Properties

Label 2100.3.j.g.601.14
Level $2100$
Weight $3$
Character 2100.601
Analytic conductor $57.221$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,3,Mod(601,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.601"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 2100.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.2208555157\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 56 x^{14} + 2052 x^{12} - 43310 x^{10} + 663499 x^{8} - 6680748 x^{6} + 49052709 x^{4} + \cdots + 601475625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 420)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 601.14
Root \(2.77207 - 1.60046i\) of defining polynomial
Character \(\chi\) \(=\) 2100.601
Dual form 2100.3.j.g.601.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} +(4.90840 - 4.99075i) q^{7} -3.00000 q^{9} +3.52580 q^{11} +1.16482i q^{13} -3.02322i q^{17} -16.3188i q^{19} +(8.64424 + 8.50160i) q^{21} +16.0449 q^{23} -5.19615i q^{27} +0.746113 q^{29} +29.1033i q^{31} +6.10687i q^{33} -29.5364 q^{37} -2.01752 q^{39} -39.0763i q^{41} +27.0897 q^{43} -45.4066i q^{47} +(-0.815245 - 48.9932i) q^{49} +5.23636 q^{51} -33.1354 q^{53} +28.2649 q^{57} -60.9074i q^{59} +29.9928i q^{61} +(-14.7252 + 14.9723i) q^{63} -68.8999 q^{67} +27.7905i q^{69} +79.4959 q^{71} -62.5252i q^{73} +(17.3061 - 17.5964i) q^{77} +114.310 q^{79} +9.00000 q^{81} -1.64214i q^{83} +1.29231i q^{87} -36.0788i q^{89} +(5.81332 + 5.71739i) q^{91} -50.4084 q^{93} +84.0105i q^{97} -10.5774 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} - 24 q^{11} - 12 q^{21} + 32 q^{29} - 72 q^{39} + 88 q^{49} + 24 q^{51} + 168 q^{71} - 16 q^{79} + 144 q^{81} - 568 q^{91} + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.90840 4.99075i 0.701200 0.712965i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 3.52580 0.320528 0.160264 0.987074i \(-0.448766\pi\)
0.160264 + 0.987074i \(0.448766\pi\)
\(12\) 0 0
\(13\) 1.16482i 0.0896014i 0.998996 + 0.0448007i \(0.0142653\pi\)
−0.998996 + 0.0448007i \(0.985735\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.02322i 0.177836i −0.996039 0.0889181i \(-0.971659\pi\)
0.996039 0.0889181i \(-0.0283409\pi\)
\(18\) 0 0
\(19\) 16.3188i 0.858882i −0.903095 0.429441i \(-0.858711\pi\)
0.903095 0.429441i \(-0.141289\pi\)
\(20\) 0 0
\(21\) 8.64424 + 8.50160i 0.411630 + 0.404838i
\(22\) 0 0
\(23\) 16.0449 0.697602 0.348801 0.937197i \(-0.386589\pi\)
0.348801 + 0.937197i \(0.386589\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 0.746113 0.0257280 0.0128640 0.999917i \(-0.495905\pi\)
0.0128640 + 0.999917i \(0.495905\pi\)
\(30\) 0 0
\(31\) 29.1033i 0.938816i 0.882981 + 0.469408i \(0.155533\pi\)
−0.882981 + 0.469408i \(0.844467\pi\)
\(32\) 0 0
\(33\) 6.10687i 0.185057i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −29.5364 −0.798281 −0.399141 0.916890i \(-0.630691\pi\)
−0.399141 + 0.916890i \(0.630691\pi\)
\(38\) 0 0
\(39\) −2.01752 −0.0517314
\(40\) 0 0
\(41\) 39.0763i 0.953080i −0.879153 0.476540i \(-0.841891\pi\)
0.879153 0.476540i \(-0.158109\pi\)
\(42\) 0 0
\(43\) 27.0897 0.629993 0.314997 0.949093i \(-0.397997\pi\)
0.314997 + 0.949093i \(0.397997\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 45.4066i 0.966099i −0.875593 0.483049i \(-0.839529\pi\)
0.875593 0.483049i \(-0.160471\pi\)
\(48\) 0 0
\(49\) −0.815245 48.9932i −0.0166377 0.999862i
\(50\) 0 0
\(51\) 5.23636 0.102674
\(52\) 0 0
\(53\) −33.1354 −0.625197 −0.312599 0.949885i \(-0.601199\pi\)
−0.312599 + 0.949885i \(0.601199\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 28.2649 0.495876
\(58\) 0 0
\(59\) 60.9074i 1.03233i −0.856490 0.516164i \(-0.827359\pi\)
0.856490 0.516164i \(-0.172641\pi\)
\(60\) 0 0
\(61\) 29.9928i 0.491685i 0.969310 + 0.245843i \(0.0790646\pi\)
−0.969310 + 0.245843i \(0.920935\pi\)
\(62\) 0 0
\(63\) −14.7252 + 14.9723i −0.233733 + 0.237655i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −68.8999 −1.02836 −0.514178 0.857683i \(-0.671903\pi\)
−0.514178 + 0.857683i \(0.671903\pi\)
\(68\) 0 0
\(69\) 27.7905i 0.402761i
\(70\) 0 0
\(71\) 79.4959 1.11966 0.559830 0.828607i \(-0.310866\pi\)
0.559830 + 0.828607i \(0.310866\pi\)
\(72\) 0 0
\(73\) 62.5252i 0.856510i −0.903658 0.428255i \(-0.859129\pi\)
0.903658 0.428255i \(-0.140871\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 17.3061 17.5964i 0.224754 0.228525i
\(78\) 0 0
