Properties

Label 2142.2.p.f
Level $2142$
Weight $2$
Character orbit 2142.p
Analytic conductor $17.104$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2142,2,Mod(1135,2142)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2142, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2142.1135"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.p (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1039561130\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 36x^{10} + 450x^{8} + 2400x^{6} + 5385x^{4} + 4428x^{2} + 1156 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 714)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{9} q^{2} - q^{4} + ( - \beta_{8} - \beta_{6}) q^{5} + \beta_{5} q^{7} + \beta_{9} q^{8} + ( - \beta_{7} + \beta_{5}) q^{10} + (\beta_{5} - \beta_{2}) q^{11} + (\beta_{8} - \beta_{7} - \beta_{4} - 1) q^{13}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 12 q^{13} + 12 q^{16} + 12 q^{23} - 12 q^{29} + 12 q^{31} + 12 q^{34} - 12 q^{35} - 12 q^{37} + 12 q^{46} + 24 q^{47} - 24 q^{50} + 12 q^{52} + 12 q^{55} + 12 q^{58} - 12 q^{61} - 12 q^{62}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 36x^{10} + 450x^{8} + 2400x^{6} + 5385x^{4} + 4428x^{2} + 1156 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 47\nu^{10} + 1528\nu^{8} + 15305\nu^{6} + 44682\nu^{4} - 40198\nu^{2} - 136816 ) / 32164 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 57 \nu^{11} + 335 \nu^{10} - 2467 \nu^{9} + 12773 \nu^{8} - 39313 \nu^{7} + 173759 \nu^{6} + \cdots + 1199656 ) / 128656 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 57 \nu^{11} + 335 \nu^{10} + 2467 \nu^{9} + 12773 \nu^{8} + 39313 \nu^{7} + 173759 \nu^{6} + \cdots + 1199656 ) / 128656 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -463\nu^{10} - 14197\nu^{8} - 131609\nu^{6} - 361295\nu^{4} + 116440\nu^{2} + 432820 ) / 128656 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 99 \nu^{11} - 867 \nu^{10} + 3289 \nu^{9} - 30753 \nu^{8} + 36465 \nu^{7} - 371977 \nu^{6} + \cdots - 1485732 ) / 257312 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 99 \nu^{11} - 867 \nu^{10} - 3289 \nu^{9} - 30753 \nu^{8} - 36465 \nu^{7} - 371977 \nu^{6} + \cdots - 1485732 ) / 257312 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 57 \nu^{11} - 1023 \nu^{10} + 2467 \nu^{9} - 36509 \nu^{8} + 39313 \nu^{7} - 447755 \nu^{6} + \cdots - 2094400 ) / 128656 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 57 \nu^{11} + 1023 \nu^{10} + 2467 \nu^{9} + 36509 \nu^{8} + 39313 \nu^{7} + 447755 \nu^{6} + \cdots + 2094400 ) / 128656 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -9\nu^{11} - 316\nu^{9} - 3774\nu^{7} - 18414\nu^{5} - 33857\nu^{3} - 15318\nu ) / 1496 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 92 \nu^{11} + 93 \nu^{10} - 3238 \nu^{9} + 3319 \nu^{8} - 38932 \nu^{7} + 40705 \nu^{6} + \cdots + 190400 ) / 11696 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -88\nu^{11} - 3129\nu^{9} - 38161\nu^{7} - 192621\nu^{5} - 372491\nu^{3} - 174542\nu ) / 5848 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{8} + \beta_{7} - \beta_{3} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{8} + \beta_{7} - 4\beta_{6} - 4\beta_{5} - \beta_{3} - \beta_{2} - 4\beta _1 - 12 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 6 \beta_{11} + 6 \beta_{10} + 8 \beta_{9} - 15 \beta_{8} - 9 \beta_{7} - 10 \beta_{6} + \cdots - 9 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 25\beta_{8} - 25\beta_{7} + 72\beta_{6} + 72\beta_{5} + 4\beta_{4} + 5\beta_{3} + 5\beta_{2} + 52\beta _1 + 132 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 134 \beta_{11} - 98 \beta_{10} - 220 \beta_{9} + 221 \beta_{8} + 123 \beta_{7} + 190 \beta_{6} + \cdots + 95 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 447 \beta_{8} + 447 \beta_{7} - 1124 \beta_{6} - 1124 \beta_{5} - 120 \beta_{4} + 33 \beta_{3} + \cdots - 1752 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 2402 \beta_{11} + 1418 \beta_{10} + 4368 \beta_{9} - 3287 \beta_{8} - 1869 \beta_{7} + \cdots - 1149 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 7381 \beta_{8} - 7381 \beta_{7} + 17232 \beta_{6} + 17232 \beta_{5} + 2620 \beta_{4} - 1527 \beta_{3} + \cdots + 25292 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 40230 \beta_{11} - 20466 \beta_{10} - 77468 \beta_{9} + 49941 \beta_{8} + 29475 \beta_{7} + \cdots + 15327 \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 119023 \beta_{8} + 119023 \beta_{7} - 266076 \beta_{6} - 266076 \beta_{5} - 49904 \beta_{4} + \cdots - 381672 ) / 2 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 656874 \beta_{11} + 301906 \beta_{10} + 1308032 \beta_{9} - 772575 \beta_{8} + \cdots - 218549 \beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2142\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1667\) \(1837\)
