Properties

Label 420.3.p.a.349.8
Level $420$
Weight $3$
Character 420.349
Analytic conductor $11.444$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,3,Mod(349,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.349"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 420.p (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4441711031\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3876 x^{12} + 102922 x^{10} + 1866070 x^{8} + 23190492 x^{6} + 203608845 x^{4} + \cdots + 3839661225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{13}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.8
Root \(-1.73205 - 2.62461i\) of defining polynomial
Character \(\chi\) \(=\) 420.349
Dual form 420.3.p.a.349.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +(4.25575 + 2.62461i) q^{5} +(2.56785 + 6.51200i) q^{7} +3.00000 q^{9} +8.37580 q^{11} -0.0883033 q^{13} +(-7.37118 - 4.54596i) q^{15} -29.7704 q^{17} -17.8840i q^{19} +(-4.44765 - 11.2791i) q^{21} +39.2955i q^{23} +(11.2229 + 22.3394i) q^{25} -5.19615 q^{27} +43.7168 q^{29} +53.8656i q^{31} -14.5073 q^{33} +(-6.16331 + 34.4531i) q^{35} -27.0440i q^{37} +0.152946 q^{39} -46.0785i q^{41} +74.8906i q^{43} +(12.7673 + 7.87383i) q^{45} +27.7687 q^{47} +(-35.8123 + 33.4437i) q^{49} +51.5639 q^{51} -5.38329i q^{53} +(35.6453 + 21.9832i) q^{55} +30.9761i q^{57} +1.93853i q^{59} +74.8723i q^{61} +(7.70356 + 19.5360i) q^{63} +(-0.375797 - 0.231762i) q^{65} +30.6588i q^{67} -68.0617i q^{69} -72.3104 q^{71} -34.0300 q^{73} +(-19.4385 - 38.6929i) q^{75} +(21.5078 + 54.5432i) q^{77} +125.748 q^{79} +9.00000 q^{81} -92.4285 q^{83} +(-126.695 - 78.1357i) q^{85} -75.7197 q^{87} -141.387i q^{89} +(-0.226750 - 0.575031i) q^{91} -93.2979i q^{93} +(46.9386 - 76.1100i) q^{95} +107.878 q^{97} +25.1274 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} - 24 q^{11} - 24 q^{15} - 12 q^{21} - 48 q^{25} - 32 q^{29} + 76 q^{35} + 72 q^{39} - 88 q^{49} + 24 q^{51} + 152 q^{65} + 168 q^{71} + 16 q^{79} + 144 q^{81} - 416 q^{85} - 568 q^{91} + 136 q^{95}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 4.25575 + 2.62461i 0.851150 + 0.524922i
\(6\) 0 0
\(7\) 2.56785 + 6.51200i 0.366836 + 0.930286i
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) 8.37580 0.761436 0.380718 0.924691i \(-0.375677\pi\)
0.380718 + 0.924691i \(0.375677\pi\)
\(12\) 0 0
\(13\) −0.0883033 −0.00679256 −0.00339628 0.999994i \(-0.501081\pi\)
−0.00339628 + 0.999994i \(0.501081\pi\)
\(14\) 0 0
\(15\) −7.37118 4.54596i −0.491412 0.303064i
\(16\) 0 0
\(17\) −29.7704 −1.75120 −0.875600 0.483037i \(-0.839534\pi\)
−0.875600 + 0.483037i \(0.839534\pi\)
\(18\) 0 0
\(19\) 17.8840i 0.941265i −0.882329 0.470633i \(-0.844026\pi\)
0.882329 0.470633i \(-0.155974\pi\)
\(20\) 0 0
\(21\) −4.44765 11.2791i −0.211793 0.537101i
\(22\) 0 0
\(23\) 39.2955i 1.70850i 0.519864 + 0.854249i \(0.325983\pi\)
−0.519864 + 0.854249i \(0.674017\pi\)
\(24\) 0 0
\(25\) 11.2229 + 22.3394i 0.448914 + 0.893575i
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) 43.7168 1.50748 0.753738 0.657175i \(-0.228249\pi\)
0.753738 + 0.657175i \(0.228249\pi\)
\(30\) 0 0
\(31\) 53.8656i 1.73760i 0.495164 + 0.868799i \(0.335108\pi\)
−0.495164 + 0.868799i \(0.664892\pi\)
\(32\) 0 0
\(33\) −14.5073 −0.439615
\(34\) 0 0
\(35\) −6.16331 + 34.4531i −0.176095 + 0.984373i
\(36\) 0 0
\(37\) 27.0440i 0.730918i −0.930827 0.365459i \(-0.880912\pi\)
0.930827 0.365459i \(-0.119088\pi\)
\(38\) 0 0
\(39\) 0.152946 0.00392169
\(40\) 0 0
\(41\) 46.0785i 1.12387i −0.827183 0.561933i \(-0.810058\pi\)
0.827183 0.561933i \(-0.189942\pi\)
\(42\) 0 0
\(43\) 74.8906i 1.74164i 0.491601 + 0.870821i \(0.336412\pi\)
−0.491601 + 0.870821i \(0.663588\pi\)
\(44\) 0 0
\(45\) 12.7673 + 7.87383i 0.283717 + 0.174974i
\(46\) 0 0
\(47\) 27.7687 0.590824 0.295412 0.955370i \(-0.404543\pi\)
0.295412 + 0.955370i \(0.404543\pi\)
\(48\) 0 0
\(49\) −35.8123 + 33.4437i −0.730863 + 0.682525i
\(50\) 0 0
\(51\) 51.5639 1.01106
\(52\) 0 0
\(53\) 5.38329i 0.101572i −0.998710 0.0507858i \(-0.983827\pi\)
0.998710 0.0507858i \(-0.0161726\pi\)
\(54\) 0 0
\(55\) 35.6453 + 21.9832i 0.648097 + 0.399694i
\(56\) 0 0
\(57\) 30.9761i 0.543440i
\(58\) 0 0
\(59\) 1.93853i 0.0328565i 0.999865 + 0.0164282i \(0.00522951\pi\)
−0.999865 + 0.0164282i \(0.994770\pi\)
\(60\) 0 0
\(61\) 74.8723i 1.22741i 0.789534 + 0.613707i \(0.210323\pi\)
−0.789534 + 0.613707i \(0.789677\pi\)
\(62\) 0 0
\(63\) 7.70356 + 19.5360i 0.122279 + 0.310095i
\(64\) 0 0
\(65\) −0.375797 0.231762i −0.00578149 0.00356556i
\(66\) 0 0
\(67\) 30.6588i 0.457594i 0.973474 + 0.228797i \(0.0734791\pi\)
−0.973474 + 0.228797i \(0.926521\pi\)
\(68\) 0 0
\(69\) 68.0617i 0.986402i
\(70\) 0 0
\(71\) −72.3104 −1.01846 −0.509228 0.860631i \(-0.670069\pi\)
−0.509228 + 0.860631i \(0.670069\pi\)
