Properties

Label 2100.3.j.g.601.8
Level $2100$
Weight $3$
Character 2100.601
Analytic conductor $57.221$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(601,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 56 x^{14} + 2052 x^{12} - 43310 x^{10} + 663499 x^{8} - 6680748 x^{6} + 49052709 x^{4} + \cdots + 601475625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 601.8
Root \(2.27298 + 1.31230i\) of defining polynomial
Character \(\chi\) \(=\) 2100.601
Dual form 2100.3.j.g.601.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +(6.51200 - 2.56785i) q^{7} -3.00000 q^{9} +8.37580 q^{11} -0.0883033i q^{13} +29.7704i q^{17} +17.8840i q^{19} +(-4.44765 - 11.2791i) q^{21} -39.2955 q^{23} +5.19615i q^{27} -43.7168 q^{29} +53.8656i q^{31} -14.5073i q^{33} -27.0440 q^{37} -0.152946 q^{39} -46.0785i q^{41} -74.8906 q^{43} -27.7687i q^{47} +(35.8123 - 33.4437i) q^{49} +51.5639 q^{51} +5.38329 q^{53} +30.9761 q^{57} -1.93853i q^{59} +74.8723i q^{61} +(-19.5360 + 7.70356i) q^{63} +30.6588 q^{67} +68.0617i q^{69} -72.3104 q^{71} -34.0300i q^{73} +(54.5432 - 21.5078i) q^{77} -125.748 q^{79} +9.00000 q^{81} -92.4285i q^{83} +75.7197i q^{87} +141.387i q^{89} +(-0.226750 - 0.575031i) q^{91} +93.2979 q^{93} -107.878i q^{97} -25.1274 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 24 q^{11} - 12 q^{21} + 32 q^{29} - 72 q^{39} + 88 q^{49} + 24 q^{51} + 168 q^{71} - 16 q^{79} + 144 q^{81} - 568 q^{91} + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 6.51200 2.56785i 0.930286 0.366836i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 8.37580 0.761436 0.380718 0.924691i \(-0.375677\pi\)
0.380718 + 0.924691i \(0.375677\pi\)
\(12\) 0 0
\(13\) 0.0883033i 0.00679256i −0.999994 0.00339628i \(-0.998919\pi\)
0.999994 0.00339628i \(-0.00108107\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 29.7704i 1.75120i 0.483037 + 0.875600i \(0.339534\pi\)
−0.483037 + 0.875600i \(0.660466\pi\)
\(18\) 0 0
\(19\) 17.8840i 0.941265i 0.882329 + 0.470633i \(0.155974\pi\)
−0.882329 + 0.470633i \(0.844026\pi\)
\(20\) 0 0
\(21\) −4.44765 11.2791i −0.211793 0.537101i
\(22\) 0 0
\(23\) −39.2955 −1.70850 −0.854249 0.519864i \(-0.825983\pi\)
−0.854249 + 0.519864i \(0.825983\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −43.7168 −1.50748 −0.753738 0.657175i \(-0.771751\pi\)
−0.753738 + 0.657175i \(0.771751\pi\)
\(30\) 0 0
\(31\) 53.8656i 1.73760i 0.495164 + 0.868799i \(0.335108\pi\)
−0.495164 + 0.868799i \(0.664892\pi\)
\(32\) 0 0
\(33\) 14.5073i 0.439615i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −27.0440 −0.730918 −0.365459 0.930827i \(-0.619088\pi\)
−0.365459 + 0.930827i \(0.619088\pi\)
\(38\) 0 0
\(39\) −0.152946 −0.00392169
\(40\) 0 0
\(41\) 46.0785i 1.12387i −0.827183 0.561933i \(-0.810058\pi\)
0.827183 0.561933i \(-0.189942\pi\)
\(42\) 0 0
\(43\) −74.8906 −1.74164 −0.870821 0.491601i \(-0.836412\pi\)
−0.870821 + 0.491601i \(0.836412\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 27.7687i 0.590824i −0.955370 0.295412i \(-0.904543\pi\)
0.955370 0.295412i \(-0.0954569\pi\)
\(48\) 0 0
\(49\) 35.8123 33.4437i 0.730863 0.682525i
\(50\) 0 0
\(51\) 51.5639 1.01106
\(52\) 0 0
\(53\) 5.38329 0.101572 0.0507858 0.998710i \(-0.483827\pi\)
0.0507858 + 0.998710i \(0.483827\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 30.9761 0.543440
\(58\) 0 0
\(59\) 1.93853i 0.0328565i −0.999865 0.0164282i \(-0.994770\pi\)
0.999865 0.0164282i \(-0.00522951\pi\)
\(60\) 0 0
\(61\) 74.8723i 1.22741i 0.789534 + 0.613707i \(0.210323\pi\)
−0.789534 + 0.613707i \(0.789677\pi\)
\(62\) 0 0
\(63\) −19.5360 + 7.70356i −0.310095 + 0.122279i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 30.6588 0.457594 0.228797 0.973474i \(-0.426521\pi\)
0.228797 + 0.973474i \(0.426521\pi\)
\(68\) 0 0
\(69\) 68.0617i 0.986402i
\(70\) 0 0
\(71\) −72.3104 −1.01846 −0.509228 0.860631i \(-0.670069\pi\)
−0.509228 + 0.860631i \(0.670069\pi\)
\(72\) 0 0
\(73\) 34.0300i 0.466165i −0.972457 0.233082i \(-0.925119\pi\)
0.972457 0.233082i \(-0.0748812\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 54.5432 21.5078i 0.708353 0.279322i
\(78\) 0 0
\(79\) −125.748 −1.59175 −0.795873 0.605464i \(-0.792988\pi\)
−0.795873 + 0.605464i \(0.792988\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 92.4285i 1.11360i −0.830648 0.556798i \(-0.812030\pi\)
