764i \(0.252103\pi\)
\(788\) 1.09775 + 1.09775i 0.0391059 + 0.0391059i
\(789\) 0 0
\(790\) 0.624835i 0.0222306i
\(791\) 8.00375i 0.284581i
\(792\) 0 0
\(793\) 0.293485 + 0.293485i 0.0104220 + 0.0104220i
\(794\) 13.1845 13.1845i 0.467899 0.467899i
\(795\) 0 0
\(796\) −14.0544 + 14.0544i −0.498144 + 0.498144i
\(797\) 42.2758i 1.49749i −0.662860 0.748743i \(-0.730658\pi\)
0.662860 0.748743i \(-0.269342\pi\)
\(798\) 0 0
\(799\) −2.01055 17.6333i −0.0711283 0.623823i
\(800\) 4.88478 0.172703
\(801\) 0 0
\(802\) 3.96168 3.96168i 0.139892 0.139892i
\(803\) −20.6833 −0.729898
\(804\) 0 0
\(805\) −0.819467 0.819467i −0.0288824 0.0288824i
\(806\) −4.32142 4.32142i −0.152215 0.152215i
\(807\) 0 0
\(808\) 4.60749i 0.162091i
\(809\) 11.4011 + 11.4011i 0.400840 + 0.400840i 0.878529 0.477689i \(-0.158525\pi\)
−0.477689 + 0.878529i \(0.658525\pi\)
\(810\) 0 0
\(811\) 18.0124 18.0124i 0.632502 0.632502i −0.316193 0.948695i \(-0.602405\pi\)
0.948695 + 0.316193i \(0.102405\pi\)
\(812\) −7.34283 −0.257683
\(813\) 0 0
\(814\) 14.3078i 0.501489i
\(815\) 6.45703 0.226180
\(816\) 0 0
\(817\) 10.0794 0.352634
\(818\) 10.4073i 0.363884i
\(819\) 0 0
\(820\) −1.70896 −0.0596795
\(821\) −26.5179 + 26.5179i −0.925481 + 0.925481i −0.997410 0.0719292i \(-0.977084\pi\)
0.0719292 + 0.997410i \(0.477084\pi\)
\(822\) 0 0
\(823\) −34.5400 34.5400i −1.20399 1.20399i −0.972943 0.231047i \(-0.925785\pi\)
−0.231047 0.972943i \(-0.574215\pi\)
\(824\) 8.84243i 0.308041i
\(825\) 0 0
\(826\) 1.96623 + 1.96623i 0.0684140 + 0.0684140i
\(827\) 2.89831 + 2.89831i 0.100784 + 0.100784i 0.755701 0.654917i \(-0.227296\pi\)
−0.654917 + 0.755701i \(0.727296\pi\)
\(828\) 0 0
\(829\) −23.0796 −0.801589 −0.400795 0.916168i \(-0.631266\pi\)
−0.400795 + 0.916168i \(0.631266\pi\)
\(830\) 0.795859 0.795859i 0.0276247 0.0276247i
\(831\) 0 0
\(832\) −1.80644 −0.0626271
\(833\) 4.09656 0.467090i 0.141937 0.0161837i
\(834\) 0 0
\(835\) 1.70770i 0.0590974i
\(836\) −3.53287 + 3.53287i −0.122187 + 0.122187i
\(837\) 0 0
\(838\) 1.30036 1.30036i 0.0449200 0.0449200i
\(839\) 30.6274 + 30.6274i 1.05737 + 1.05737i 0.998251 + 0.0591232i \(0.0188305\pi\)
0.0591232 + 0.998251i \(0.481170\pi\)
\(840\) 0 0
\(841\) 24.9172i 0.859213i
\(842\) 37.4523i 1.29069i
\(843\) 0 0
\(844\) 0.183324 + 0.183324i 0.00631028 + 0.00631028i
\(845\) 2.33698 2.33698i 0.0803947 0.0803947i
\(846\) 0 0
\(847\) 2.46709 2.46709i 0.0847702 0.0847702i
\(848\) 8.11455i 0.278655i
\(849\) 0 0
\(850\) −2.28164 20.0108i −0.0782595 0.686366i
\(851\) −17.8244 −0.611014
\(852\) 0 0
\(853\) −33.2922 + 33.2922i −1.13990 + 1.13990i −0.151434 + 0.988467i \(0.548389\pi\)
−0.988467 + 0.151434i \(0.951611\pi\)
\(854\) 0.229761 0.00786228
\(855\) 0 0
\(856\) 2.12122 + 2.12122i 0.0725017 + 0.0725017i
\(857\) −14.3154 14.3154i −0.489005 0.489005i 0.418987 0.907992i \(-0.362385\pi\)
−0.907992 + 0.418987i \(0.862385\pi\)
\(858\) 0 0
\(859\) 10.0218i 0.341940i 0.985276 + 0.170970i \(0.0546901\pi\)