\(72\) 0 0
\(73\) −34.0300 −0.466165 −0.233082 0.972457i \(-0.574881\pi\)
−0.233082 + 0.972457i \(0.574881\pi\)
\(74\) 0 0
\(75\) −19.4385 38.6929i −0.259181 0.515906i
\(76\) 0 0
\(77\) 21.5078 + 54.5432i 0.279322 + 0.708353i
\(78\) 0 0
\(79\) 125.748 1.59175 0.795873 0.605464i \(-0.207012\pi\)
0.795873 + 0.605464i \(0.207012\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) −92.4285 −1.11360 −0.556798 0.830648i \(-0.687970\pi\)
−0.556798 + 0.830648i \(0.687970\pi\)
\(84\) 0 0
\(85\) −126.695 78.1357i −1.49053 0.919243i
\(86\) 0 0
\(87\) −75.7197 −0.870342
\(88\) 0 0
\(89\) 141.387i 1.58862i −0.607514 0.794309i \(-0.707833\pi\)
0.607514 0.794309i \(-0.292167\pi\)
\(90\) 0 0
\(91\) −0.226750 0.575031i −0.00249176 0.00631902i
\(92\) 0 0
\(93\) 93.2979i 1.00320i
\(94\) 0 0
\(95\) 46.9386 76.1100i 0.494091 0.801158i
\(96\) 0 0
\(97\) 107.878 1.11214 0.556070 0.831135i \(-0.312309\pi\)
0.556070 + 0.831135i \(0.312309\pi\)
\(98\) 0 0
\(99\) 25.1274 0.253812
\(100\) 0 0
\(101\) 0.600487i 0.00594541i −0.999996 0.00297271i \(-0.999054\pi\)
0.999996 0.00297271i \(-0.000946243\pi\)
\(102\) 0 0
\(103\) 105.893 1.02808 0.514041 0.857765i \(-0.328148\pi\)
0.514041 + 0.857765i \(0.328148\pi\)
\(104\) 0 0
\(105\) 10.6752 59.6745i 0.101668 0.568328i
\(106\) 0 0
\(107\) 119.448i 1.11634i −0.829728 0.558168i \(-0.811504\pi\)
0.829728 0.558168i \(-0.188496\pi\)
\(108\) 0 0
\(109\) −68.8319 −0.631485 −0.315742 0.948845i \(-0.602254\pi\)
−0.315742 + 0.948845i \(0.602254\pi\)
\(110\) 0 0
\(111\) 46.8415i 0.421996i
\(112\) 0 0
\(113\) 82.4292i 0.729462i −0.931113 0.364731i \(-0.881161\pi\)
0.931113 0.364731i \(-0.118839\pi\)
\(114\) 0 0
\(115\) −103.135 + 167.232i −0.896828 + 1.45419i
\(116\) 0 0
\(117\) −0.264910 −0.00226419
\(118\) 0 0
\(119\) −76.4460 193.865i −0.642404 1.62912i
\(120\) 0 0
\(121\) −50.8460 −0.420215
\(122\) 0 0
\(123\) 79.8104i 0.648865i
\(124\) 0 0
\(125\) −10.8705 + 124.526i −0.0869637 + 0.996211i
\(126\) 0 0
\(127\) 77.8951i 0.613348i 0.951815 + 0.306674i \(0.0992161\pi\)
−0.951815 + 0.306674i \(0.900784\pi\)
\(128\) 0 0
\(129\) 129.714i 1.00554i
\(130\) 0 0
\(131\) 40.8293i 0.311674i −0.987783 0.155837i \(-0.950193\pi\)
0.987783 0.155837i \(-0.0498075\pi\)
\(132\) 0 0
\(133\) 116.461 45.9236i 0.875645 0.345290i
\(134\) 0 0
\(135\) −22.1135 13.6379i −0.163804 0.101021i
\(136\) 0 0
\(137\) 233.755i 1.70624i −0.521712 0.853122i \(-0.674706\pi\)
0.521712 0.853122i \(-0.325294\pi\)
\(138\) 0 0
\(139\) 93.7217i 0.674257i −0.941459 0.337128i \(-0.890544\pi\)
0.941459 0.337128i \(-0.109456\pi\)
\(140\) 0 0
\(141\) −48.0968 −0.341112
\(142\) 0 0
\(143\) −0.739611 −0.00517210
\(144\) 0 0
\(145\) 186.048 + 114.740i 1.28309 + 0.791307i
\(146\) 0 0
\(147\) 62.0287 57.9262i 0.421964 0.394056i
\(148\) 0 0
\(149\) 141.672 0.950818 0.475409 0.879765i \(-0.342300\pi\)
0.475409 + 0.879765i \(0.342300\pi\)
\(150\) 0 0
\(151\) −81.1008 −0.537091 −0.268546 0.963267i \(-0.586543\pi\)
−0.268546 + 0.963267i \(0.586543\pi\)
\(152\) 0 0
\(153\) −89.3112 −0.583733
\(154\) 0 0
\(155\) −141.376 + 229.238i −0.912103 + 1.47896i
\(156\) 0 0
\(157\) 217.806 1.38730 0.693649 0.720313i \(-0.256002\pi\)
0.693649 + 0.720313i \(0.256002\pi\)
\(158\) 0 0
\(159\) 9.32413i 0.0586423i
\(160\) 0 0
\(161\) −255.892 + 100.905i −1.58939 + 0.626739i
\(162\) 0 0
\(163\) 149.171i 0.915159i −0.889169 0.457580i \(-0.848716\pi\)
0.889169 0.457580i \(-0.151284\pi\)
\(164\) 0 0
\(165\) −61.7395 38.0760i −0.374179 0.230764i
\(166\) 0 0
\(167\) 0.343560 0.00205725 0.00102862 0.999999i \(-0.499673\pi\)
0.00102862 + 0.999999i \(0.499673\pi\)
\(168\) 0 0
\(169\) −168.992 −0.999954
\(170\) 0 0
\(171\) 53.6521i 0.313755i
\(172\) 0 0
\(173\) −2.95065 −0.0170558 −0.00852790 0.999964i \(-0.502715\pi\)
−0.00852790 + 0.999964i \(0.502715\pi\)
\(174\) 0 0
\(175\) −116.655 + 130.447i −0.666602 + 0.745414i
\(176\) 0 0
\(177\) 3.35764i 0.0189697i
\(178\) 0 0
\(179\) 306.545 1.71254 0.856272 0.516526i \(-0.172775\pi\)
0.856272 + 0.516526i \(0.172775\pi\)
\(180\) 0 0
\(181\) 270.883i 1.49659i 0.663364 + 0.748297i \(0.269128\pi\)
−0.663364 + 0.748297i \(0.730872\pi\)
\(182\) 0 0
\(183\) 129.683i 0.708648i
\(184\) 0 0
\(185\) 70.9799 115.092i 0.383675 0.622121i
\(186\) 0 0
\(187\) −249.351 −1.33343
\(188\) 0 0
\(189\) −13.3430 33.8373i −0.0705976 0.179034i
\(190\) 0 0
\(191\) 340.931 1.78498 0.892490 0.451067i \(-0.148956\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(192\) 0 0
\(193\) 181.872i 0.942344i −0.882041 0.471172i \(-0.843831\pi\)
0.882041 0.471172i \(-0.156169\pi\)
\(194\) 0 0
\(195\) 0.650899 + 0.401423i 0.00333795 + 0.00205858i
\(196\) 0 0
\(197\) 98.7921i 0.501483i −0.968054 0.250741i \(-0.919326\pi\)
0.968054 0.250741i \(-0.0806744\pi\)
\(198\) 0 0