0.830648 0.556798i \(-0.187970\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 75.7197i 0.870342i
\(88\) 0 0
\(89\) 141.387i 1.58862i 0.607514 + 0.794309i \(0.292167\pi\)
−0.607514 + 0.794309i \(0.707833\pi\)
\(90\) 0 0
\(91\) −0.226750 0.575031i −0.00249176 0.00631902i
\(92\) 0 0
\(93\) 93.2979 1.00320
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 107.878i 1.11214i −0.831135 0.556070i \(-0.812309\pi\)
0.831135 0.556070i \(-0.187691\pi\)
\(98\) 0 0
\(99\) −25.1274 −0.253812
\(100\) 0 0
\(101\) 0.600487i 0.00594541i −0.999996 0.00297271i \(-0.999054\pi\)
0.999996 0.00297271i \(-0.000946243\pi\)
\(102\) 0 0
\(103\) 105.893i 1.02808i 0.857765 + 0.514041i \(0.171852\pi\)
−0.857765 + 0.514041i \(0.828148\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −119.448 −1.11634 −0.558168 0.829728i \(-0.688496\pi\)
−0.558168 + 0.829728i \(0.688496\pi\)
\(108\) 0 0
\(109\) 68.8319 0.631485 0.315742 0.948845i \(-0.397746\pi\)
0.315742 + 0.948845i \(0.397746\pi\)
\(110\) 0 0
\(111\) 46.8415i 0.421996i
\(112\) 0 0
\(113\) 82.4292 0.729462 0.364731 0.931113i \(-0.381161\pi\)
0.364731 + 0.931113i \(0.381161\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.264910i 0.00226419i
\(118\) 0 0
\(119\) 76.4460 + 193.865i 0.642404 + 1.62912i
\(120\) 0 0
\(121\) −50.8460 −0.420215
\(122\) 0 0
\(123\) −79.8104 −0.648865
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 77.8951 0.613348 0.306674 0.951815i \(-0.400784\pi\)
0.306674 + 0.951815i \(0.400784\pi\)
\(128\) 0 0
\(129\) 129.714i 1.00554i
\(130\) 0 0
\(131\) 40.8293i 0.311674i −0.987783 0.155837i \(-0.950193\pi\)
0.987783 0.155837i \(-0.0498075\pi\)
\(132\) 0 0
\(133\) 45.9236 + 116.461i 0.345290 + 0.875645i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −233.755 −1.70624 −0.853122 0.521712i \(-0.825294\pi\)
−0.853122 + 0.521712i \(0.825294\pi\)
\(138\) 0 0
\(139\) 93.7217i 0.674257i 0.941459 + 0.337128i \(0.109456\pi\)
−0.941459 + 0.337128i \(0.890544\pi\)
\(140\) 0 0
\(141\) −48.0968 −0.341112
\(142\) 0 0
\(143\) 0.739611i 0.00517210i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −57.9262 62.0287i −0.394056 0.421964i
\(148\) 0 0
\(149\) −141.672 −0.950818 −0.475409 0.879765i \(-0.657700\pi\)
−0.475409 + 0.879765i \(0.657700\pi\)
\(150\) 0 0
\(151\) −81.1008 −0.537091 −0.268546 0.963267i \(-0.586543\pi\)
−0.268546 + 0.963267i \(0.586543\pi\)
\(152\) 0 0
\(153\) 89.3112i 0.583733i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 217.806i 1.38730i −0.720313 0.693649i \(-0.756002\pi\)
0.720313 0.693649i \(-0.243998\pi\)
\(158\) 0 0
\(159\) 9.32413i 0.0586423i
\(160\) 0 0
\(161\) −255.892 + 100.905i −1.58939 + 0.626739i
\(162\) 0 0
\(163\) 149.171 0.915159 0.457580 0.889169i \(-0.348716\pi\)
0.457580 + 0.889169i \(0.348716\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.343560i 0.00205725i −0.999999 0.00102862i \(-0.999673\pi\)
0.999999 0.00102862i \(-0.000327421\pi\)
\(168\) 0 0
\(169\) 168.992 0.999954
\(170\) 0 0
\(171\) 53.6521i 0.313755i
\(172\) 0 0
\(173\) 2.95065i 0.0170558i −0.999964 0.00852790i \(-0.997285\pi\)
0.999964 0.00852790i \(-0.00271455\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.35764 −0.0189697
\(178\) 0 0
\(179\) −306.545 −1.71254 −0.856272 0.516526i \(-0.827225\pi\)
−0.856272 + 0.516526i \(0.827225\pi\)
\(180\) 0 0
\(181\) 270.883i 1.49659i 0.663364 + 0.748297i \(0.269128\pi\)
−0.663364 + 0.748297i \(0.730872\pi\)
\(182\) 0 0
\(183\) 129.683 0.708648
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 249.351i 1.33343i
\(188\) 0 0
\(189\) 13.3430 + 33.8373i 0.0705976 + 0.179034i
\(190\) 0 0
\(191\) 340.931 1.78498 0.892490 0.451067i \(-0.148956\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(192\) 0 0
\(193\) 181.872 0.942344 0.471172 0.882041i \(-0.343831\pi\)
0.471172 + 0.882041i \(0.343831\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −98.7921 −0.501483 −0.250741 0.968054i \(-0.580674\pi\)
−0.250741 + 0.968054i \(0.580674\pi\)
\(198\) 0 0
\(199\) 181.839i 0.913765i 0.889527 + 0.456882i \(0.151034\pi\)
−0.889527 + 0.456882i \(0.848966\pi\)
\(200\) 0 0
\(201\) 53.1025i 0.264192i
\(202\) 0 0
\(203\) −284.684 + 112.258i −1.40238 + 0.552997i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 117.886 0.569499
\(208\) 0 0
\(209\) 149.793i 0.716713i
\(210\) 0 0
\(211\) 10.0016 0.0474009 0.0237004 0.999719i \(-0.492455\pi\)