\(79\) 114.310 1.44696 0.723479 0.690346i \(-0.242542\pi\)
0.723479 + 0.690346i \(0.242542\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 1.64214i 0.0197848i −0.999951 0.00989238i \(-0.996851\pi\)
0.999951 0.00989238i \(-0.00314889\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 1.29231i 0.0148541i
\(88\) 0 0
\(89\) 36.0788i 0.405380i −0.979243 0.202690i \(-0.935032\pi\)
0.979243 0.202690i \(-0.0649684\pi\)
\(90\) 0 0
\(91\) 5.81332 + 5.71739i 0.0638826 + 0.0628285i
\(92\) 0 0
\(93\) −50.4084 −0.542025
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 84.0105i 0.866088i 0.901373 + 0.433044i \(0.142561\pi\)
−0.901373 + 0.433044i \(0.857439\pi\)
\(98\) 0 0
\(99\) −10.5774 −0.106843
\(100\) 0 0
\(101\) 156.860i 1.55307i −0.630077 0.776533i \(-0.716977\pi\)
0.630077 0.776533i \(-0.283023\pi\)
\(102\) 0 0
\(103\) 32.9749i 0.320144i −0.987105 0.160072i \(-0.948827\pi\)
0.987105 0.160072i \(-0.0511727\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −161.109 −1.50569 −0.752846 0.658197i \(-0.771319\pi\)
−0.752846 + 0.658197i \(0.771319\pi\)
\(108\) 0 0
\(109\) 164.005 1.50464 0.752319 0.658799i \(-0.228935\pi\)
0.752319 + 0.658799i \(0.228935\pi\)
\(110\) 0 0
\(111\) 51.1586i 0.460888i
\(112\) 0 0
\(113\) −176.021 −1.55771 −0.778855 0.627204i \(-0.784199\pi\)
−0.778855 + 0.627204i \(0.784199\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 3.49445i 0.0298671i
\(118\) 0 0
\(119\) −15.0881 14.8391i −0.126791 0.124699i
\(120\) 0 0
\(121\) −108.569 −0.897262
\(122\) 0 0
\(123\) 67.6821 0.550261
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 101.066 0.795797 0.397898 0.917430i \(-0.369740\pi\)
0.397898 + 0.917430i \(0.369740\pi\)
\(128\) 0 0
\(129\) 46.9208i 0.363727i
\(130\) 0 0
\(131\) 45.4781i 0.347161i −0.984820 0.173581i \(-0.944466\pi\)
0.984820 0.173581i \(-0.0555337\pi\)
\(132\) 0 0
\(133\) −81.4429 80.0989i −0.612352 0.602248i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 119.405 0.871566 0.435783 0.900052i \(-0.356471\pi\)
0.435783 + 0.900052i \(0.356471\pi\)
\(138\) 0 0
\(139\) 246.336i 1.77220i −0.463491 0.886102i \(-0.653403\pi\)
0.463491 0.886102i \(-0.346597\pi\)
\(140\) 0 0
\(141\) 78.6466 0.557777
\(142\) 0 0
\(143\) 4.10692i 0.0287197i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 84.8587 1.41205i 0.577270 0.00960575i
\(148\) 0 0
\(149\) 280.690 1.88382 0.941912 0.335859i \(-0.109026\pi\)
0.941912 + 0.335859i \(0.109026\pi\)
\(150\) 0 0
\(151\) −106.610 −0.706027 −0.353014 0.935618i \(-0.614843\pi\)
−0.353014 + 0.935618i \(0.614843\pi\)
\(152\) 0 0
\(153\) 9.06965i 0.0592787i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 187.250i 1.19268i 0.802733 + 0.596338i \(0.203378\pi\)
−0.802733 + 0.596338i \(0.796622\pi\)
\(158\) 0 0
\(159\) 57.3923i 0.360958i
\(160\) 0 0
\(161\) 78.7545 80.0759i 0.489159 0.497366i
\(162\) 0 0
\(163\) 172.413 1.05775 0.528873 0.848701i \(-0.322615\pi\)
0.528873 + 0.848701i \(0.322615\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 36.6537i 0.219483i −0.993960 0.109741i \(-0.964998\pi\)
0.993960 0.109741i \(-0.0350023\pi\)
\(168\) 0 0
\(169\) 167.643 0.991972
\(170\) 0 0
\(171\) 48.9563i 0.286294i
\(172\) 0 0
\(173\) 61.9160i 0.357896i −0.983859 0.178948i \(-0.942731\pi\)
0.983859 0.178948i \(-0.0572694\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 105.495 0.596015
\(178\) 0 0
\(179\) 102.785 0.574218 0.287109 0.957898i \(-0.407306\pi\)
0.287109 + 0.957898i \(0.407306\pi\)
\(180\) 0 0
\(181\) 44.5372i 0.246062i 0.992403 + 0.123031i \(0.0392615\pi\)
−0.992403 + 0.123031i \(0.960739\pi\)
\(182\) 0 0
\(183\) −51.9490 −0.283875
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 10.6593i 0.0570014i
\(188\) 0 0
\(189\) −25.9327 25.5048i −0.137210 0.134946i
\(190\) 0 0
\(191\) −114.488 −0.599412 −0.299706 0.954032i \(-0.596889\pi\)
−0.299706 + 0.954032i \(0.596889\pi\)
\(192\) 0 0
\(193\) 129.978 0.673462 0.336731 0.941601i \(-0.390679\pi\)
0.336731 + 0.941601i \(0.390679\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −13.2224 −0.0671186 −0.0335593 0.999437i \(-0.510684\pi\)
−0.0335593 + 0.999437i \(0.510684\pi\)
\(198\) 0 0
\(199\) 42.9039i 0.215598i −0.994173 0.107799i \(-0.965620\pi\)
0.994173 0.107799i \(-0.0343802\pi\)
\(200\) 0 0
\(201\) 119.338i 0.593722i
\(202\) 0 0
\(203\) 3.66222 3.72367i 0.0180405 0.0183432i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −48.1346 −0.232534