\(199\) 181.839i 0.913765i −0.889527 0.456882i \(-0.848966\pi\)
0.889527 0.456882i \(-0.151034\pi\)
\(200\) 0 0
\(201\) 53.1025i 0.264192i
\(202\) 0 0
\(203\) 112.258 + 284.684i 0.552997 + 1.40238i
\(204\) 0 0
\(205\) 120.938 196.099i 0.589942 0.956580i
\(206\) 0 0
\(207\) 117.886i 0.569499i
\(208\) 0 0
\(209\) 149.793i 0.716713i
\(210\) 0 0
\(211\) 10.0016 0.0474009 0.0237004 0.999719i \(-0.492455\pi\)
0.0237004 + 0.999719i \(0.492455\pi\)
\(212\) 0 0
\(213\) 125.245 0.588006
\(214\) 0 0
\(215\) −196.559 + 318.716i −0.914226 + 1.48240i
\(216\) 0 0
\(217\) −350.772 + 138.319i −1.61646 + 0.637414i
\(218\) 0 0
\(219\) 58.9417 0.269140
\(220\) 0 0
\(221\) 2.62883 0.0118951
\(222\) 0 0
\(223\) 68.5318 0.307318 0.153659 0.988124i \(-0.450894\pi\)
0.153659 + 0.988124i \(0.450894\pi\)
\(224\) 0 0
\(225\) 33.6686 + 67.0181i 0.149638 + 0.297858i
\(226\) 0 0
\(227\) 17.8883 0.0788031 0.0394015 0.999223i \(-0.487455\pi\)
0.0394015 + 0.999223i \(0.487455\pi\)
\(228\) 0 0
\(229\) 119.591i 0.522230i −0.965308 0.261115i \(-0.915910\pi\)
0.965308 0.261115i \(-0.0840901\pi\)
\(230\) 0 0
\(231\) −37.2526 94.4716i −0.161267 0.408968i
\(232\) 0 0
\(233\) 157.824i 0.677357i −0.940902 0.338679i \(-0.890020\pi\)
0.940902 0.338679i \(-0.109980\pi\)
\(234\) 0 0
\(235\) 118.177 + 72.8820i 0.502880 + 0.310136i
\(236\) 0 0
\(237\) −217.802 −0.918995
\(238\) 0 0
\(239\) −299.375 −1.25261 −0.626307 0.779576i \(-0.715435\pi\)
−0.626307 + 0.779576i \(0.715435\pi\)
\(240\) 0 0
\(241\) 73.5375i 0.305135i 0.988293 + 0.152568i \(0.0487542\pi\)
−0.988293 + 0.152568i \(0.951246\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) −240.185 + 48.3349i −0.980346 + 0.197285i
\(246\) 0 0
\(247\) 1.57922i 0.00639360i
\(248\) 0 0
\(249\) 160.091 0.642935
\(250\) 0 0
\(251\) 113.219i 0.451073i 0.974235 + 0.225536i \(0.0724134\pi\)
−0.974235 + 0.225536i \(0.927587\pi\)
\(252\) 0 0
\(253\) 329.131i 1.30091i
\(254\) 0 0
\(255\) 219.443 + 135.335i 0.860561 + 0.530725i
\(256\) 0 0
\(257\) −24.6272 −0.0958257 −0.0479128 0.998852i \(-0.515257\pi\)
−0.0479128 + 0.998852i \(0.515257\pi\)
\(258\) 0 0
\(259\) 176.110 69.4450i 0.679963 0.268127i
\(260\) 0 0
\(261\) 131.150 0.502492
\(262\) 0 0
\(263\) 81.4679i 0.309764i −0.987933 0.154882i \(-0.950500\pi\)
0.987933 0.154882i \(-0.0494997\pi\)
\(264\) 0 0
\(265\) 14.1290 22.9100i 0.0533171 0.0864526i
\(266\) 0 0
\(267\) 244.890i 0.917189i
\(268\) 0 0
\(269\) 328.768i 1.22218i −0.791559 0.611092i \(-0.790730\pi\)
0.791559 0.611092i \(-0.209270\pi\)
\(270\) 0 0
\(271\) 161.616i 0.596370i −0.954508 0.298185i \(-0.903619\pi\)
0.954508 0.298185i \(-0.0963813\pi\)
\(272\) 0 0
\(273\) 0.392742 + 0.995983i 0.00143862 + 0.00364829i
\(274\) 0 0
\(275\) 94.0003 + 187.110i 0.341819 + 0.680400i
\(276\) 0 0
\(277\) 393.057i 1.41898i 0.704717 + 0.709489i \(0.251074\pi\)
−0.704717 + 0.709489i \(0.748926\pi\)
\(278\) 0 0
\(279\) 161.597i 0.579200i
\(280\) 0 0
\(281\) 165.651 0.589505 0.294753 0.955574i \(-0.404763\pi\)
0.294753 + 0.955574i \(0.404763\pi\)
\(282\) 0 0
\(283\) −423.072 −1.49495 −0.747476 0.664289i \(-0.768735\pi\)
−0.747476 + 0.664289i \(0.768735\pi\)
\(284\) 0 0
\(285\) −81.3001 + 131.826i −0.285263 + 0.462549i
\(286\) 0 0
\(287\) 300.063 118.323i 1.04552 0.412275i
\(288\) 0 0
\(289\) 597.277 2.06670
\(290\) 0 0
\(291\) −186.850 −0.642095
\(292\) 0 0
\(293\) −99.9270 −0.341048 −0.170524 0.985354i \(-0.554546\pi\)
−0.170524 + 0.985354i \(0.554546\pi\)
\(294\) 0 0
\(295\) −5.08789 + 8.24991i −0.0172471 + 0.0279658i
\(296\) 0 0
\(297\) −43.5219 −0.146538
\(298\) 0 0
\(299\) 3.46992i 0.0116051i
\(300\) 0 0
\(301\) −487.687 + 192.308i −1.62022 + 0.638897i
\(302\) 0 0
\(303\) 1.04007i 0.00343259i
\(304\) 0 0
\(305\) −196.511 + 318.638i −0.644297 + 1.04471i
\(306\) 0 0
\(307\) 287.175 0.935422 0.467711 0.883881i \(-0.345079\pi\)
0.467711 + 0.883881i \(0.345079\pi\)
\(308\) 0 0
\(309\) −183.411 −0.593564
\(310\) 0 0
\(311\) 187.061i 0.601482i 0.953706 + 0.300741i \(0.0972339\pi\)
−0.953706 + 0.300741i \(0.902766\pi\)
\(312\) 0 0
\(313\) 274.169 0.875940 0.437970 0.898990i \(-0.355698\pi\)
0.437970 + 0.898990i \(0.355698\pi\)
\(314\) 0 0
\(315\) −18.4899 + 103.359i −0.0586982 + 0.328124i
\(316\) 0 0
\(317\) 84.2117i 0.265652i −0.991139 0.132826i \(-0.957595\pi\)
0.991139 0.132826i \(-0.0424051\pi\)
\(318\) 0 0
\(319\) 366.163 1.14785
\(320\) 0 0
\(321\) 206.890i 0.644517i
\(322\) 0 0
\(323\) 532.415i 1.64834i
\(324\) 0 0
\(325\) −0.991015 1.97264i −0.00304928 0.00606966i
\(326\) 0 0
\(327\) 119.220 0.364588
\(328\) 0 0
\(329\) 71.3060 + 180.830i 0.216735 + 0.549635i
\(330\) 0 0
\(331\) 568.223 1.71669 0.858343 0.513076i \(-0.171494\pi\)
0.858343 + 0.513076i \(0.171494\pi\)
\(332\) 0 0
\(333\) 81.1319i 0.243639i
\(334\) 0 0
\(335\) −80.4673 + 130.476i −0.240201 + 0.389481i