0.0237004 + 0.999719i \(0.492455\pi\)
\(212\) 0 0
\(213\) 125.245i 0.588006i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 138.319 + 350.772i 0.637414 + 1.61646i
\(218\) 0 0
\(219\) −58.9417 −0.269140
\(220\) 0 0
\(221\) 2.62883 0.0118951
\(222\) 0 0
\(223\) 68.5318i 0.307318i 0.988124 + 0.153659i \(0.0491056\pi\)
−0.988124 + 0.153659i \(0.950894\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.8883i 0.0788031i −0.999223 0.0394015i \(-0.987455\pi\)
0.999223 0.0394015i \(-0.0125451\pi\)
\(228\) 0 0
\(229\) 119.591i 0.522230i 0.965308 + 0.261115i \(0.0840901\pi\)
−0.965308 + 0.261115i \(0.915910\pi\)
\(230\) 0 0
\(231\) −37.2526 94.4716i −0.161267 0.408968i
\(232\) 0 0
\(233\) 157.824 0.677357 0.338679 0.940902i \(-0.390020\pi\)
0.338679 + 0.940902i \(0.390020\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 217.802i 0.918995i
\(238\) 0 0
\(239\) 299.375 1.25261 0.626307 0.779576i \(-0.284565\pi\)
0.626307 + 0.779576i \(0.284565\pi\)
\(240\) 0 0
\(241\) 73.5375i 0.305135i 0.988293 + 0.152568i \(0.0487542\pi\)
−0.988293 + 0.152568i \(0.951246\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.57922 0.00639360
\(248\) 0 0
\(249\) −160.091 −0.642935
\(250\) 0 0
\(251\) 113.219i 0.451073i 0.974235 + 0.225536i \(0.0724134\pi\)
−0.974235 + 0.225536i \(0.927587\pi\)
\(252\) 0 0
\(253\) −329.131 −1.30091
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.6272i 0.0958257i 0.998852 + 0.0479128i \(0.0152570\pi\)
−0.998852 + 0.0479128i \(0.984743\pi\)
\(258\) 0 0
\(259\) −176.110 + 69.4450i −0.679963 + 0.268127i
\(260\) 0 0
\(261\) 131.150 0.502492
\(262\) 0 0
\(263\) 81.4679 0.309764 0.154882 0.987933i \(-0.450500\pi\)
0.154882 + 0.987933i \(0.450500\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 244.890 0.917189
\(268\) 0 0
\(269\) 328.768i 1.22218i 0.791559 + 0.611092i \(0.209270\pi\)
−0.791559 + 0.611092i \(0.790730\pi\)
\(270\) 0 0
\(271\) 161.616i 0.596370i −0.954508 0.298185i \(-0.903619\pi\)
0.954508 0.298185i \(-0.0963813\pi\)
\(272\) 0 0
\(273\) −0.995983 + 0.392742i −0.00364829 + 0.00143862i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 393.057 1.41898 0.709489 0.704717i \(-0.248926\pi\)
0.709489 + 0.704717i \(0.248926\pi\)
\(278\) 0 0
\(279\) 161.597i 0.579200i
\(280\) 0 0
\(281\) 165.651 0.589505 0.294753 0.955574i \(-0.404763\pi\)
0.294753 + 0.955574i \(0.404763\pi\)
\(282\) 0 0
\(283\) 423.072i 1.49495i −0.664289 0.747476i \(-0.731265\pi\)
0.664289 0.747476i \(-0.268735\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −118.323 300.063i −0.412275 1.04552i
\(288\) 0 0
\(289\) −597.277 −2.06670
\(290\) 0 0
\(291\) −186.850 −0.642095
\(292\) 0 0
\(293\) 99.9270i 0.341048i −0.985354 0.170524i \(-0.945454\pi\)
0.985354 0.170524i \(-0.0545460\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 43.5219i 0.146538i
\(298\) 0 0
\(299\) 3.46992i 0.0116051i
\(300\) 0 0
\(301\) −487.687 + 192.308i −1.62022 + 0.638897i
\(302\) 0 0
\(303\) −1.04007 −0.00343259
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 287.175i 0.935422i −0.883881 0.467711i \(-0.845079\pi\)
0.883881 0.467711i \(-0.154921\pi\)
\(308\) 0 0
\(309\) 183.411 0.593564
\(310\) 0 0
\(311\) 187.061i 0.601482i 0.953706 + 0.300741i \(0.0972339\pi\)
−0.953706 + 0.300741i \(0.902766\pi\)
\(312\) 0 0
\(313\) 274.169i 0.875940i 0.898990 + 0.437970i \(0.144302\pi\)
−0.898990 + 0.437970i \(0.855698\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −84.2117 −0.265652 −0.132826 0.991139i \(-0.542405\pi\)
−0.132826 + 0.991139i \(0.542405\pi\)
\(318\) 0 0
\(319\) −366.163 −1.14785
\(320\) 0 0
\(321\) 206.890i 0.644517i
\(322\) 0 0
\(323\) −532.415 −1.64834
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 119.220i 0.364588i
\(328\) 0 0
\(329\) −71.3060 180.830i −0.216735 0.549635i
\(330\) 0 0
\(331\) 568.223 1.71669 0.858343 0.513076i \(-0.171494\pi\)
0.858343 + 0.513076i \(0.171494\pi\)
\(332\) 0 0
\(333\) 81.1319 0.243639
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 127.801 0.379232 0.189616 0.981858i \(-0.439276\pi\)
0.189616 + 0.981858i \(0.439276\pi\)
\(338\) 0 0
\(339\) 142.771i 0.421155i
\(340\) 0 0
\(341\) 451.167i 1.32307i
\(342\) 0 0
\(343\) 147.331 309.746i 0.429536 0.903050i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −301.061 −0.867612 −0.433806 0.901006i \(-0.642830\pi\)