\(208\) 0 0
\(209\) 57.5367i 0.275295i
\(210\) 0 0
\(211\) 356.420 1.68920 0.844598 0.535401i \(-0.179839\pi\)
0.844598 + 0.535401i \(0.179839\pi\)
\(212\) 0 0
\(213\) 137.691i 0.646437i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 145.247 + 142.851i 0.669343 + 0.658297i
\(218\) 0 0
\(219\) 108.297 0.494506
\(220\) 0 0
\(221\) 3.52150 0.0159344
\(222\) 0 0
\(223\) 265.455i 1.19038i 0.803585 + 0.595191i \(0.202923\pi\)
−0.803585 + 0.595191i \(0.797077\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 245.334i 1.08077i −0.841419 0.540383i \(-0.818279\pi\)
0.841419 0.540383i \(-0.181721\pi\)
\(228\) 0 0
\(229\) 330.649i 1.44388i −0.691955 0.721940i \(-0.743251\pi\)
0.691955 0.721940i \(-0.256749\pi\)
\(230\) 0 0
\(231\) 30.4779 + 29.9750i 0.131939 + 0.129762i
\(232\) 0 0
\(233\) 323.715 1.38934 0.694668 0.719331i \(-0.255551\pi\)
0.694668 + 0.719331i \(0.255551\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 197.990i 0.835402i
\(238\) 0 0
\(239\) −56.5257 −0.236509 −0.118255 0.992983i \(-0.537730\pi\)
−0.118255 + 0.992983i \(0.537730\pi\)
\(240\) 0 0
\(241\) 207.148i 0.859535i −0.902940 0.429768i \(-0.858596\pi\)
0.902940 0.429768i \(-0.141404\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.0084 0.0769570
\(248\) 0 0
\(249\) 2.84426 0.0114227
\(250\) 0 0
\(251\) 292.441i 1.16510i 0.812793 + 0.582552i \(0.197946\pi\)
−0.812793 + 0.582552i \(0.802054\pi\)
\(252\) 0 0
\(253\) 56.5710 0.223601
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 192.205i 0.747878i −0.927453 0.373939i \(-0.878007\pi\)
0.927453 0.373939i \(-0.121993\pi\)
\(258\) 0 0
\(259\) −144.976 + 147.409i −0.559755 + 0.569146i
\(260\) 0 0
\(261\) −2.23834 −0.00857601
\(262\) 0 0
\(263\) −99.1475 −0.376987 −0.188493 0.982074i \(-0.560360\pi\)
−0.188493 + 0.982074i \(0.560360\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 62.4904 0.234046
\(268\) 0 0
\(269\) 325.971i 1.21179i −0.795545 0.605894i \(-0.792815\pi\)
0.795545 0.605894i \(-0.207185\pi\)
\(270\) 0 0
\(271\) 140.304i 0.517725i −0.965914 0.258863i \(-0.916652\pi\)
0.965914 0.258863i \(-0.0833477\pi\)
\(272\) 0 0
\(273\) −9.90281 + 10.0690i −0.0362740 + 0.0368827i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 31.4353 0.113485 0.0567424 0.998389i \(-0.481929\pi\)
0.0567424 + 0.998389i \(0.481929\pi\)
\(278\) 0 0
\(279\) 87.3099i 0.312939i
\(280\) 0 0
\(281\) 433.598 1.54305 0.771527 0.636197i \(-0.219493\pi\)
0.771527 + 0.636197i \(0.219493\pi\)
\(282\) 0 0
\(283\) 368.878i 1.30346i 0.758452 + 0.651728i \(0.225956\pi\)
−0.758452 + 0.651728i \(0.774044\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −195.020 191.802i −0.679513 0.668300i
\(288\) 0 0
\(289\) 279.860 0.968374
\(290\) 0 0
\(291\) −145.511 −0.500036
\(292\) 0 0
\(293\) 26.1637i 0.0892961i −0.999003 0.0446480i \(-0.985783\pi\)
0.999003 0.0446480i \(-0.0142166\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 18.3206i 0.0616856i
\(298\) 0 0
\(299\) 18.6893i 0.0625061i
\(300\) 0 0
\(301\) 132.967 135.198i 0.441751 0.449163i
\(302\) 0 0
\(303\) 271.689 0.896663
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 411.125i 1.33917i −0.742736 0.669584i \(-0.766472\pi\)
0.742736 0.669584i \(-0.233528\pi\)
\(308\) 0 0
\(309\) 57.1142 0.184835
\(310\) 0 0
\(311\) 342.548i 1.10144i 0.834689 + 0.550721i \(0.185647\pi\)
−0.834689 + 0.550721i \(0.814353\pi\)
\(312\) 0 0
\(313\) 17.9251i 0.0572687i 0.999590 + 0.0286344i \(0.00911585\pi\)
−0.999590 + 0.0286344i \(0.990884\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −515.437 −1.62599 −0.812993 0.582274i \(-0.802163\pi\)
−0.812993 + 0.582274i \(0.802163\pi\)
\(318\) 0 0
\(319\) 2.63065 0.00824655
\(320\) 0 0
\(321\) 279.049i 0.869311i
\(322\) 0 0
\(323\) −49.3351 −0.152740
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 284.066i 0.868703i
\(328\) 0 0
\(329\) −226.613 222.874i −0.688794 0.677428i
\(330\) 0 0
\(331\) −72.5855 −0.219291 −0.109646 0.993971i \(-0.534972\pi\)
−0.109646 + 0.993971i \(0.534972\pi\)
\(332\) 0 0
\(333\) 88.6092 0.266094
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 169.353 0.502531 0.251265 0.967918i \(-0.419153\pi\)
0.251265 + 0.967918i \(0.419153\pi\)
\(338\) 0 0
\(339\) 304.878i 0.899344i
\(340\) 0 0
\(341\) 102.612i 0.300916i
\(342\) 0 0