\(336\) 0 0
\(337\) 127.801i 0.379232i 0.981858 + 0.189616i \(0.0607243\pi\)
−0.981858 + 0.189616i \(0.939276\pi\)
\(338\) 0 0
\(339\) 142.771i 0.421155i
\(340\) 0 0
\(341\) 451.167i 1.32307i
\(342\) 0 0
\(343\) −309.746 147.331i −0.903050 0.429536i
\(344\) 0 0
\(345\) 178.635 289.654i 0.517784 0.839576i
\(346\) 0 0
\(347\) 301.061i 0.867612i −0.901006 0.433806i \(-0.857170\pi\)
0.901006 0.433806i \(-0.142830\pi\)
\(348\) 0 0
\(349\) 612.654i 1.75546i −0.479159 0.877728i \(-0.659058\pi\)
0.479159 0.877728i \(-0.340942\pi\)
\(350\) 0 0
\(351\) 0.458837 0.00130723
\(352\) 0 0
\(353\) −63.4467 −0.179736 −0.0898678 0.995954i \(-0.528644\pi\)
−0.0898678 + 0.995954i \(0.528644\pi\)
\(354\) 0 0
\(355\) −307.735 189.787i −0.866860 0.534610i
\(356\) 0 0
\(357\) 132.408 + 335.784i 0.370892 + 0.940571i
\(358\) 0 0
\(359\) −172.375 −0.480154 −0.240077 0.970754i \(-0.577173\pi\)
−0.240077 + 0.970754i \(0.577173\pi\)
\(360\) 0 0
\(361\) 41.1612 0.114020
\(362\) 0 0
\(363\) 88.0679 0.242611
\(364\) 0 0
\(365\) −144.823 89.3155i −0.396776 0.244700i
\(366\) 0 0
\(367\) −162.503 −0.442789 −0.221394 0.975184i \(-0.571061\pi\)
−0.221394 + 0.975184i \(0.571061\pi\)
\(368\) 0 0
\(369\) 138.236i 0.374622i
\(370\) 0 0
\(371\) 35.0560 13.8235i 0.0944905 0.0372601i
\(372\) 0 0
\(373\) 84.5145i 0.226580i −0.993562 0.113290i \(-0.963861\pi\)
0.993562 0.113290i \(-0.0361390\pi\)
\(374\) 0 0
\(375\) 18.8282 215.686i 0.0502085 0.575163i
\(376\) 0 0
\(377\) −3.86034 −0.0102396
\(378\) 0 0
\(379\) −570.247 −1.50461 −0.752304 0.658816i \(-0.771058\pi\)
−0.752304 + 0.658816i \(0.771058\pi\)
\(380\) 0 0
\(381\) 134.918i 0.354116i
\(382\) 0 0
\(383\) −91.0688 −0.237777 −0.118889 0.992908i \(-0.537933\pi\)
−0.118889 + 0.992908i \(0.537933\pi\)
\(384\) 0 0
\(385\) −51.6226 + 288.572i −0.134085 + 0.749537i
\(386\) 0 0
\(387\) 224.672i 0.580547i
\(388\) 0 0
\(389\) 62.7679 0.161357 0.0806786 0.996740i \(-0.474291\pi\)
0.0806786 + 0.996740i \(0.474291\pi\)
\(390\) 0 0
\(391\) 1169.84i 2.99192i
\(392\) 0 0
\(393\) 70.7184i 0.179945i
\(394\) 0 0
\(395\) 535.152 + 330.039i 1.35482 + 0.835542i
\(396\) 0 0
\(397\) −175.124 −0.441119 −0.220559 0.975374i \(-0.570788\pi\)
−0.220559 + 0.975374i \(0.570788\pi\)
\(398\) 0 0
\(399\) −201.716 + 79.5420i −0.505554 + 0.199353i
\(400\) 0 0
\(401\) 70.8623 0.176714 0.0883569 0.996089i \(-0.471838\pi\)
0.0883569 + 0.996089i \(0.471838\pi\)
\(402\) 0 0
\(403\) 4.75651i 0.0118027i
\(404\) 0 0
\(405\) 38.3018 + 23.6215i 0.0945723 + 0.0583247i
\(406\) 0 0
\(407\) 226.515i 0.556548i
\(408\) 0 0
\(409\) 425.778i 1.04102i 0.853855 + 0.520511i \(0.174259\pi\)
−0.853855 + 0.520511i \(0.825741\pi\)
\(410\) 0 0
\(411\) 404.876i 0.985100i
\(412\) 0 0
\(413\) −12.6237 + 4.97787i −0.0305659 + 0.0120529i
\(414\) 0 0
\(415\) −393.353 242.589i −0.947838 0.584551i
\(416\) 0 0
\(417\) 162.331i 0.389282i
\(418\) 0 0
\(419\) 393.611i 0.939406i 0.882825 + 0.469703i \(0.155639\pi\)
−0.882825 + 0.469703i \(0.844361\pi\)
\(420\) 0 0
\(421\) 157.500 0.374110 0.187055 0.982349i \(-0.440106\pi\)
0.187055 + 0.982349i \(0.440106\pi\)
\(422\) 0 0
\(423\) 83.3061 0.196941
\(424\) 0 0
\(425\) −334.109 665.052i −0.786138 1.56483i
\(426\) 0 0
\(427\) −487.568 + 192.261i −1.14185 + 0.450260i
\(428\) 0 0
\(429\) 1.28104 0.00298611
\(430\) 0 0
\(431\) −316.064 −0.733327 −0.366663 0.930354i \(-0.619500\pi\)
−0.366663 + 0.930354i \(0.619500\pi\)
\(432\) 0 0
\(433\) 530.639 1.22549 0.612747 0.790279i \(-0.290064\pi\)
0.612747 + 0.790279i \(0.290064\pi\)
\(434\) 0 0
\(435\) −322.244 198.735i −0.740792 0.456861i
\(436\) 0 0
\(437\) 702.761 1.60815
\(438\) 0 0
\(439\) 154.699i 0.352389i −0.984355 0.176194i \(-0.943621\pi\)
0.984355 0.176194i \(-0.0563787\pi\)
\(440\) 0 0
\(441\) −107.437 + 100.331i −0.243621 + 0.227508i
\(442\) 0 0
\(443\) 94.9327i 0.214295i −0.994243 0.107147i \(-0.965828\pi\)
0.994243 0.107147i \(-0.0341717\pi\)
\(444\) 0 0
\(445\) 371.086 601.708i 0.833901 1.35215i
\(446\) 0 0
\(447\) −245.383 −0.548955
\(448\) 0 0
\(449\) 64.1731 0.142924 0.0714622 0.997443i \(-0.477233\pi\)
0.0714622 + 0.997443i \(0.477233\pi\)
\(450\) 0 0
\(451\) 385.944i 0.855753i
\(452\) 0 0
\(453\) 140.471 0.310090
\(454\) 0 0
\(455\) 0.544241 3.04232i 0.00119613 0.00668642i
\(456\) 0 0
\(457\) 270.716i 0.592376i −0.955130 0.296188i \(-0.904285\pi\)
0.955130 0.296188i \(-0.0957154\pi\)
\(458\) 0 0
\(459\) 154.692 0.337019
\(460\) 0 0
\(461\) 73.7555i 0.159990i −0.996795 0.0799951i \(-0.974510\pi\)
0.996795 0.0799951i \(-0.0254905\pi\)
\(462\) 0 0
\(463\) 729.376i 1.57533i −0.616106 0.787663i \(-0.711291\pi\)
0.616106 0.787663i \(-0.288709\pi\)
\(464\) 0 0
\(465\) 244.870 397.053i 0.526603 0.853877i
\(466\) 0 0
\(467\) 491.236 1.05190 0.525949 0.850516i \(-0.323710\pi\)
0.525949 + 0.850516i \(0.323710\pi\)