−0.433806 + 0.901006i \(0.642830\pi\)
\(348\) 0 0
\(349\) 612.654i 1.75546i 0.479159 + 0.877728i \(0.340942\pi\)
−0.479159 + 0.877728i \(0.659058\pi\)
\(350\) 0 0
\(351\) 0.458837 0.00130723
\(352\) 0 0
\(353\) 63.4467i 0.179736i −0.995954 0.0898678i \(-0.971356\pi\)
0.995954 0.0898678i \(-0.0286444\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 335.784 132.408i 0.940571 0.370892i
\(358\) 0 0
\(359\) 172.375 0.480154 0.240077 0.970754i \(-0.422827\pi\)
0.240077 + 0.970754i \(0.422827\pi\)
\(360\) 0 0
\(361\) 41.1612 0.114020
\(362\) 0 0
\(363\) 88.0679i 0.242611i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 162.503i 0.442789i 0.975184 + 0.221394i \(0.0710608\pi\)
−0.975184 + 0.221394i \(0.928939\pi\)
\(368\) 0 0
\(369\) 138.236i 0.374622i
\(370\) 0 0
\(371\) 35.0560 13.8235i 0.0944905 0.0372601i
\(372\) 0 0
\(373\) 84.5145 0.226580 0.113290 0.993562i \(-0.463861\pi\)
0.113290 + 0.993562i \(0.463861\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.86034i 0.0102396i
\(378\) 0 0
\(379\) 570.247 1.50461 0.752304 0.658816i \(-0.228942\pi\)
0.752304 + 0.658816i \(0.228942\pi\)
\(380\) 0 0
\(381\) 134.918i 0.354116i
\(382\) 0 0
\(383\) 91.0688i 0.237777i −0.992908 0.118889i \(-0.962067\pi\)
0.992908 0.118889i \(-0.0379332\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 224.672 0.580547
\(388\) 0 0
\(389\) −62.7679 −0.161357 −0.0806786 0.996740i \(-0.525709\pi\)
−0.0806786 + 0.996740i \(0.525709\pi\)
\(390\) 0 0
\(391\) 1169.84i 2.99192i
\(392\) 0 0
\(393\) −70.7184 −0.179945
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 175.124i 0.441119i 0.975374 + 0.220559i \(0.0707883\pi\)
−0.975374 + 0.220559i \(0.929212\pi\)
\(398\) 0 0
\(399\) 201.716 79.5420i 0.505554 0.199353i
\(400\) 0 0
\(401\) 70.8623 0.176714 0.0883569 0.996089i \(-0.471838\pi\)
0.0883569 + 0.996089i \(0.471838\pi\)
\(402\) 0 0
\(403\) 4.75651 0.0118027
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −226.515 −0.556548
\(408\) 0 0
\(409\) 425.778i 1.04102i −0.853855 0.520511i \(-0.825741\pi\)
0.853855 0.520511i \(-0.174259\pi\)
\(410\) 0 0
\(411\) 404.876i 0.985100i
\(412\) 0 0
\(413\) −4.97787 12.6237i −0.0120529 0.0305659i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 162.331 0.389282
\(418\) 0 0
\(419\) 393.611i 0.939406i −0.882825 0.469703i \(-0.844361\pi\)
0.882825 0.469703i \(-0.155639\pi\)
\(420\) 0 0
\(421\) 157.500 0.374110 0.187055 0.982349i \(-0.440106\pi\)
0.187055 + 0.982349i \(0.440106\pi\)
\(422\) 0 0
\(423\) 83.3061i 0.196941i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 192.261 + 487.568i 0.450260 + 1.14185i
\(428\) 0 0
\(429\) −1.28104 −0.00298611
\(430\) 0 0
\(431\) −316.064 −0.733327 −0.366663 0.930354i \(-0.619500\pi\)
−0.366663 + 0.930354i \(0.619500\pi\)
\(432\) 0 0
\(433\) 530.639i 1.22549i 0.790279 + 0.612747i \(0.209936\pi\)
−0.790279 + 0.612747i \(0.790064\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 702.761i 1.60815i
\(438\) 0 0
\(439\) 154.699i 0.352389i 0.984355 + 0.176194i \(0.0563787\pi\)
−0.984355 + 0.176194i \(0.943621\pi\)
\(440\) 0 0
\(441\) −107.437 + 100.331i −0.243621 + 0.227508i
\(442\) 0 0
\(443\) 94.9327 0.214295 0.107147 0.994243i \(-0.465828\pi\)
0.107147 + 0.994243i \(0.465828\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 245.383i 0.548955i
\(448\) 0 0
\(449\) −64.1731 −0.142924 −0.0714622 0.997443i \(-0.522767\pi\)
−0.0714622 + 0.997443i \(0.522767\pi\)
\(450\) 0 0
\(451\) 385.944i 0.855753i
\(452\) 0 0
\(453\) 140.471i 0.310090i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −270.716 −0.592376 −0.296188 0.955130i \(-0.595715\pi\)
−0.296188 + 0.955130i \(0.595715\pi\)
\(458\) 0 0
\(459\) −154.692 −0.337019
\(460\) 0 0
\(461\) 73.7555i 0.159990i −0.996795 0.0799951i \(-0.974510\pi\)
0.996795 0.0799951i \(-0.0254905\pi\)
\(462\) 0 0
\(463\) 729.376 1.57533 0.787663 0.616106i \(-0.211291\pi\)
0.787663 + 0.616106i \(0.211291\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 491.236i 1.05190i −0.850516 0.525949i \(-0.823710\pi\)
0.850516 0.525949i \(-0.176290\pi\)
\(468\) 0 0
\(469\) 199.650 78.7272i 0.425693 0.167862i
\(470\) 0 0
\(471\) −377.251 −0.800957
\(472\) 0 0
\(473\) −627.268 −1.32615
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.1499 −0.0338572
\(478\) 0 0
\(479\) 32.7275i 0.0683246i 0.999416 + 0.0341623i \(0.0108763\pi\)