−0.985276 + 0.170970i \(0.945310\pi\)
\(860\) −1.32703 1.32703i −0.0452515 0.0452515i
\(861\) 0 0
\(862\) 6.92272 6.92272i 0.235789 0.235789i
\(863\) −29.6685 −1.00993 −0.504963 0.863141i \(-0.668494\pi\)
−0.504963 + 0.863141i \(0.668494\pi\)
\(864\) 0 0
\(865\) 2.29037i 0.0778750i
\(866\) 3.12042 0.106036
\(867\) 0 0
\(868\) −3.38312 −0.114831
\(869\) 5.04497i 0.171139i
\(870\) 0 0
\(871\) 17.3948 0.589399
\(872\) −1.74173 + 1.74173i −0.0589824 + 0.0589824i
\(873\) 0 0
\(874\) 4.40119 + 4.40119i 0.148872 + 0.148872i
\(875\) 3.35524i 0.113428i
\(876\) 0 0
\(877\) −22.2798 22.2798i −0.752337 0.752337i 0.222578 0.974915i \(-0.428553\pi\)
−0.974915 + 0.222578i \(0.928553\pi\)
\(878\) 12.7659 + 12.7659i 0.430828 + 0.430828i
\(879\) 0 0
\(880\) 0.930261 0.0313591
\(881\) 38.1670 38.1670i 1.28588 1.28588i 0.348610 0.937268i \(-0.386654\pi\)
0.937268 0.348610i \(-0.113346\pi\)
\(882\) 0 0
\(883\) −8.84706 −0.297727 −0.148864 0.988858i \(-0.547562\pi\)
−0.148864 + 0.988858i \(0.547562\pi\)
\(884\) 0.843771 + 7.40020i 0.0283791 + 0.248896i
\(885\) 0 0
\(886\) 36.6892i 1.23260i
\(887\) 16.0113 16.0113i 0.537608 0.537608i −0.385217 0.922826i \(-0.625874\pi\)
0.922826 + 0.385217i \(0.125874\pi\)
\(888\) 0 0
\(889\) 8.10187 8.10187i 0.271728 0.271728i
\(890\) 1.30907 + 1.30907i 0.0438802 + 0.0438802i
\(891\) 0 0
\(892\) 24.8385i 0.831655i
\(893\) 7.84710i 0.262593i
\(894\) 0 0
\(895\) −0.860236 0.860236i −0.0287545 0.0287545i
\(896\) −0.707107 + 0.707107i −0.0236228 + 0.0236228i
\(897\) 0 0
\(898\) −6.08539 + 6.08539i −0.203072 + 0.203072i
\(899\) 24.8417i 0.828516i
\(900\) 0 0
\(901\) −33.2417 + 3.79023i −1.10744 + 0.126271i
\(902\) 13.7983 0.459432
\(903\) 0 0
\(904\) 5.65951 5.65951i 0.188232 0.188232i
\(905\) −8.60884 −0.286168
\(906\) 0 0
\(907\) 26.4720 + 26.4720i 0.878987 + 0.878987i 0.993430 0.114443i \(-0.0365083\pi\)
−0.114443 + 0.993430i \(0.536508\pi\)
\(908\) −10.7733 10.7733i −0.357524 0.357524i
\(909\) 0 0
\(910\) 0.613168i 0.0203263i
\(911\) −16.1451 16.1451i −0.534910 0.534910i 0.387120 0.922029i \(-0.373470\pi\)
−0.922029 + 0.387120i \(0.873470\pi\)
\(912\) 0 0
\(913\) −6.42583 + 6.42583i −0.212664 + 0.212664i
\(914\) 1.66033 0.0549188
\(915\) 0 0
\(916\) 22.9959i 0.759807i
\(917\) −5.75498 −0.190046
\(918\) 0 0
\(919\) 45.9692 1.51638 0.758192 0.652032i \(-0.226083\pi\)
0.758192 + 0.652032i \(0.226083\pi\)
\(920\) 1.15890i 0.0382079i
\(921\) 0 0
\(922\) −18.1548 −0.597895
\(923\) 19.6328 19.6328i 0.646220 0.646220i
\(924\) 0 0
\(925\) −18.0325 18.0325i −0.592904 0.592904i
\(926\) 6.89976i 0.226740i
\(927\) 0 0
\(928\) −5.19217 5.19217i −0.170441 0.170441i
\(929\) 0.379222 + 0.379222i 0.0124419 + 0.0124419i 0.713300 0.700858i \(-0.247200\pi\)
−0.700858 + 0.713300i \(0.747200\pi\)
\(930\) 0 0
\(931\) −1.82303 −0.0597474
\(932\) −12.1448 + 12.1448i −0.397816 + 0.397816i
\(933\) 0 0
\(934\) 11.5008 0.376316
\(935\) −0.434516 3.81087i −0.0142102 0.124629i
\(936\) 0 0