\(468\) 0 0
\(469\) −199.650 + 78.7272i −0.425693 + 0.167862i
\(470\) 0 0
\(471\) −377.251 −0.800957
\(472\) 0 0
\(473\) 627.268i 1.32615i
\(474\) 0 0
\(475\) 399.518 200.710i 0.841091 0.422547i
\(476\) 0 0
\(477\) 16.1499i 0.0338572i
\(478\) 0 0
\(479\) 32.7275i 0.0683246i −0.999416 0.0341623i \(-0.989124\pi\)
0.999416 0.0341623i \(-0.0108763\pi\)
\(480\) 0 0
\(481\) 2.38807i 0.00496481i
\(482\) 0 0
\(483\) 443.218 174.773i 0.917635 0.361848i
\(484\) 0 0
\(485\) 459.100 + 283.137i 0.946599 + 0.583787i
\(486\) 0 0
\(487\) 892.345i 1.83233i −0.400800 0.916165i \(-0.631268\pi\)
0.400800 0.916165i \(-0.368732\pi\)
\(488\) 0 0
\(489\) 258.372i 0.528367i
\(490\) 0 0
\(491\) −186.106 −0.379035 −0.189517 0.981877i \(-0.560692\pi\)
−0.189517 + 0.981877i \(0.560692\pi\)
\(492\) 0 0
\(493\) −1301.47 −2.63989
\(494\) 0 0
\(495\) 106.936 + 65.9496i 0.216032 + 0.133231i
\(496\) 0 0
\(497\) −185.683 470.885i −0.373607 0.947456i
\(498\) 0 0
\(499\) −189.705 −0.380171 −0.190085 0.981768i \(-0.560876\pi\)
−0.190085 + 0.981768i \(0.560876\pi\)
\(500\) 0 0
\(501\) −0.595064 −0.00118775
\(502\) 0 0
\(503\) 82.3835 0.163784 0.0818921 0.996641i \(-0.473904\pi\)
0.0818921 + 0.996641i \(0.473904\pi\)
\(504\) 0 0
\(505\) 1.57604 2.55552i 0.00312088 0.00506044i
\(506\) 0 0
\(507\) 292.703 0.577324
\(508\) 0 0
\(509\) 612.287i 1.20292i 0.798902 + 0.601461i \(0.205414\pi\)
−0.798902 + 0.601461i \(0.794586\pi\)
\(510\) 0 0
\(511\) −87.3841 221.603i −0.171006 0.433666i
\(512\) 0 0
\(513\) 92.9282i 0.181147i
\(514\) 0 0
\(515\) 450.652 + 277.927i 0.875053 + 0.539663i
\(516\) 0 0
\(517\) 232.585 0.449874
\(518\) 0 0
\(519\) 5.11068 0.00984717
\(520\) 0 0
\(521\) 190.073i 0.364823i 0.983222 + 0.182412i \(0.0583903\pi\)
−0.983222 + 0.182412i \(0.941610\pi\)
\(522\) 0 0
\(523\) 324.679 0.620800 0.310400 0.950606i \(-0.399537\pi\)
0.310400 + 0.950606i \(0.399537\pi\)
\(524\) 0 0
\(525\) 202.053 225.942i 0.384863 0.430365i
\(526\) 0 0
\(527\) 1603.60i 3.04288i
\(528\) 0 0
\(529\) −1015.13 −1.91897
\(530\) 0 0
\(531\) 5.81560i 0.0109522i
\(532\) 0 0
\(533\) 4.06889i 0.00763393i
\(534\) 0 0
\(535\) 313.504 508.341i 0.585989 0.950170i
\(536\) 0 0
\(537\) −530.952 −0.988737
\(538\) 0 0
\(539\) −299.956 + 280.118i −0.556505 + 0.519699i
\(540\) 0 0
\(541\) −2.39602 −0.00442888 −0.00221444 0.999998i \(-0.500705\pi\)
−0.00221444 + 0.999998i \(0.500705\pi\)
\(542\) 0 0
\(543\) 469.184i 0.864059i
\(544\) 0 0
\(545\) −292.931 180.657i −0.537489 0.331480i
\(546\) 0 0
\(547\) 495.383i 0.905637i 0.891603 + 0.452818i \(0.149581\pi\)
−0.891603 + 0.452818i \(0.850419\pi\)
\(548\) 0 0
\(549\) 224.617i 0.409138i
\(550\) 0 0
\(551\) 781.833i 1.41893i
\(552\) 0 0
\(553\) 322.902 + 818.870i 0.583910 + 1.48078i
\(554\) 0 0
\(555\) −122.941 + 199.346i −0.221515 + 0.359182i
\(556\) 0 0
\(557\) 180.812i 0.324618i −0.986740 0.162309i \(-0.948106\pi\)
0.986740 0.162309i \(-0.0518941\pi\)
\(558\) 0 0
\(559\) 6.61309i 0.0118302i
\(560\) 0 0
\(561\) 431.888 0.769855
\(562\) 0 0
\(563\) −937.810 −1.66574 −0.832868 0.553471i \(-0.813303\pi\)
−0.832868 + 0.553471i \(0.813303\pi\)
\(564\) 0 0
\(565\) 216.344 350.798i 0.382910 0.620882i
\(566\) 0 0
\(567\) 23.1107 + 58.6080i 0.0407596 + 0.103365i
\(568\) 0 0
\(569\) −27.5357 −0.0483931 −0.0241965 0.999707i \(-0.507703\pi\)
−0.0241965 + 0.999707i \(0.507703\pi\)
\(570\) 0 0
\(571\) 404.489 0.708386 0.354193 0.935172i \(-0.384756\pi\)
0.354193 + 0.935172i \(0.384756\pi\)
\(572\) 0 0
\(573\) −590.510 −1.03056
\(574\) 0 0
\(575\) −877.836 + 441.007i −1.52667 + 0.766969i
\(576\) 0 0
\(577\) −480.904 −0.833456 −0.416728 0.909031i \(-0.636823\pi\)
−0.416728 + 0.909031i \(0.636823\pi\)
\(578\) 0 0
\(579\) 315.012i 0.544063i
\(580\) 0 0
\(581\) −237.343 601.894i −0.408507 1.03596i
\(582\) 0 0
\(583\) 45.0894i 0.0773402i
\(584\) 0 0
\(585\) −1.12739 0.695285i −0.00192716 0.00118852i
\(586\) 0 0
\(587\) −335.196 −0.571033 −0.285516 0.958374i \(-0.592165\pi\)
−0.285516 + 0.958374i \(0.592165\pi\)
\(588\) 0 0
\(589\) 963.334 1.63554
\(590\) 0 0
\(591\) 171.113i 0.289531i
\(592\) 0 0
\(593\) 1125.32 1.89768 0.948840 0.315757i \(-0.102258\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(594\) 0 0
\(595\) 183.484 1025.68i 0.308377 1.72383i
\(596\) 0 0
\(597\) 314.955i 0.527562i
\(598\) 0 0
\(599\) −643.405 −1.07413 −0.537066 0.843540i \(-0.680467\pi\)
−0.537066 + 0.843540i \(0.680467\pi\)
\(600\) 0 0
\(601\) 521.270i 0.867338i 0.901072 + 0.433669i \(0.142781\pi\)
−0.901072 + 0.433669i \(0.857219\pi\)
\(602\) 0 0
\(603\) 91.9763i 0.152531i
\(604\) 0 0
\(605\) −216.388 133.451i −0.357666 0.220580i
\(606\) 0 0
\(607\) 82.3135 0.135607 0.0678035 0.997699i \(-0.478401\pi\)
0.0678035 + 0.997699i \(0.478401\pi\)
\(608\) 0 0
\(609\) −194.437 493.087i −0.319273 0.809666i