−0.999416 + 0.0341623i \(0.989124\pi\)
\(480\) 0 0
\(481\) 2.38807i 0.00496481i
\(482\) 0 0
\(483\) 174.773 + 443.218i 0.361848 + 0.917635i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −892.345 −1.83233 −0.916165 0.400800i \(-0.868732\pi\)
−0.916165 + 0.400800i \(0.868732\pi\)
\(488\) 0 0
\(489\) 258.372i 0.528367i
\(490\) 0 0
\(491\) −186.106 −0.379035 −0.189517 0.981877i \(-0.560692\pi\)
−0.189517 + 0.981877i \(0.560692\pi\)
\(492\) 0 0
\(493\) 1301.47i 2.63989i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −470.885 + 185.683i −0.947456 + 0.373607i
\(498\) 0 0
\(499\) 189.705 0.380171 0.190085 0.981768i \(-0.439124\pi\)
0.190085 + 0.981768i \(0.439124\pi\)
\(500\) 0 0
\(501\) −0.595064 −0.00118775
\(502\) 0 0
\(503\) 82.3835i 0.163784i 0.996641 + 0.0818921i \(0.0260963\pi\)
−0.996641 + 0.0818921i \(0.973904\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 292.703i 0.577324i
\(508\) 0 0
\(509\) 612.287i 1.20292i −0.798902 0.601461i \(-0.794586\pi\)
0.798902 0.601461i \(-0.205414\pi\)
\(510\) 0 0
\(511\) −87.3841 221.603i −0.171006 0.433666i
\(512\) 0 0
\(513\) −92.9282 −0.181147
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 232.585i 0.449874i
\(518\) 0 0
\(519\) −5.11068 −0.00984717
\(520\) 0 0
\(521\) 190.073i 0.364823i 0.983222 + 0.182412i \(0.0583903\pi\)
−0.983222 + 0.182412i \(0.941610\pi\)
\(522\) 0 0
\(523\) 324.679i 0.620800i 0.950606 + 0.310400i \(0.100463\pi\)
−0.950606 + 0.310400i \(0.899537\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1603.60 −3.04288
\(528\) 0 0
\(529\) 1015.13 1.91897
\(530\) 0 0
\(531\) 5.81560i 0.0109522i
\(532\) 0 0
\(533\) −4.06889 −0.00763393
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 530.952i 0.988737i
\(538\) 0 0
\(539\) 299.956 280.118i 0.556505 0.519699i
\(540\) 0 0
\(541\) −2.39602 −0.00442888 −0.00221444 0.999998i \(-0.500705\pi\)
−0.00221444 + 0.999998i \(0.500705\pi\)
\(542\) 0 0
\(543\) 469.184 0.864059
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 495.383 0.905637 0.452818 0.891603i \(-0.350419\pi\)
0.452818 + 0.891603i \(0.350419\pi\)
\(548\) 0 0
\(549\) 224.617i 0.409138i
\(550\) 0 0
\(551\) 781.833i 1.41893i
\(552\) 0 0
\(553\) −818.870 + 322.902i −1.48078 + 0.583910i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −180.812 −0.324618 −0.162309 0.986740i \(-0.551894\pi\)
−0.162309 + 0.986740i \(0.551894\pi\)
\(558\) 0 0
\(559\) 6.61309i 0.0118302i
\(560\) 0 0
\(561\) 431.888 0.769855
\(562\) 0 0
\(563\) 937.810i 1.66574i −0.553471 0.832868i \(-0.686697\pi\)
0.553471 0.832868i \(-0.313303\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 58.6080 23.1107i 0.103365 0.0407596i
\(568\) 0 0
\(569\) 27.5357 0.0483931 0.0241965 0.999707i \(-0.492297\pi\)
0.0241965 + 0.999707i \(0.492297\pi\)
\(570\) 0 0
\(571\) 404.489 0.708386 0.354193 0.935172i \(-0.384756\pi\)
0.354193 + 0.935172i \(0.384756\pi\)
\(572\) 0 0
\(573\) 590.510i 1.03056i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 480.904i 0.833456i 0.909031 + 0.416728i \(0.136823\pi\)
−0.909031 + 0.416728i \(0.863177\pi\)
\(578\) 0 0
\(579\) 315.012i 0.544063i
\(580\) 0 0
\(581\) −237.343 601.894i −0.408507 1.03596i
\(582\) 0 0
\(583\) 45.0894 0.0773402
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 335.196i 0.571033i 0.958374 + 0.285516i \(0.0921651\pi\)
−0.958374 + 0.285516i \(0.907835\pi\)
\(588\) 0 0
\(589\) −963.334 −1.63554
\(590\) 0 0
\(591\) 171.113i 0.289531i
\(592\) 0 0
\(593\) 1125.32i 1.89768i 0.315757 + 0.948840i \(0.397742\pi\)
−0.315757 + 0.948840i \(0.602258\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 314.955 0.527562
\(598\) 0 0
\(599\) 643.405 1.07413 0.537066 0.843540i \(-0.319533\pi\)
0.537066 + 0.843540i \(0.319533\pi\)
\(600\) 0 0
\(601\) 521.270i 0.867338i 0.901072 + 0.433669i \(0.142781\pi\)
−0.901072 + 0.433669i \(0.857219\pi\)
\(602\) 0 0
\(603\) −91.9763 −0.152531
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 82.3135i 0.135607i −0.997699 0.0678035i \(-0.978401\pi\)
0.997699 0.0678035i \(-0.0215991\pi\)
\(608\) 0 0
\(609\) 194.437 + 493.087i 0.319273 + 0.809666i
\(610\) 0 0
\(611\) −2.45207 −0.00401321
\(612\) 0 0
\(613\) −228.128 −0.372150 −0.186075 0.982536i \(-0.559577\pi\)
−0.186075 + 0.982536i \(0.559577\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −516.126 −0.836509 −0.418255 0.908330i \(-0.637358\pi\)