\(937\) 2.04680i 0.0668660i −0.999441 0.0334330i \(-0.989356\pi\)
0.999441 0.0334330i \(-0.0106440\pi\)
\(938\) 6.80895 6.80895i 0.222320 0.222320i
\(939\) 0 0
\(940\) 1.03313 1.03313i 0.0336970 0.0336970i
\(941\) −17.4256 17.4256i −0.568059 0.568059i 0.363526 0.931584i \(-0.381573\pi\)
−0.931584 + 0.363526i \(0.881573\pi\)
\(942\) 0 0
\(943\) 17.1896i 0.559771i
\(944\) 2.78067i 0.0905033i
\(945\) 0 0
\(946\) 10.7146 + 10.7146i 0.348361 + 0.348361i
\(947\) 19.7960 19.7960i 0.643285 0.643285i −0.308077 0.951361i \(-0.599685\pi\)
0.951361 + 0.308077i \(0.0996854\pi\)
\(948\) 0 0
\(949\) 9.64006 9.64006i 0.312930 0.312930i
\(950\) 8.90512i 0.288920i
\(951\) 0 0
\(952\) 3.22699 + 2.56642i 0.104587 + 0.0831783i
\(953\) −14.4240 −0.467239 −0.233619 0.972328i \(-0.575057\pi\)
−0.233619 + 0.972328i \(0.575057\pi\)
\(954\) 0 0
\(955\) −1.08181 + 1.08181i −0.0350067 + 0.0350067i
\(956\) −14.0808 −0.455407
\(957\) 0 0
\(958\) −26.7468 26.7468i −0.864149 0.864149i
\(959\) −15.3919 15.3919i −0.497031 0.497031i
\(960\) 0 0
\(961\) 19.5545i 0.630790i
\(962\) 6.66859 + 6.66859i 0.215004 + 0.215004i
\(963\) 0 0
\(964\) 13.7186 13.7186i 0.441847 0.441847i
\(965\) −1.43402 −0.0461626
\(966\) 0 0
\(967\) 52.7678i 1.69690i 0.529277 + 0.848449i \(0.322463\pi\)
−0.529277 + 0.848449i \(0.677537\pi\)
\(968\) 3.48899 0.112140
\(969\) 0 0
\(970\) 4.57727 0.146967
\(971\) 44.5103i 1.42840i −0.699940 0.714201i \(-0.746790\pi\)
0.699940 0.714201i \(-0.253210\pi\)
\(972\) 0 0
\(973\) 3.13848 0.100615
\(974\) 17.7810 17.7810i 0.569740 0.569740i
\(975\) 0 0
\(976\) 0.162466 + 0.162466i 0.00520041 + 0.00520041i
\(977\) 8.02101i 0.256615i −0.991734 0.128307i \(-0.959046\pi\)
0.991734 0.128307i \(-0.0409544\pi\)
\(978\) 0 0
\(979\) −10.5696 10.5696i −0.337805 0.337805i
\(980\) 0.240016 + 0.240016i 0.00766704 + 0.00766704i
\(981\) 0 0
\(982\) −25.2378 −0.805371
\(983\) 4.63151 4.63151i 0.147722 0.147722i −0.629377 0.777100i \(-0.716690\pi\)
0.777100 + 0.629377i \(0.216690\pi\)
\(984\) 0 0
\(985\) 0.526958 0.0167903
\(986\) −18.8448 + 23.6952i −0.600141 + 0.754610i
\(987\) 0 0
\(988\) 3.29320i 0.104771i
\(989\) 13.3480 13.3480i 0.424442 0.424442i
\(990\) 0 0
\(991\) −15.8288 + 15.8288i −0.502818 + 0.502818i −0.912313 0.409495i \(-0.865705\pi\)
0.409495 + 0.912313i \(0.365705\pi\)
\(992\) −2.39223 2.39223i −0.0759533 0.0759533i
\(993\) 0 0
\(994\) 15.3699i 0.487505i
\(995\) 6.74655i 0.213880i
\(996\) 0 0
\(997\) −32.5563 32.5563i −1.03107 1.03107i −0.999502 0.0315660i \(-0.989951\pi\)
−0.0315660 0.999502i \(-0.510049\pi\)
\(998\) 28.0346 28.0346i 0.887421 0.887421i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2142.2.p.f.1891.3 12
3.2 odd 2 714.2.m.e.463.2 yes 12
17.13 even 4 inner 2142.2.p.f.1135.3 12
51.47 odd 4 714.2.m.e.421.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
714.2.m.e.421.2 12 51.47 odd 4
714.2.m.e.463.2 yes 12 3.2 odd 2
2142.2.p.f.1135.3 12 17.13 even 4 inner
2142.2.p.f.1891.3 12 1.1 even 1 trivial