\(343\) −248.515 236.410i −0.724532 0.689241i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −667.398 −1.92334 −0.961668 0.274215i \(-0.911582\pi\)
−0.961668 + 0.274215i \(0.911582\pi\)
\(348\) 0 0
\(349\) 44.2062i 0.126665i −0.997992 0.0633326i \(-0.979827\pi\)
0.997992 0.0633326i \(-0.0201729\pi\)
\(350\) 0 0
\(351\) 6.05257 0.0172438
\(352\) 0 0
\(353\) 485.027i 1.37401i 0.726651 + 0.687007i \(0.241076\pi\)
−0.726651 + 0.687007i \(0.758924\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 25.7022 26.1334i 0.0719948 0.0732028i
\(358\) 0 0
\(359\) 478.427 1.33267 0.666333 0.745655i \(-0.267863\pi\)
0.666333 + 0.745655i \(0.267863\pi\)
\(360\) 0 0
\(361\) 94.6984 0.262322
\(362\) 0 0
\(363\) 188.047i 0.518034i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 333.456i 0.908600i 0.890849 + 0.454300i \(0.150111\pi\)
−0.890849 + 0.454300i \(0.849889\pi\)
\(368\) 0 0
\(369\) 117.229i 0.317693i
\(370\) 0 0
\(371\) −162.642 + 165.371i −0.438388 + 0.445744i
\(372\) 0 0
\(373\) 130.786 0.350632 0.175316 0.984512i \(-0.443905\pi\)
0.175316 + 0.984512i \(0.443905\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.869086i 0.00230527i
\(378\) 0 0
\(379\) −422.198 −1.11398 −0.556989 0.830520i \(-0.688043\pi\)
−0.556989 + 0.830520i \(0.688043\pi\)
\(380\) 0 0
\(381\) 175.052i 0.459453i
\(382\) 0 0
\(383\) 693.416i 1.81049i −0.424894 0.905243i \(-0.639689\pi\)
0.424894 0.905243i \(-0.360311\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −81.2692 −0.209998
\(388\) 0 0
\(389\) −54.2476 −0.139454 −0.0697269 0.997566i \(-0.522213\pi\)
−0.0697269 + 0.997566i \(0.522213\pi\)
\(390\) 0 0
\(391\) 48.5070i 0.124059i
\(392\) 0 0
\(393\) 78.7704 0.200434
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 144.476i 0.363921i −0.983306 0.181960i \(-0.941756\pi\)
0.983306 0.181960i \(-0.0582442\pi\)
\(398\) 0 0
\(399\) 138.735 141.063i 0.347708 0.353542i
\(400\) 0 0
\(401\) −28.0405 −0.0699265 −0.0349632 0.999389i \(-0.511131\pi\)
−0.0349632 + 0.999389i \(0.511131\pi\)
\(402\) 0 0
\(403\) −33.9000 −0.0841192
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −104.140 −0.255871
\(408\) 0 0
\(409\) 138.179i 0.337846i 0.985629 + 0.168923i \(0.0540289\pi\)
−0.985629 + 0.168923i \(0.945971\pi\)
\(410\) 0 0
\(411\) 206.815i 0.503199i
\(412\) 0 0
\(413\) −303.974 298.958i −0.736014 0.723868i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 426.667 1.02318
\(418\) 0 0
\(419\) 354.161i 0.845253i 0.906304 + 0.422627i \(0.138892\pi\)
−0.906304 + 0.422627i \(0.861108\pi\)
\(420\) 0 0
\(421\) 407.258 0.967359 0.483680 0.875245i \(-0.339300\pi\)
0.483680 + 0.875245i \(0.339300\pi\)
\(422\) 0 0
\(423\) 136.220i 0.322033i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 149.687 + 147.217i 0.350554 + 0.344770i
\(428\) 0 0
\(429\) −7.11339 −0.0165813
\(430\) 0 0
\(431\) −807.246 −1.87296 −0.936480 0.350720i \(-0.885937\pi\)
−0.936480 + 0.350720i \(0.885937\pi\)
\(432\) 0 0
\(433\) 377.791i 0.872497i 0.899826 + 0.436249i \(0.143693\pi\)
−0.899826 + 0.436249i \(0.856307\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 261.832i 0.599158i
\(438\) 0 0
\(439\) 598.595i 1.36354i 0.731566 + 0.681771i \(0.238790\pi\)
−0.731566 + 0.681771i \(0.761210\pi\)
\(440\) 0 0
\(441\) 2.44574 + 146.980i 0.00554589 + 0.333287i
\(442\) 0 0
\(443\) −612.914 −1.38355 −0.691776 0.722112i \(-0.743172\pi\)
−0.691776 + 0.722112i \(0.743172\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 486.169i 1.08763i
\(448\) 0 0
\(449\) 113.063 0.251810 0.125905 0.992042i \(-0.459816\pi\)
0.125905 + 0.992042i \(0.459816\pi\)
\(450\) 0 0
\(451\) 137.775i 0.305489i
\(452\) 0 0
\(453\) 184.654i 0.407625i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.5009 −0.0382952 −0.0191476 0.999817i \(-0.506095\pi\)
−0.0191476 + 0.999817i \(0.506095\pi\)
\(458\) 0 0
\(459\) −15.7091 −0.0342246
\(460\) 0 0
\(461\) 784.933i 1.70267i −0.524619 0.851337i \(-0.675792\pi\)
0.524619 0.851337i \(-0.324208\pi\)
\(462\) 0 0
\(463\) −741.378 −1.60125 −0.800624 0.599167i \(-0.795498\pi\)
−0.800624 + 0.599167i \(0.795498\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 115.641i 0.247625i −0.992306 0.123813i \(-0.960488\pi\)
0.992306 0.123813i \(-0.0395122\pi\)
\(468\) 0 0
\(469\) −338.188 + 343.862i −0.721084 + 0.733182i
\(470\) 0 0
\(471\) −324.327 −0.688592
\(472\) 0 0
\(473\) 95.5130 0.201930
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 99.4063 0.208399