−0.418255 + 0.908330i \(0.637358\pi\)
\(618\) 0 0
\(619\) 683.396i 1.10403i −0.833833 0.552016i \(-0.813859\pi\)
0.833833 0.552016i \(-0.186141\pi\)
\(620\) 0 0
\(621\) 204.185i 0.328801i
\(622\) 0 0
\(623\) 363.061 + 920.712i 0.582763 + 1.47787i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 259.449 0.413795
\(628\) 0 0
\(629\) 805.110i 1.27998i
\(630\) 0 0
\(631\) 13.6990 0.0217100 0.0108550 0.999941i \(-0.496545\pi\)
0.0108550 + 0.999941i \(0.496545\pi\)
\(632\) 0 0
\(633\) 17.3233i 0.0273669i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.95319 3.16234i −0.00463609 0.00496443i
\(638\) 0 0
\(639\) 216.931 0.339486
\(640\) 0 0
\(641\) −655.326 −1.02235 −0.511175 0.859477i \(-0.670789\pi\)
−0.511175 + 0.859477i \(0.670789\pi\)
\(642\) 0 0
\(643\) 588.998i 0.916016i 0.888948 + 0.458008i \(0.151437\pi\)
−0.888948 + 0.458008i \(0.848563\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1014.59i 1.56815i −0.620666 0.784075i \(-0.713138\pi\)
0.620666 0.784075i \(-0.286862\pi\)
\(648\) 0 0
\(649\) 16.2368i 0.0250181i
\(650\) 0 0
\(651\) 607.556 239.575i 0.933265 0.368011i
\(652\) 0 0
\(653\) −741.204 −1.13508 −0.567538 0.823348i \(-0.692104\pi\)
−0.567538 + 0.823348i \(0.692104\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 102.090i 0.155388i
\(658\) 0 0
\(659\) −257.591 −0.390882 −0.195441 0.980715i \(-0.562614\pi\)
−0.195441 + 0.980715i \(0.562614\pi\)
\(660\) 0 0
\(661\) 1183.96i 1.79117i 0.444893 + 0.895584i \(0.353242\pi\)
−0.444893 + 0.895584i \(0.646758\pi\)
\(662\) 0 0
\(663\) 4.55326i 0.00686766i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1717.87 2.57552
\(668\) 0 0
\(669\) 118.701 0.177430
\(670\) 0 0
\(671\) 627.115i 0.934598i
\(672\) 0 0
\(673\) 987.972 1.46801 0.734006 0.679143i \(-0.237648\pi\)
0.734006 + 0.679143i \(0.237648\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 657.422i 0.971082i 0.874214 + 0.485541i \(0.161377\pi\)
−0.874214 + 0.485541i \(0.838623\pi\)
\(678\) 0 0
\(679\) −277.014 702.499i −0.407973 1.03461i
\(680\) 0 0
\(681\) −30.9834 −0.0454970
\(682\) 0 0
\(683\) −255.185 −0.373624 −0.186812 0.982396i \(-0.559815\pi\)
−0.186812 + 0.982396i \(0.559815\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 207.137 0.301510
\(688\) 0 0
\(689\) 0.475362i 0.000689931i
\(690\) 0 0
\(691\) 442.576i 0.640486i −0.947336 0.320243i \(-0.896236\pi\)
0.947336 0.320243i \(-0.103764\pi\)
\(692\) 0 0
\(693\) −163.630 + 64.5234i −0.236118 + 0.0931074i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1371.78 1.96812
\(698\) 0 0
\(699\) 273.360i 0.391072i
\(700\) 0 0
\(701\) 771.107 1.10001 0.550005 0.835161i \(-0.314626\pi\)
0.550005 + 0.835161i \(0.314626\pi\)
\(702\) 0 0
\(703\) 483.656i 0.687988i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.54196 3.91037i −0.00218099 0.00553093i
\(708\) 0 0
\(709\) 431.982 0.609284 0.304642 0.952467i \(-0.401463\pi\)
0.304642 + 0.952467i \(0.401463\pi\)
\(710\) 0 0
\(711\) 377.244 0.530582
\(712\) 0 0
\(713\) 2116.67i 2.96868i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 518.533i 0.723197i
\(718\) 0 0
\(719\) 767.053i 1.06683i −0.845853 0.533416i \(-0.820908\pi\)
0.845853 0.533416i \(-0.179092\pi\)
\(720\) 0 0
\(721\) 271.916 + 689.572i 0.377138 + 0.956411i
\(722\) 0 0
\(723\) 127.371 0.176170
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 230.714i 0.317350i −0.987331 0.158675i \(-0.949278\pi\)
0.987331 0.158675i \(-0.0507222\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 2229.52i 3.04996i
\(732\) 0 0
\(733\) 632.429i 0.862795i 0.902162 + 0.431398i \(0.141979\pi\)
−0.902162 + 0.431398i \(0.858021\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 256.792 0.348428
\(738\) 0 0
\(739\) −466.036 −0.630631 −0.315316 0.948987i \(-0.602110\pi\)
−0.315316 + 0.948987i \(0.602110\pi\)
\(740\) 0 0
\(741\) 2.73529i 0.00369135i
\(742\) 0 0
\(743\) −632.427 −0.851180 −0.425590 0.904916i \(-0.639933\pi\)
−0.425590 + 0.904916i \(0.639933\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 277.285i 0.371199i
\(748\) 0 0
\(749\) −777.845 + 306.725i −1.03851 + 0.409513i
\(750\) 0 0
\(751\) −387.564 −0.516064 −0.258032 0.966136i \(-0.583074\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(752\) 0 0
\(753\) 196.101 0.260427
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 343.268 0.453458 0.226729 0.973958i \(-0.427197\pi\)