\(610\) 0 0
\(611\) −2.45207 −0.00401321
\(612\) 0 0
\(613\) 228.128i 0.372150i 0.982536 + 0.186075i \(0.0595767\pi\)
−0.982536 + 0.186075i \(0.940423\pi\)
\(614\) 0 0
\(615\) −209.471 + 339.653i −0.340603 + 0.552281i
\(616\) 0 0
\(617\) 516.126i 0.836509i −0.908330 0.418255i \(-0.862642\pi\)
0.908330 0.418255i \(-0.137358\pi\)
\(618\) 0 0
\(619\) 683.396i 1.10403i 0.833833 + 0.552016i \(0.186141\pi\)
−0.833833 + 0.552016i \(0.813859\pi\)
\(620\) 0 0
\(621\) 204.185i 0.328801i
\(622\) 0 0
\(623\) 920.712 363.061i 1.47787 0.582763i
\(624\) 0 0
\(625\) −373.095 + 501.423i −0.596952 + 0.802277i
\(626\) 0 0
\(627\) 259.449i 0.413795i
\(628\) 0 0
\(629\) 805.110i 1.27998i
\(630\) 0 0
\(631\) 13.6990 0.0217100 0.0108550 0.999941i \(-0.496545\pi\)
0.0108550 + 0.999941i \(0.496545\pi\)
\(632\) 0 0
\(633\) −17.3233 −0.0273669
\(634\) 0 0
\(635\) −204.444 + 331.502i −0.321960 + 0.522051i
\(636\) 0 0
\(637\) 3.16234 2.95319i 0.00496443 0.00463609i
\(638\) 0 0
\(639\) −216.931 −0.339486
\(640\) 0 0
\(641\) −655.326 −1.02235 −0.511175 0.859477i \(-0.670789\pi\)
−0.511175 + 0.859477i \(0.670789\pi\)
\(642\) 0 0
\(643\) 588.998 0.916016 0.458008 0.888948i \(-0.348563\pi\)
0.458008 + 0.888948i \(0.348563\pi\)
\(644\) 0 0
\(645\) 340.449 552.032i 0.527829 0.855863i
\(646\) 0 0
\(647\) 1014.59 1.56815 0.784075 0.620666i \(-0.213138\pi\)
0.784075 + 0.620666i \(0.213138\pi\)
\(648\) 0 0
\(649\) 16.2368i 0.0250181i
\(650\) 0 0
\(651\) 607.556 239.575i 0.933265 0.368011i
\(652\) 0 0
\(653\) 741.204i 1.13508i 0.823348 + 0.567538i \(0.192104\pi\)
−0.823348 + 0.567538i \(0.807896\pi\)
\(654\) 0 0
\(655\) 107.161 173.759i 0.163605 0.265282i
\(656\) 0 0
\(657\) −102.090 −0.155388
\(658\) 0 0
\(659\) 257.591 0.390882 0.195441 0.980715i \(-0.437386\pi\)
0.195441 + 0.980715i \(0.437386\pi\)
\(660\) 0 0
\(661\) 1183.96i 1.79117i 0.444893 + 0.895584i \(0.353242\pi\)
−0.444893 + 0.895584i \(0.646758\pi\)
\(662\) 0 0
\(663\) −4.55326 −0.00686766
\(664\) 0 0
\(665\) 616.160 + 110.225i 0.926556 + 0.165752i
\(666\) 0 0
\(667\) 1717.87i 2.57552i
\(668\) 0 0
\(669\) −118.701 −0.177430
\(670\) 0 0
\(671\) 627.115i 0.934598i
\(672\) 0 0
\(673\) 987.972i 1.46801i −0.679143 0.734006i \(-0.737648\pi\)
0.679143 0.734006i \(-0.262352\pi\)
\(674\) 0 0
\(675\) −58.3156 116.079i −0.0863935 0.171969i
\(676\) 0 0
\(677\) −657.422 −0.971082 −0.485541 0.874214i \(-0.661377\pi\)
−0.485541 + 0.874214i \(0.661377\pi\)
\(678\) 0 0
\(679\) 277.014 + 702.499i 0.407973 + 1.03461i
\(680\) 0 0
\(681\) −30.9834 −0.0454970
\(682\) 0 0
\(683\) 255.185i 0.373624i 0.982396 + 0.186812i \(0.0598154\pi\)
−0.982396 + 0.186812i \(0.940185\pi\)
\(684\) 0 0
\(685\) 613.517 994.805i 0.895645 1.45227i
\(686\) 0 0
\(687\) 207.137i 0.301510i
\(688\) 0 0
\(689\) 0.475362i 0.000689931i
\(690\) 0 0
\(691\) 442.576i 0.640486i −0.947336 0.320243i \(-0.896236\pi\)
0.947336 0.320243i \(-0.103764\pi\)
\(692\) 0 0
\(693\) 64.5234 + 163.630i 0.0931074 + 0.236118i
\(694\) 0 0
\(695\) 245.983 398.856i 0.353932 0.573894i
\(696\) 0 0
\(697\) 1371.78i 1.96812i
\(698\) 0 0
\(699\) 273.360i 0.391072i
\(700\) 0 0
\(701\) 771.107 1.10001 0.550005 0.835161i \(-0.314626\pi\)
0.550005 + 0.835161i \(0.314626\pi\)
\(702\) 0 0
\(703\) −483.656 −0.687988
\(704\) 0 0
\(705\) −204.688 126.235i −0.290338 0.179057i
\(706\) 0 0
\(707\) 3.91037 1.54196i 0.00553093 0.00218099i
\(708\) 0 0
\(709\) −431.982 −0.609284 −0.304642 0.952467i \(-0.598537\pi\)
−0.304642 + 0.952467i \(0.598537\pi\)
\(710\) 0 0
\(711\) 377.244 0.530582
\(712\) 0 0
\(713\) −2116.67 −2.96868
\(714\) 0 0
\(715\) −3.14760 1.94119i −0.00440224 0.00271495i
\(716\) 0 0
\(717\) 518.533 0.723197
\(718\) 0 0
\(719\) 767.053i 1.06683i 0.845853 + 0.533416i \(0.179092\pi\)
−0.845853 + 0.533416i \(0.820908\pi\)
\(720\) 0 0
\(721\) 271.916 + 689.572i 0.377138 + 0.956411i
\(722\) 0 0
\(723\) 127.371i 0.176170i
\(724\) 0 0
\(725\) 490.627 + 976.606i 0.676727 + 1.34704i
\(726\) 0 0
\(727\) 230.714 0.317350 0.158675 0.987331i \(-0.449278\pi\)
0.158675 + 0.987331i \(0.449278\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) 2229.52i 3.04996i
\(732\) 0 0
\(733\) 632.429 0.862795 0.431398 0.902162i \(-0.358021\pi\)
0.431398 + 0.902162i \(0.358021\pi\)
\(734\) 0 0
\(735\) 416.012 83.7186i 0.566003 0.113903i
\(736\) 0 0
\(737\) 256.792i 0.348428i
\(738\) 0 0
\(739\) 466.036 0.630631 0.315316 0.948987i \(-0.397890\pi\)
0.315316 + 0.948987i \(0.397890\pi\)
\(740\) 0 0
\(741\) 2.73529i 0.00369135i
\(742\) 0 0
\(743\) 632.427i 0.851180i 0.904916 + 0.425590i \(0.139933\pi\)
−0.904916 + 0.425590i \(0.860067\pi\)
\(744\) 0 0
\(745\) 602.920 + 371.833i 0.809289 + 0.499105i
\(746\) 0 0
\(747\) −277.285 −0.371199
\(748\) 0 0
\(749\) 777.845 306.725i 1.03851 0.409513i
\(750\) 0 0