\(478\) 0 0
\(479\) 547.469i 1.14294i 0.820623 + 0.571470i \(0.193627\pi\)
−0.820623 + 0.571470i \(0.806373\pi\)
\(480\) 0 0
\(481\) 34.4045i 0.0715271i
\(482\) 0 0
\(483\) 138.696 + 136.407i 0.287154 + 0.282416i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 742.778 1.52521 0.762605 0.646864i \(-0.223920\pi\)
0.762605 + 0.646864i \(0.223920\pi\)
\(488\) 0 0
\(489\) 298.628i 0.610691i
\(490\) 0 0
\(491\) −51.4480 −0.104782 −0.0523910 0.998627i \(-0.516684\pi\)
−0.0523910 + 0.998627i \(0.516684\pi\)
\(492\) 0 0
\(493\) 2.25566i 0.00457538i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 390.198 396.745i 0.785106 0.798279i
\(498\) 0 0
\(499\) −541.199 −1.08457 −0.542284 0.840195i \(-0.682440\pi\)
−0.542284 + 0.840195i \(0.682440\pi\)
\(500\) 0 0
\(501\) 63.4860 0.126719
\(502\) 0 0
\(503\) 896.037i 1.78139i −0.454605 0.890693i \(-0.650220\pi\)
0.454605 0.890693i \(-0.349780\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 290.367i 0.572715i
\(508\) 0 0
\(509\) 70.0126i 0.137549i 0.997632 + 0.0687746i \(0.0219089\pi\)
−0.997632 + 0.0687746i \(0.978091\pi\)
\(510\) 0 0
\(511\) −312.048 306.899i −0.610661 0.600584i
\(512\) 0 0
\(513\) −84.7947 −0.165292
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 160.095i 0.309661i
\(518\) 0 0
\(519\) 107.242 0.206631
\(520\) 0 0
\(521\) 156.236i 0.299877i 0.988695 + 0.149938i \(0.0479075\pi\)
−0.988695 + 0.149938i \(0.952092\pi\)
\(522\) 0 0
\(523\) 186.792i 0.357155i −0.983926 0.178578i \(-0.942850\pi\)
0.983926 0.178578i \(-0.0571495\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 87.9855 0.166955
\(528\) 0 0
\(529\) −271.563 −0.513351
\(530\) 0 0
\(531\) 182.722i 0.344109i
\(532\) 0 0
\(533\) 45.5168 0.0853973
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 178.029i 0.331525i
\(538\) 0 0
\(539\) −2.87439 172.740i −0.00533283 0.320483i
\(540\) 0 0
\(541\) 0.599842 0.00110877 0.000554383 1.00000i \(-0.499824\pi\)
0.000554383 1.00000i \(0.499824\pi\)
\(542\) 0 0
\(543\) −77.1407 −0.142064
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 702.970 1.28514 0.642568 0.766228i \(-0.277869\pi\)
0.642568 + 0.766228i \(0.277869\pi\)
\(548\) 0 0
\(549\) 89.9784i 0.163895i
\(550\) 0 0
\(551\) 12.1756i 0.0220973i
\(552\) 0 0
\(553\) 561.078 570.492i 1.01461 1.03163i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −796.707 −1.43035 −0.715177 0.698944i \(-0.753654\pi\)
−0.715177 + 0.698944i \(0.753654\pi\)
\(558\) 0 0
\(559\) 31.5546i 0.0564483i
\(560\) 0 0
\(561\) 18.4624 0.0329098
\(562\) 0 0
\(563\) 251.122i 0.446043i 0.974814 + 0.223022i \(0.0715920\pi\)
−0.974814 + 0.223022i \(0.928408\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 44.1756 44.9168i 0.0779111 0.0792183i
\(568\) 0 0
\(569\) −298.888 −0.525287 −0.262644 0.964893i \(-0.584594\pi\)
−0.262644 + 0.964893i \(0.584594\pi\)
\(570\) 0 0
\(571\) −533.229 −0.933851 −0.466925 0.884297i \(-0.654638\pi\)
−0.466925 + 0.884297i \(0.654638\pi\)
\(572\) 0 0
\(573\) 198.299i 0.346071i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 909.660i 1.57653i 0.615334 + 0.788267i \(0.289021\pi\)
−0.615334 + 0.788267i \(0.710979\pi\)
\(578\) 0 0
\(579\) 225.129i 0.388824i
\(580\) 0 0
\(581\) −8.19549 8.06025i −0.0141058 0.0138731i
\(582\) 0 0
\(583\) −116.829 −0.200393
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 376.620i 0.641601i −0.947147 0.320801i \(-0.896048\pi\)
0.947147 0.320801i \(-0.103952\pi\)
\(588\) 0 0
\(589\) 474.929 0.806332
\(590\) 0 0
\(591\) 22.9018i 0.0387510i
\(592\) 0 0
\(593\) 347.411i 0.585853i −0.956135 0.292926i \(-0.905371\pi\)
0.956135 0.292926i \(-0.0946291\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 74.3118 0.124475
\(598\) 0 0
\(599\) −249.800 −0.417029 −0.208515 0.978019i \(-0.566863\pi\)
−0.208515 + 0.978019i \(0.566863\pi\)
\(600\) 0 0
\(601\) 1091.62i 1.81635i 0.418593 + 0.908174i \(0.362523\pi\)
−0.418593 + 0.908174i \(0.637477\pi\)
\(602\) 0 0
\(603\) 206.700 0.342786
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 218.884i 0.360599i 0.983612 + 0.180300i \(0.0577067\pi\)
−0.983612 + 0.180300i \(0.942293\pi\)
\(608\) 0 0
\(609\) 6.44958 + 6.34315i 0.0105904 + 0.0104157i
\(610\) 0 0
\(611\) 52.8905 0.0865638
\(612\) 0 0
\(613\) −498.607 −0.813389 −0.406694 0.913564i \(-0.633319\pi\)