0.226729 + 0.973958i \(0.427197\pi\)
\(758\) 0 0
\(759\) 570.071i 0.751082i
\(760\) 0 0
\(761\) 67.4358i 0.0886147i −0.999018 0.0443073i \(-0.985892\pi\)
0.999018 0.0443073i \(-0.0141081\pi\)
\(762\) 0 0
\(763\) 448.233 176.750i 0.587461 0.231651i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.171179 −0.000223180
\(768\) 0 0
\(769\) 1474.43i 1.91733i −0.284529 0.958667i \(-0.591837\pi\)
0.284529 0.958667i \(-0.408163\pi\)
\(770\) 0 0
\(771\) 42.6556 0.0553250
\(772\) 0 0
\(773\) 670.136i 0.866929i −0.901171 0.433465i \(-0.857291\pi\)
0.901171 0.433465i \(-0.142709\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 120.282 + 305.032i 0.154803 + 0.392577i
\(778\) 0 0
\(779\) 824.070 1.05786
\(780\) 0 0
\(781\) −605.658 −0.775490
\(782\) 0 0
\(783\) 227.159i 0.290114i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1177.11i 1.49569i 0.663873 + 0.747846i \(0.268912\pi\)
−0.663873 + 0.747846i \(0.731088\pi\)
\(788\) 0 0
\(789\) 141.107i 0.178842i
\(790\) 0 0
\(791\) 536.779 211.666i 0.678608 0.267593i
\(792\) 0 0
\(793\) 6.61147 0.00833729
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 370.289i 0.464604i −0.972644 0.232302i \(-0.925374\pi\)
0.972644 0.232302i \(-0.0746257\pi\)
\(798\) 0 0
\(799\) 826.686 1.03465
\(800\) 0 0
\(801\) 424.161i 0.529540i
\(802\) 0 0
\(803\) 285.029i 0.354955i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 569.442 0.705628
\(808\) 0 0
\(809\) 260.603 0.322130 0.161065 0.986944i \(-0.448507\pi\)
0.161065 + 0.986944i \(0.448507\pi\)
\(810\) 0 0
\(811\) 867.045i 1.06911i −0.845135 0.534553i \(-0.820480\pi\)
0.845135 0.534553i \(-0.179520\pi\)
\(812\) 0 0
\(813\) −279.928 −0.344315
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1339.35i 1.63935i
\(818\) 0 0
\(819\) 0.680250 + 1.72509i 0.000830586 + 0.00210634i
\(820\) 0 0
\(821\) −70.3996 −0.0857486 −0.0428743 0.999080i \(-0.513652\pi\)
−0.0428743 + 0.999080i \(0.513652\pi\)
\(822\) 0 0
\(823\) 123.305 0.149824 0.0749118 0.997190i \(-0.476132\pi\)
0.0749118 + 0.997190i \(0.476132\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −760.741 −0.919880 −0.459940 0.887950i \(-0.652129\pi\)
−0.459940 + 0.887950i \(0.652129\pi\)
\(828\) 0 0
\(829\) 802.031i 0.967468i −0.875215 0.483734i \(-0.839280\pi\)
0.875215 0.483734i \(-0.160720\pi\)
\(830\) 0 0
\(831\) 680.794i 0.819247i
\(832\) 0 0
\(833\) 995.633 + 1066.15i 1.19524 + 1.27989i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −279.894 −0.334401
\(838\) 0 0
\(839\) 442.366i 0.527254i 0.964625 + 0.263627i \(0.0849188\pi\)
−0.964625 + 0.263627i \(0.915081\pi\)
\(840\) 0 0
\(841\) 1070.16 1.27248
\(842\) 0 0
\(843\) 286.916i 0.340351i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −331.109 + 130.565i −0.390920 + 0.154150i
\(848\) 0 0
\(849\) −732.781 −0.863111
\(850\) 0 0
\(851\) 1062.71 1.24877
\(852\) 0 0
\(853\) 648.240i 0.759953i 0.924996 + 0.379977i \(0.124068\pi\)
−0.924996 + 0.379977i \(0.875932\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 336.227i 0.392331i −0.980571 0.196165i \(-0.937151\pi\)
0.980571 0.196165i \(-0.0628489\pi\)
\(858\) 0 0
\(859\) 1188.57i 1.38366i −0.722058 0.691832i \(-0.756804\pi\)
0.722058 0.691832i \(-0.243196\pi\)
\(860\) 0 0
\(861\) −519.725 + 204.941i −0.603629 + 0.238027i
\(862\) 0 0
\(863\) −1071.22 −1.24128 −0.620639 0.784096i \(-0.713127\pi\)
−0.620639 + 0.784096i \(0.713127\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1034.51i 1.19321i
\(868\) 0 0
\(869\) −1053.24 −1.21201
\(870\) 0 0
\(871\) 2.70727i 0.00310823i
\(872\) 0 0
\(873\) 323.633i 0.370713i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −163.935 −0.186927 −0.0934635 0.995623i \(-0.529794\pi\)
−0.0934635 + 0.995623i \(0.529794\pi\)
\(878\) 0 0
\(879\) −173.079 −0.196904
\(880\) 0 0
\(881\) 1088.98i 1.23608i 0.786148 + 0.618038i \(0.212072\pi\)
−0.786148 + 0.618038i \(0.787928\pi\)
\(882\) 0 0
\(883\) −1148.47 −1.30064 −0.650321 0.759660i \(-0.725365\pi\)
−0.650321 + 0.759660i \(0.725365\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 468.656i 0.528361i 0.964473 + 0.264180i \(0.0851014\pi\)
−0.964473 + 0.264180i \(0.914899\pi\)
\(888\) 0 0
\(889\) 507.253 200.023i 0.570588 0.224998i
\(890\) 0 0
\(891\) 75.3822 0.0846040
\(892\) 0 0
\(893\) 496.617 0.556122