\(\chi(n)\) \(-\beta_{9}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1135.1
4.00120i
0.725963i
3.11211i
0.889088i
2.45154i
1.72558i
4.00120i
0.725963i
3.11211i
0.889088i
2.45154i
1.72558i
1.00000i 0 −1.00000 −3.02305 3.02305i 0 0.707107 0.707107i 1.00000i 0 3.02305 3.02305i
1135.2 1.00000i 0 −1.00000 −1.60883 1.60883i 0 −0.707107 + 0.707107i 1.00000i 0 1.60883 1.60883i
1135.3 1.00000i 0 −1.00000 −0.240016 0.240016i 0 0.707107 0.707107i 1.00000i 0 0.240016 0.240016i
1135.4 1.00000i 0 −1.00000 1.14174 + 1.14174i 0 0.707107 0.707107i 1.00000i 0 −1.14174 + 1.14174i
1135.5 1.00000i 0 −1.00000 1.17420 + 1.17420i 0 −0.707107 + 0.707107i 1.00000i 0 −1.17420 + 1.17420i
1135.6 1.00000i 0 −1.00000 2.55596 + 2.55596i 0 −0.707107 + 0.707107i 1.00000i 0 −2.55596 + 2.55596i
1891.1 1.00000i 0 −1.00000 −3.02305 + 3.02305i 0 0.707107 + 0.707107i 1.00000i 0 3.02305 + 3.02305i
1891.2 1.00000i 0 −1.00000 −1.60883 + 1.60883i 0 −0.707107 0.707107i 1.00000i 0 1.60883 + 1.60883i
1891.3 1.00000i 0 −1.00000 −0.240016 + 0.240016i 0 0.707107 + 0.707107i 1.00000i 0 0.240016 + 0.240016i
1891.4 1.00000i 0 −1.00000 1.14174 1.14174i 0 0.707107 + 0.707107i 1.00000i 0 −1.14174 1.14174i
1891.5 1.00000i 0 −1.00000 1.17420 1.17420i 0 −0.707107 0.707107i 1.00000i 0 −1.17420 1.17420i
1891.6 1.00000i 0 −1.00000 2.55596 2.55596i 0 −0.707107 0.707107i 1.00000i 0 −2.55596 2.55596i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1135.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2142.2.p.f 12
3.b odd 2 1 714.2.m.e 12
17.c even 4 1 inner 2142.2.p.f 12
51.f odd 4 1 714.2.m.e 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
714.2.m.e 12 3.b odd 2 1
714.2.m.e 12 51.f odd 4 1
2142.2.p.f 12 1.a even 1 1 trivial
2142.2.p.f 12 17.c even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} - 16 T_{5}^{9} + 273 T_{5}^{8} - 240 T_{5}^{7} + 128 T_{5}^{6} - 672 T_{5}^{5} + 5712 T_{5}^{4} + \cdots + 1024 \) acting on \(S_{2}^{\mathrm{new}}(2142, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} - 16 T^{9} + \cdots + 1024 \) Copy content Toggle raw display
$7$ \( (T^{4} + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{12} + 4 T^{9} + \cdots + 1201216 \) Copy content Toggle raw display
$13$ \( (T^{6} + 6 T^{5} - 15 T^{4} + \cdots + 32)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} + 33 T^{4} + \cdots + 4913)^{2} \) Copy content Toggle raw display
$19$ \( T^{12} + 120 T^{10} + \cdots + 73984 \) Copy content Toggle raw display
$23$ \( (T^{4} - 4 T^{3} + 8 T^{2} + \cdots + 4)^{3} \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 300814336 \) Copy content Toggle raw display
$31$ \( T^{12} - 12 T^{11} + \cdots + 21233664 \) Copy content Toggle raw display
$37$ \( T^{12} + 12 T^{11} + \cdots + 246016 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 1073741824 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 4507242496 \) Copy content Toggle raw display
$47$ \( (T^{6} - 12 T^{5} + \cdots - 2176)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + 366 T^{10} + \cdots + 40551424 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 2102772736 \) Copy content Toggle raw display
$61$ \( T^{12} + 12 T^{11} + \cdots + 4096 \) Copy content Toggle raw display
$67$ \( (T^{6} + 6 T^{5} + \cdots - 214784)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 13184550976 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 9491435776 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 702038016 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 19606720576 \) Copy content Toggle raw display
$89$ \( (T^{6} + 6 T^{5} + \cdots - 451996)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 1473331456 \) Copy content Toggle raw display
show more
show less