−0.406694 + 0.913564i \(0.633319\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −705.265 −1.14306 −0.571528 0.820583i \(-0.693649\pi\)
−0.571528 + 0.820583i \(0.693649\pi\)
\(618\) 0 0
\(619\) 1065.24i 1.72090i 0.509536 + 0.860450i \(0.329817\pi\)
−0.509536 + 0.860450i \(0.670183\pi\)
\(620\) 0 0
\(621\) 83.3715i 0.134254i
\(622\) 0 0
\(623\) −180.061 177.089i −0.289022 0.284252i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 99.6565 0.158942
\(628\) 0 0
\(629\) 89.2949i 0.141963i
\(630\) 0 0
\(631\) −22.6799 −0.0359427 −0.0179714 0.999839i \(-0.505721\pi\)
−0.0179714 + 0.999839i \(0.505721\pi\)
\(632\) 0 0
\(633\) 617.338i 0.975258i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 57.0682 0.949612i 0.0895890 0.00149076i
\(638\) 0 0
\(639\) −238.488 −0.373220
\(640\) 0 0
\(641\) 737.987 1.15131 0.575653 0.817694i \(-0.304748\pi\)
0.575653 + 0.817694i \(0.304748\pi\)
\(642\) 0 0
\(643\) 1129.60i 1.75676i 0.477960 + 0.878381i \(0.341376\pi\)
−0.477960 + 0.878381i \(0.658624\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 78.4769i 0.121293i 0.998159 + 0.0606467i \(0.0193163\pi\)
−0.998159 + 0.0606467i \(0.980684\pi\)
\(648\) 0 0
\(649\) 214.747i 0.330890i
\(650\) 0 0
\(651\) −247.424 + 251.576i −0.380068 + 0.386445i
\(652\) 0 0
\(653\) −13.6361 −0.0208822 −0.0104411 0.999945i \(-0.503324\pi\)
−0.0104411 + 0.999945i \(0.503324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 187.576i 0.285503i
\(658\) 0 0
\(659\) −1028.83 −1.56120 −0.780601 0.625030i \(-0.785087\pi\)
−0.780601 + 0.625030i \(0.785087\pi\)
\(660\) 0 0
\(661\) 469.205i 0.709841i −0.934896 0.354921i \(-0.884508\pi\)
0.934896 0.354921i \(-0.115492\pi\)
\(662\) 0 0
\(663\) 6.09941i 0.00919971i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 11.9713 0.0179479
\(668\) 0 0
\(669\) −459.782 −0.687267
\(670\) 0 0
\(671\) 105.749i 0.157599i
\(672\) 0 0
\(673\) 784.695 1.16597 0.582983 0.812485i \(-0.301886\pi\)
0.582983 + 0.812485i \(0.301886\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1104.59i 1.63160i −0.578335 0.815799i \(-0.696297\pi\)
0.578335 0.815799i \(-0.303703\pi\)
\(678\) 0 0
\(679\) 419.276 + 412.357i 0.617490 + 0.607301i
\(680\) 0 0
\(681\) 424.931 0.623981
\(682\) 0 0
\(683\) 333.712 0.488597 0.244299 0.969700i \(-0.421442\pi\)
0.244299 + 0.969700i \(0.421442\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 572.700 0.833625
\(688\) 0 0
\(689\) 38.5968i 0.0560185i
\(690\) 0 0
\(691\) 1092.94i 1.58168i 0.612020 + 0.790842i \(0.290357\pi\)
−0.612020 + 0.790842i \(0.709643\pi\)
\(692\) 0 0
\(693\) −51.9182 + 52.7893i −0.0749180 + 0.0761750i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −118.136 −0.169492
\(698\) 0 0
\(699\) 560.691i 0.802133i
\(700\) 0 0
\(701\) −511.967 −0.730338 −0.365169 0.930941i \(-0.618989\pi\)
−0.365169 + 0.930941i \(0.618989\pi\)
\(702\) 0 0
\(703\) 481.997i 0.685629i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −782.848 769.930i −1.10728 1.08901i
\(708\) 0 0
\(709\) −879.130 −1.23996 −0.619979 0.784619i \(-0.712859\pi\)
−0.619979 + 0.784619i \(0.712859\pi\)
\(710\) 0 0
\(711\) −342.929 −0.482320
\(712\) 0 0
\(713\) 466.958i 0.654920i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 97.9053i 0.136549i
\(718\) 0 0
\(719\) 242.715i 0.337574i −0.985653 0.168787i \(-0.946015\pi\)
0.985653 0.168787i \(-0.0539849\pi\)
\(720\) 0 0
\(721\) −164.569 161.854i −0.228252 0.224485i
\(722\) 0 0
\(723\) 358.791 0.496253
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 147.548i 0.202955i −0.994838 0.101477i \(-0.967643\pi\)
0.994838 0.101477i \(-0.0323570\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 81.8981i 0.112036i
\(732\) 0 0
\(733\) 179.234i 0.244521i −0.992498 0.122260i \(-0.960986\pi\)
0.992498 0.122260i \(-0.0390143\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −242.928 −0.329617
\(738\) 0 0
\(739\) −643.114 −0.870249 −0.435124 0.900370i \(-0.643296\pi\)
−0.435124 + 0.900370i \(0.643296\pi\)
\(740\) 0 0
\(741\) 32.9235i 0.0444311i
\(742\) 0 0
\(743\) −155.874 −0.209791 −0.104895 0.994483i \(-0.533451\pi\)
−0.104895 + 0.994483i \(0.533451\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4.92641i 0.00659492i
\(748\) 0 0
\(749\) −790.787 + 804.055i −1.05579 + 1.07351i
\(750\) 0 0
\(751\) 72.5148 0.0965576 0.0482788 0.998834i \(-0.484626\pi\)
0.0482788 + 0.998834i \(0.484626\pi\)
\(752\) 0 0
\(753\) −506.523 −0.672674