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6.01008 0.00670020
\(898\) 0 0
\(899\) 2354.83i 2.61939i
\(900\) 0 0
\(901\) 160.263i 0.177872i
\(902\) 0 0
\(903\) 333.087 + 844.699i 0.368867 + 0.935437i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 61.3264 0.0676145 0.0338073 0.999428i \(-0.489237\pi\)
0.0338073 + 0.999428i \(0.489237\pi\)
\(908\) 0 0
\(909\) 1.80146i 0.00198180i
\(910\) 0 0
\(911\) 86.0805 0.0944901 0.0472451 0.998883i \(-0.484956\pi\)
0.0472451 + 0.998883i \(0.484956\pi\)
\(912\) 0 0
\(913\) 774.162i 0.847932i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −104.844 265.880i −0.114333 0.289946i
\(918\) 0 0
\(919\) 1330.80 1.44810 0.724048 0.689750i \(-0.242279\pi\)
0.724048 + 0.689750i \(0.242279\pi\)
\(920\) 0 0
\(921\) −497.401 −0.540066
\(922\) 0 0
\(923\) 6.38525i 0.00691793i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 317.678i 0.342694i
\(928\) 0 0
\(929\) 1382.16i 1.48779i 0.668297 + 0.743895i \(0.267024\pi\)
−0.668297 + 0.743895i \(0.732976\pi\)
\(930\) 0 0
\(931\) 598.109 + 640.468i 0.642437 + 0.687935i
\(932\) 0 0
\(933\) 323.999 0.347266
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1470.54i 1.56941i −0.619871 0.784704i \(-0.712815\pi\)
0.619871 0.784704i \(-0.287185\pi\)
\(938\) 0 0
\(939\) 474.875 0.505724
\(940\) 0 0
\(941\) 709.900i 0.754410i 0.926130 + 0.377205i \(0.123115\pi\)
−0.926130 + 0.377205i \(0.876885\pi\)
\(942\) 0 0
\(943\) 1810.68i 1.92012i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1170.44 1.23594 0.617971 0.786201i \(-0.287955\pi\)
0.617971 + 0.786201i \(0.287955\pi\)
\(948\) 0 0
\(949\) −3.00496 −0.00316645
\(950\) 0 0
\(951\) 145.859i 0.153374i
\(952\) 0 0
\(953\) 1354.92 1.42174 0.710871 0.703323i \(-0.248301\pi\)
0.710871 + 0.703323i \(0.248301\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 634.213i 0.662710i
\(958\) 0 0
\(959\) −1522.21 + 600.249i −1.58729 + 0.625912i
\(960\) 0 0
\(961\) −1940.50 −2.01925
\(962\) 0 0
\(963\) 358.344 0.372112
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −564.951 −0.584231 −0.292115 0.956383i \(-0.594359\pi\)
−0.292115 + 0.956383i \(0.594359\pi\)
\(968\) 0 0
\(969\) 922.170i 0.951672i
\(970\) 0 0
\(971\) 579.120i 0.596416i 0.954501 + 0.298208i \(0.0963889\pi\)
−0.954501 + 0.298208i \(0.903611\pi\)
\(972\) 0 0
\(973\) 240.664 + 610.316i 0.247342 + 0.627251i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −304.418 −0.311584 −0.155792 0.987790i \(-0.549793\pi\)
−0.155792 + 0.987790i \(0.549793\pi\)
\(978\) 0 0
\(979\) 1184.23i 1.20963i
\(980\) 0 0
\(981\) −206.496 −0.210495
\(982\) 0 0
\(983\) 764.954i 0.778183i −0.921199 0.389092i \(-0.872789\pi\)
0.921199 0.389092i \(-0.127211\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −313.206 + 123.506i −0.317332 + 0.125132i
\(988\) 0 0
\(989\) 2942.86 2.97559
\(990\) 0 0
\(991\) −395.387 −0.398978 −0.199489 0.979900i \(-0.563928\pi\)
−0.199489 + 0.979900i \(0.563928\pi\)
\(992\) 0 0
\(993\) 984.192i 0.991129i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1308.65i 1.31258i 0.754507 + 0.656292i \(0.227876\pi\)
−0.754507 + 0.656292i \(0.772124\pi\)
\(998\) 0 0
\(999\) 140.525i 0.140665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.j.g.601.8 16
5.2 odd 4 420.3.p.a.349.8 yes 16
5.3 odd 4 420.3.p.a.349.10 yes 16
5.4 even 2 inner 2100.3.j.g.601.9 16
7.6 odd 2 inner 2100.3.j.g.601.16 16
15.2 even 4 1260.3.p.e.1189.1 16
15.8 even 4 1260.3.p.e.1189.15 16
20.3 even 4 1680.3.bd.b.769.2 16
20.7 even 4 1680.3.bd.b.769.16 16
35.13 even 4 420.3.p.a.349.7 16
35.27 even 4 420.3.p.a.349.9 yes 16
35.34 odd 2 inner 2100.3.j.g.601.1 16
105.62 odd 4 1260.3.p.e.1189.16 16
105.83 odd 4 1260.3.p.e.1189.2 16
140.27 odd 4 1680.3.bd.b.769.1 16
140.83 odd 4 1680.3.bd.b.769.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.7 16 35.13 even 4
420.3.p.a.349.8 yes 16 5.2 odd 4
420.3.p.a.349.9 yes 16 35.27 even 4
420.3.p.a.349.10 yes 16 5.3 odd 4
1260.3.p.e.1189.1 16 15.2 even 4
1260.3.p.e.1189.2 16 105.83 odd 4
1260.3.p.e.1189.15 16 15.8 even 4
1260.3.p.e.1189.16 16 105.62 odd 4
1680.3.bd.b.769.1 16 140.27 odd 4
1680.3.bd.b.769.2 16 20.3 even 4
1680.3.bd.b.769.15 16 140.83 odd 4
1680.3.bd.b.769.16 16 20.7 even 4
2100.3.j.g.601.1 16 35.34 odd 2 inner
2100.3.j.g.601.8 16 1.1 even 1 trivial
2100.3.j.g.601.9 16 5.4 even 2 inner
2100.3.j.g.601.16 16 7.6 odd 2 inner