\(751\) −387.564 −0.516064 −0.258032 0.966136i \(-0.583074\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(752\) 0 0
\(753\) 196.101i 0.260427i
\(754\) 0 0
\(755\) −345.145 212.858i −0.457146 0.281931i
\(756\) 0 0
\(757\) 343.268i 0.453458i 0.973958 + 0.226729i \(0.0728032\pi\)
−0.973958 + 0.226729i \(0.927197\pi\)
\(758\) 0 0
\(759\) 570.071i 0.751082i
\(760\) 0 0
\(761\) 67.4358i 0.0886147i −0.999018 0.0443073i \(-0.985892\pi\)
0.999018 0.0443073i \(-0.0141081\pi\)
\(762\) 0 0
\(763\) −176.750 448.233i −0.231651 0.587461i
\(764\) 0 0
\(765\) −380.086 234.407i −0.496845 0.306414i
\(766\) 0 0
\(767\) 0.171179i 0.000223180i
\(768\) 0 0
\(769\) 1474.43i 1.91733i 0.284529 + 0.958667i \(0.408163\pi\)
−0.284529 + 0.958667i \(0.591837\pi\)
\(770\) 0 0
\(771\) 42.6556 0.0553250
\(772\) 0 0
\(773\) −670.136 −0.866929 −0.433465 0.901171i \(-0.642709\pi\)
−0.433465 + 0.901171i \(0.642709\pi\)
\(774\) 0 0
\(775\) −1203.32 + 604.525i −1.55267 + 0.780032i
\(776\) 0 0
\(777\) −305.032 + 120.282i −0.392577 + 0.154803i
\(778\) 0 0
\(779\) −824.070 −1.05786
\(780\) 0 0
\(781\) −605.658 −0.775490
\(782\) 0 0
\(783\) −227.159 −0.290114
\(784\) 0 0
\(785\) 926.928 + 571.655i 1.18080 + 0.728223i
\(786\) 0 0
\(787\) −1177.11 −1.49569 −0.747846 0.663873i \(-0.768912\pi\)
−0.747846 + 0.663873i \(0.768912\pi\)
\(788\) 0 0
\(789\) 141.107i 0.178842i
\(790\) 0 0
\(791\) 536.779 211.666i 0.678608 0.267593i
\(792\) 0 0
\(793\) 6.61147i 0.00833729i
\(794\) 0 0
\(795\) −24.4722 + 39.6812i −0.0307827 + 0.0499135i
\(796\) 0 0
\(797\) 370.289 0.464604 0.232302 0.972644i \(-0.425374\pi\)
0.232302 + 0.972644i \(0.425374\pi\)
\(798\) 0 0
\(799\) −826.686 −1.03465
\(800\) 0 0
\(801\) 424.161i 0.529540i
\(802\) 0 0
\(803\) −285.029 −0.354955
\(804\) 0 0
\(805\) −1353.85 242.190i −1.68180 0.300857i
\(806\) 0 0
\(807\) 569.442i 0.705628i
\(808\) 0 0
\(809\) −260.603 −0.322130 −0.161065 0.986944i \(-0.551493\pi\)
−0.161065 + 0.986944i \(0.551493\pi\)
\(810\) 0 0
\(811\) 867.045i 1.06911i −0.845135 0.534553i \(-0.820480\pi\)
0.845135 0.534553i \(-0.179520\pi\)
\(812\) 0 0
\(813\) 279.928i 0.344315i
\(814\) 0 0
\(815\) 391.515 634.835i 0.480387 0.778938i
\(816\) 0 0
\(817\) 1339.35 1.63935
\(818\) 0 0
\(819\) −0.680250 1.72509i −0.000830586 0.00210634i
\(820\) 0 0
\(821\) −70.3996 −0.0857486 −0.0428743 0.999080i \(-0.513652\pi\)
−0.0428743 + 0.999080i \(0.513652\pi\)
\(822\) 0 0
\(823\) 123.305i 0.149824i −0.997190 0.0749118i \(-0.976132\pi\)
0.997190 0.0749118i \(-0.0238675\pi\)
\(824\) 0 0
\(825\) −162.813 324.084i −0.197349 0.392829i
\(826\) 0 0
\(827\) 760.741i 0.919880i −0.887950 0.459940i \(-0.847871\pi\)
0.887950 0.459940i \(-0.152129\pi\)
\(828\) 0 0
\(829\) 802.031i 0.967468i 0.875215 + 0.483734i \(0.160720\pi\)
−0.875215 + 0.483734i \(0.839280\pi\)
\(830\) 0 0
\(831\) 680.794i 0.819247i
\(832\) 0 0
\(833\) 1066.15 995.633i 1.27989 1.19524i
\(834\) 0 0
\(835\) 1.46211 + 0.901712i 0.00175103 + 0.00107989i
\(836\) 0 0
\(837\) 279.894i 0.334401i
\(838\) 0 0
\(839\) 442.366i 0.527254i −0.964625 0.263627i \(-0.915081\pi\)
0.964625 0.263627i \(-0.0849188\pi\)
\(840\) 0 0
\(841\) 1070.16 1.27248
\(842\) 0 0
\(843\) −286.916 −0.340351
\(844\) 0 0
\(845\) −719.189 443.539i −0.851111 0.524898i
\(846\) 0 0
\(847\) −130.565 331.109i −0.154150 0.390920i
\(848\) 0 0
\(849\) 732.781 0.863111
\(850\) 0 0
\(851\) 1062.71 1.24877
\(852\) 0 0
\(853\) 648.240 0.759953 0.379977 0.924996i \(-0.375932\pi\)
0.379977 + 0.924996i \(0.375932\pi\)
\(854\) 0 0
\(855\) 140.816 228.330i 0.164697 0.267053i
\(856\) 0 0
\(857\) 336.227 0.392331 0.196165 0.980571i \(-0.437151\pi\)
0.196165 + 0.980571i \(0.437151\pi\)
\(858\) 0 0
\(859\) 1188.57i 1.38366i 0.722058 + 0.691832i \(0.243196\pi\)
−0.722058 + 0.691832i \(0.756804\pi\)
\(860\) 0 0
\(861\) −519.725 + 204.941i −0.603629 + 0.238027i
\(862\) 0 0
\(863\) 1071.22i 1.24128i 0.784096 + 0.620639i \(0.213127\pi\)
−0.784096 + 0.620639i \(0.786873\pi\)
\(864\) 0 0
\(865\) −12.5572 7.74431i −0.0145170 0.00895296i
\(866\) 0 0
\(867\) −1034.51 −1.19321
\(868\) 0 0
\(869\) 1053.24 1.21201
\(870\) 0 0
\(871\) 2.70727i 0.00310823i
\(872\) 0 0
\(873\) 323.633 0.370713
\(874\) 0 0
\(875\) −838.830 + 248.977i −0.958663 + 0.284545i
\(876\) 0 0
\(877\) 163.935i 0.186927i −0.995623 0.0934635i \(-0.970206\pi\)
0.995623 0.0934635i \(-0.0297938\pi\)
\(878\) 0 0
\(879\) 173.079 0.196904
\(880\) 0 0
\(881\) 1088.98i 1.23608i 0.786148 + 0.618038i \(0.212072\pi\)
−0.786148 + 0.618038i \(0.787928\pi\)
\(882\) 0 0
\(883\) 1148.47i 1.30064i 0.759660 + 0.650321i \(0.225365\pi\)
−0.759660 + 0.650321i \(0.774635\pi\)
\(884\) 0 0
\(885\) 8.81248 14.2893i 0.00995761 0.0161461i
\(886\) 0 0
\(887\) −468.656 −0.528361 −0.264180 0.964473i \(-0.585101\pi\)
−0.264180 + 0.964473i \(0.585101\pi\)
\(888\) 0 0