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1413.10 −1.86671 −0.933354 0.358958i \(-0.883132\pi\)
−0.933354 + 0.358958i \(0.883132\pi\)
\(758\) 0 0
\(759\) 97.9838i 0.129096i
\(760\) 0 0
\(761\) 734.130i 0.964691i −0.875981 0.482345i \(-0.839785\pi\)
0.875981 0.482345i \(-0.160215\pi\)
\(762\) 0 0
\(763\) 805.004 818.511i 1.05505 1.07275i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 70.9460 0.0924980
\(768\) 0 0
\(769\) 1157.02i 1.50458i −0.658834 0.752288i \(-0.728950\pi\)
0.658834 0.752288i \(-0.271050\pi\)
\(770\) 0 0
\(771\) 332.908 0.431788
\(772\) 0 0
\(773\) 1207.99i 1.56273i 0.624076 + 0.781364i \(0.285476\pi\)
−0.624076 + 0.781364i \(0.714524\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −255.320 251.107i −0.328597 0.323174i
\(778\) 0 0
\(779\) −637.676 −0.818583
\(780\) 0 0
\(781\) 280.287 0.358882
\(782\) 0 0
\(783\) 3.87692i 0.00495136i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 945.463i 1.20135i 0.799493 + 0.600676i \(0.205102\pi\)
−0.799493 + 0.600676i \(0.794898\pi\)
\(788\) 0 0
\(789\) 171.728i 0.217653i
\(790\) 0 0
\(791\) −863.982 + 878.479i −1.09227 + 1.11059i
\(792\) 0 0
\(793\) −34.9361 −0.0440557
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 222.632i 0.279338i 0.990198 + 0.139669i \(0.0446039\pi\)
−0.990198 + 0.139669i \(0.955396\pi\)
\(798\) 0 0
\(799\) −137.274 −0.171807
\(800\) 0 0
\(801\) 108.236i 0.135127i
\(802\) 0 0
\(803\) 220.452i 0.274535i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 564.598 0.699626
\(808\) 0 0
\(809\) −189.617 −0.234385 −0.117192 0.993109i \(-0.537389\pi\)
−0.117192 + 0.993109i \(0.537389\pi\)
\(810\) 0 0
\(811\) 1586.30i 1.95598i 0.208648 + 0.977991i \(0.433094\pi\)
−0.208648 + 0.977991i \(0.566906\pi\)
\(812\) 0 0
\(813\) 243.013 0.298909
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 442.070i 0.541090i
\(818\) 0 0
\(819\) −17.4400 17.1522i −0.0212942 0.0209428i
\(820\) 0 0
\(821\) 1281.41 1.56079 0.780393 0.625289i \(-0.215019\pi\)
0.780393 + 0.625289i \(0.215019\pi\)
\(822\) 0 0
\(823\) 1314.96 1.59776 0.798879 0.601491i \(-0.205427\pi\)
0.798879 + 0.601491i \(0.205427\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −885.845 −1.07115 −0.535577 0.844486i \(-0.679906\pi\)
−0.535577 + 0.844486i \(0.679906\pi\)
\(828\) 0 0
\(829\) 614.223i 0.740920i 0.928848 + 0.370460i \(0.120800\pi\)
−0.928848 + 0.370460i \(0.879200\pi\)
\(830\) 0 0
\(831\) 54.4475i 0.0655205i
\(832\) 0 0
\(833\) −148.117 + 2.46466i −0.177812 + 0.00295878i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 151.225 0.180675
\(838\) 0 0
\(839\) 1020.74i 1.21661i 0.793702 + 0.608307i \(0.208151\pi\)
−0.793702 + 0.608307i \(0.791849\pi\)
\(840\) 0 0
\(841\) −840.443 −0.999338
\(842\) 0 0
\(843\) 751.014i 0.890882i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −532.898 + 541.840i −0.629160 + 0.639716i
\(848\) 0 0
\(849\) −638.916 −0.752551
\(850\) 0 0
\(851\) −473.907 −0.556883
\(852\) 0 0
\(853\) 830.679i 0.973833i 0.873449 + 0.486916i \(0.161878\pi\)
−0.873449 + 0.486916i \(0.838122\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 605.854i 0.706947i −0.935445 0.353473i \(-0.885000\pi\)
0.935445 0.353473i \(-0.115000\pi\)
\(858\) 0 0
\(859\) 125.260i 0.145820i −0.997339 0.0729102i \(-0.976771\pi\)
0.997339 0.0729102i \(-0.0232287\pi\)
\(860\) 0 0
\(861\) 332.211 337.785i 0.385843 0.392317i
\(862\) 0 0
\(863\) −830.505 −0.962346 −0.481173 0.876626i \(-0.659789\pi\)
−0.481173 + 0.876626i \(0.659789\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 484.732i 0.559091i
\(868\) 0 0
\(869\) 403.034 0.463790
\(870\) 0 0
\(871\) 80.2558i 0.0921422i
\(872\) 0 0
\(873\) 252.032i 0.288696i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1312.26 1.49630 0.748152 0.663527i \(-0.230941\pi\)
0.748152 + 0.663527i \(0.230941\pi\)
\(878\) 0 0
\(879\) 45.3169 0.0515551
\(880\) 0 0
\(881\) 721.319i 0.818750i −0.912366 0.409375i \(-0.865747\pi\)
0.912366 0.409375i \(-0.134253\pi\)
\(882\) 0 0
\(883\) 720.310 0.815753 0.407877 0.913037i \(-0.366269\pi\)
0.407877 + 0.913037i \(0.366269\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 209.253i 0.235911i −0.993019 0.117956i \(-0.962366\pi\)
0.993019 0.117956i \(-0.0376341\pi\)
\(888\) 0 0
\(889\) 496.073 504.396i 0.558012 0.567375i
\(890\) 0 0
\(891\) 31.7322 0.0356142
\(892\) 0 0
\(893\) −740.980 −0.829764
