Properties

Label 2142.2.p
Level $2142$
Weight $2$
Character orbit 2142.p
Rep. character $\chi_{2142}(1135,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $88$
Newform subspaces $9$
Sturm bound $864$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2142 = 2 \cdot 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2142.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 17 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(864\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2142, [\chi])\).

Total New Old
Modular forms 896 88 808
Cusp forms 832 88 744
Eisenstein series 64 0 64

Trace form

\( 88 q - 88 q^{4} + 4 q^{5} - 4 q^{10} + 4 q^{11} - 32 q^{13} + 88 q^{16} - 4 q^{17} - 4 q^{20} + 4 q^{22} - 28 q^{29} + 40 q^{31} + 28 q^{34} + 8 q^{35} - 12 q^{37} + 8 q^{38} + 4 q^{40} - 40 q^{41} - 4 q^{44}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2142, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2142.2.p.a 2142.p 17.c $4$ $17.104$ \(\Q(\zeta_{8})\) None 714.2.m.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\zeta_{8}^{2}q^{2}-q^{4}+\zeta_{8}q^{5}-\zeta_{8}^{3}q^{7}+\cdots\)
2142.2.p.b 2142.p 17.c $4$ $17.104$ \(\Q(\zeta_{8})\) None 714.2.m.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\zeta_{8}^{2}q^{2}-q^{4}+(2+\zeta_{8}+2\zeta_{8}^{2})q^{5}+\cdots\)
2142.2.p.c 2142.p 17.c $8$ $17.104$ \(\Q(\zeta_{16})\) None 238.2.g.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{3} q^{2}-q^{4}+(\beta_{7}-\beta_{3}-1)q^{5}+\cdots\)
2142.2.p.d 2142.p 17.c $8$ $17.104$ 8.0.836829184.2 None 714.2.m.c \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{5}q^{2}-q^{4}+(-\beta _{1}+\beta _{4}-\beta _{5}+\beta _{6}+\cdots)q^{5}+\cdots\)
2142.2.p.e 2142.p 17.c $8$ $17.104$ 8.0.110166016.2 None 238.2.g.b \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{5}q^{2}-q^{4}+(-\beta _{2}+\beta _{4}+\beta _{5})q^{5}+\cdots\)
2142.2.p.f 2142.p 17.c $12$ $17.104$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 714.2.m.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{9}q^{2}-q^{4}+(-\beta _{6}-\beta _{8})q^{5}+\beta _{5}q^{7}+\cdots\)
2142.2.p.g 2142.p 17.c $12$ $17.104$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 714.2.m.d \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{7}q^{2}-q^{4}-\beta _{6}q^{5}-\beta _{3}q^{7}+\beta _{7}q^{8}+\cdots\)
2142.2.p.h 2142.p 17.c $16$ $17.104$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2142.2.p.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{12}q^{2}-q^{4}-\beta _{5}q^{5}-\beta _{9}q^{7}-\beta _{12}q^{8}+\cdots\)
2142.2.p.i 2142.p 17.c $16$ $17.104$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2142.2.p.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{12}q^{2}-q^{4}+\beta _{5}q^{5}-\beta _{9}q^{7}+\beta _{12}q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2142, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2142, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(34, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(102, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(238, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(357, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(714, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1071, [\chi])\)\(^{\oplus 2}\)