\(889\) −507.253 + 200.023i −0.570588 + 0.224998i
\(890\) 0 0
\(891\) 75.3822 0.0846040
\(892\) 0 0
\(893\) 496.617i 0.556122i
\(894\) 0 0
\(895\) 1304.58 + 804.562i 1.45763 + 0.898951i
\(896\) 0 0
\(897\) 6.01008i 0.00670020i
\(898\) 0 0
\(899\) 2354.83i 2.61939i
\(900\) 0 0
\(901\) 160.263i 0.177872i
\(902\) 0 0
\(903\) 844.699 333.087i 0.935437 0.368867i
\(904\) 0 0
\(905\) −710.963 + 1152.81i −0.785595 + 1.27383i
\(906\) 0 0
\(907\) 61.3264i 0.0676145i 0.999428 + 0.0338073i \(0.0107632\pi\)
−0.999428 + 0.0338073i \(0.989237\pi\)
\(908\) 0 0
\(909\) 1.80146i 0.00198180i
\(910\) 0 0
\(911\) 86.0805 0.0944901 0.0472451 0.998883i \(-0.484956\pi\)
0.0472451 + 0.998883i \(0.484956\pi\)
\(912\) 0 0
\(913\) −774.162 −0.847932
\(914\) 0 0
\(915\) 340.366 551.897i 0.371985 0.603166i
\(916\) 0 0
\(917\) 265.880 104.844i 0.289946 0.114333i
\(918\) 0 0
\(919\) −1330.80 −1.44810 −0.724048 0.689750i \(-0.757721\pi\)
−0.724048 + 0.689750i \(0.757721\pi\)
\(920\) 0 0
\(921\) −497.401 −0.540066
\(922\) 0 0
\(923\) 6.38525 0.00691793
\(924\) 0 0
\(925\) 604.146 303.511i 0.653130 0.328120i
\(926\) 0 0
\(927\) 317.678 0.342694
\(928\) 0 0
\(929\) 1382.16i 1.48779i −0.668297 0.743895i \(-0.732976\pi\)
0.668297 0.743895i \(-0.267024\pi\)
\(930\) 0 0
\(931\) 598.109 + 640.468i 0.642437 + 0.687935i
\(932\) 0 0
\(933\) 323.999i 0.347266i
\(934\) 0 0
\(935\) −1061.18 654.449i −1.13495 0.699945i
\(936\) 0 0
\(937\) 1470.54 1.56941 0.784704 0.619871i \(-0.212815\pi\)
0.784704 + 0.619871i \(0.212815\pi\)
\(938\) 0 0
\(939\) −474.875 −0.505724
\(940\) 0 0
\(941\) 709.900i 0.754410i 0.926130 + 0.377205i \(0.123115\pi\)
−0.926130 + 0.377205i \(0.876885\pi\)
\(942\) 0 0
\(943\) 1810.68 1.92012
\(944\) 0 0
\(945\) 32.0255 179.023i 0.0338894 0.189443i
\(946\) 0 0
\(947\) 1170.44i 1.23594i 0.786201 + 0.617971i \(0.212045\pi\)
−0.786201 + 0.617971i \(0.787955\pi\)
\(948\) 0 0
\(949\) 3.00496 0.00316645
\(950\) 0 0
\(951\) 145.859i 0.153374i
\(952\) 0 0
\(953\) 1354.92i 1.42174i −0.703323 0.710871i \(-0.748301\pi\)
0.703323 0.710871i \(-0.251699\pi\)
\(954\) 0 0
\(955\) 1450.92 + 894.812i 1.51929 + 0.936975i
\(956\) 0 0
\(957\) −634.213 −0.662710
\(958\) 0 0
\(959\) 1522.21 600.249i 1.58729 0.625912i
\(960\) 0 0
\(961\) −1940.50 −2.01925
\(962\) 0 0
\(963\) 358.344i 0.372112i
\(964\) 0 0
\(965\) 477.344 774.004i 0.494657 0.802077i
\(966\) 0 0
\(967\) 564.951i 0.584231i −0.956383 0.292115i \(-0.905641\pi\)
0.956383 0.292115i \(-0.0943591\pi\)
\(968\) 0 0
\(969\) 922.170i 0.951672i
\(970\) 0 0
\(971\) 579.120i 0.596416i 0.954501 + 0.298208i \(0.0963889\pi\)
−0.954501 + 0.298208i \(0.903611\pi\)
\(972\) 0 0
\(973\) 610.316 240.664i 0.627251 0.247342i
\(974\) 0 0
\(975\) 1.71649 + 3.41671i 0.00176050 + 0.00350432i
\(976\) 0 0
\(977\) 304.418i 0.311584i −0.987790 0.155792i \(-0.950207\pi\)
0.987790 0.155792i \(-0.0497930\pi\)
\(978\) 0 0
\(979\) 1184.23i 1.20963i
\(980\) 0 0
\(981\) −206.496 −0.210495
\(982\) 0 0
\(983\) −764.954 −0.778183 −0.389092 0.921199i \(-0.627211\pi\)
−0.389092 + 0.921199i \(0.627211\pi\)
\(984\) 0 0
\(985\) 259.291 420.435i 0.263239 0.426837i
\(986\) 0 0
\(987\) −123.506 313.206i −0.125132 0.317332i
\(988\) 0 0
\(989\) −2942.86 −2.97559
\(990\) 0 0
\(991\) −395.387 −0.398978 −0.199489 0.979900i \(-0.563928\pi\)
−0.199489 + 0.979900i \(0.563928\pi\)
\(992\) 0 0
\(993\) −984.192 −0.991129
\(994\) 0 0
\(995\) 477.257 773.862i 0.479655 0.777751i
\(996\) 0 0
\(997\) −1308.65 −1.31258 −0.656292 0.754507i \(-0.727876\pi\)
−0.656292 + 0.754507i \(0.727876\pi\)
\(998\) 0 0
\(999\) 140.525i 0.140665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.3.p.a.349.8 yes 16
3.2 odd 2 1260.3.p.e.1189.1 16
4.3 odd 2 1680.3.bd.b.769.16 16
5.2 odd 4 2100.3.j.g.601.9 16
5.3 odd 4 2100.3.j.g.601.8 16
5.4 even 2 inner 420.3.p.a.349.10 yes 16
7.6 odd 2 inner 420.3.p.a.349.9 yes 16
15.14 odd 2 1260.3.p.e.1189.15 16
20.19 odd 2 1680.3.bd.b.769.2 16
21.20 even 2 1260.3.p.e.1189.16 16
28.27 even 2 1680.3.bd.b.769.1 16
35.13 even 4 2100.3.j.g.601.16 16
35.27 even 4 2100.3.j.g.601.1 16
35.34 odd 2 inner 420.3.p.a.349.7 16
105.104 even 2 1260.3.p.e.1189.2 16
140.139 even 2 1680.3.bd.b.769.15 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.7 16 35.34 odd 2 inner
420.3.p.a.349.8 yes 16 1.1 even 1 trivial
420.3.p.a.349.9 yes 16 7.6 odd 2 inner
420.3.p.a.349.10 yes 16 5.4 even 2 inner
1260.3.p.e.1189.1 16 3.2 odd 2
1260.3.p.e.1189.2 16 105.104 even 2
1260.3.p.e.1189.15 16 15.14 odd 2
1260.3.p.e.1189.16 16 21.20 even 2
1680.3.bd.b.769.1 16 28.27 even 2
1680.3.bd.b.769.2 16 20.19 odd 2
1680.3.bd.b.769.15 16 140.139 even 2
1680.3.bd.b.769.16 16 4.3 odd 2
2100.3.j.g.601.1 16 35.27 even 4
2100.3.j.g.601.8 16 5.3 odd 4
2100.3.j.g.601.9 16 5.2 odd 4
2100.3.j.g.601.16 16 35.13 even 4