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −32.3709 −0.0360879
\(898\) 0 0
\(899\) 21.7143i 0.0241539i
\(900\) 0 0
\(901\) 100.176i 0.111183i
\(902\) 0 0
\(903\) 234.170 + 230.306i 0.259324 + 0.255045i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −361.827 −0.398927 −0.199463 0.979905i \(-0.563920\pi\)
−0.199463 + 0.979905i \(0.563920\pi\)
\(908\) 0 0
\(909\) 470.579i 0.517688i
\(910\) 0 0
\(911\) −35.6156 −0.0390951 −0.0195476 0.999809i \(-0.506223\pi\)
−0.0195476 + 0.999809i \(0.506223\pi\)
\(912\) 0 0
\(913\) 5.78985i 0.00634156i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −226.970 223.225i −0.247514 0.243429i
\(918\) 0 0
\(919\) −497.186 −0.541008 −0.270504 0.962719i \(-0.587190\pi\)
−0.270504 + 0.962719i \(0.587190\pi\)
\(920\) 0 0
\(921\) 712.089 0.773170
\(922\) 0 0
\(923\) 92.5983i 0.100323i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 98.9246i 0.106715i
\(928\) 0 0
\(929\) 1484.19i 1.59763i 0.601579 + 0.798813i \(0.294538\pi\)
−0.601579 + 0.798813i \(0.705462\pi\)
\(930\) 0 0
\(931\) −799.508 + 13.3038i −0.858763 + 0.0142898i
\(932\) 0 0
\(933\) −593.311 −0.635918
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 93.5018i 0.0997885i −0.998755 0.0498942i \(-0.984112\pi\)
0.998755 0.0498942i \(-0.0158884\pi\)
\(938\) 0 0
\(939\) −31.0472 −0.0330641
\(940\) 0 0
\(941\) 774.652i 0.823222i 0.911360 + 0.411611i \(0.135034\pi\)
−0.911360 + 0.411611i \(0.864966\pi\)
\(942\) 0 0
\(943\) 626.973i 0.664871i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1007.23 1.06360 0.531798 0.846871i \(-0.321517\pi\)
0.531798 + 0.846871i \(0.321517\pi\)
\(948\) 0 0
\(949\) 72.8305 0.0767444
\(950\) 0 0
\(951\) 892.764i 0.938763i
\(952\) 0 0
\(953\) 995.073 1.04415 0.522074 0.852900i \(-0.325159\pi\)
0.522074 + 0.852900i \(0.325159\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.55642i 0.00476115i
\(958\) 0 0
\(959\) 586.085 595.919i 0.611142 0.621396i
\(960\) 0 0
\(961\) 113.999 0.118625
\(962\) 0 0
\(963\) 483.327 0.501897
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 799.010 0.826277 0.413138 0.910668i \(-0.364433\pi\)
0.413138 + 0.910668i \(0.364433\pi\)
\(968\) 0 0
\(969\) 85.4509i 0.0881846i
\(970\) 0 0
\(971\) 782.049i 0.805406i 0.915331 + 0.402703i \(0.131929\pi\)
−0.915331 + 0.402703i \(0.868071\pi\)
\(972\) 0 0
\(973\) −1229.40 1209.12i −1.26352 1.24267i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1377.93 1.41036 0.705182 0.709027i \(-0.250865\pi\)
0.705182 + 0.709027i \(0.250865\pi\)
\(978\) 0 0
\(979\) 127.207i 0.129936i
\(980\) 0 0
\(981\) −492.016 −0.501546
\(982\) 0 0
\(983\) 1443.06i 1.46801i 0.679142 + 0.734007i \(0.262352\pi\)
−0.679142 + 0.734007i \(0.737648\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 386.029 392.506i 0.391113 0.397676i
\(988\) 0 0
\(989\) 434.650 0.439485
\(990\) 0 0
\(991\) −654.050 −0.659989 −0.329995 0.943983i \(-0.607047\pi\)
−0.329995 + 0.943983i \(0.607047\pi\)
\(992\) 0 0
\(993\) 125.722i 0.126608i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1246.90i 1.25065i 0.780365 + 0.625324i \(0.215033\pi\)
−0.780365 + 0.625324i \(0.784967\pi\)
\(998\) 0 0
\(999\) 153.476i 0.153629i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.3.j.g.601.14 16
5.2 odd 4 420.3.p.a.349.15 yes 16
5.3 odd 4 420.3.p.a.349.1 16
5.4 even 2 inner 2100.3.j.g.601.3 16
7.6 odd 2 inner 2100.3.j.g.601.6 16
15.2 even 4 1260.3.p.e.1189.4 16
15.8 even 4 1260.3.p.e.1189.14 16
20.3 even 4 1680.3.bd.b.769.9 16
20.7 even 4 1680.3.bd.b.769.7 16
35.13 even 4 420.3.p.a.349.16 yes 16
35.27 even 4 420.3.p.a.349.2 yes 16
35.34 odd 2 inner 2100.3.j.g.601.11 16
105.62 odd 4 1260.3.p.e.1189.13 16
105.83 odd 4 1260.3.p.e.1189.3 16
140.27 odd 4 1680.3.bd.b.769.10 16
140.83 odd 4 1680.3.bd.b.769.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.3.p.a.349.1 16 5.3 odd 4
420.3.p.a.349.2 yes 16 35.27 even 4
420.3.p.a.349.15 yes 16 5.2 odd 4
420.3.p.a.349.16 yes 16 35.13 even 4
1260.3.p.e.1189.3 16 105.83 odd 4
1260.3.p.e.1189.4 16 15.2 even 4
1260.3.p.e.1189.13 16 105.62 odd 4
1260.3.p.e.1189.14 16 15.8 even 4
1680.3.bd.b.769.7 16 20.7 even 4
1680.3.bd.b.769.8 16 140.83 odd 4
1680.3.bd.b.769.9 16 20.3 even 4
1680.3.bd.b.769.10 16 140.27 odd 4
2100.3.j.g.601.3 16 5.4 even 2 inner
2100.3.j.g.601.6 16 7.6 odd 2 inner
2100.3.j.g.601.11 16 35.34 odd 2 inner
2100.3.j.g.601.14 16 1.1 even 1 trivial