Properties

Label 2-2100-7.6-c2-0-38
Degree $2$
Conductor $2100$
Sign $0.712 + 0.701i$
Analytic cond. $57.2208$
Root an. cond. $7.56444$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.73i·3-s + (4.90 − 4.99i)7-s − 2.99·9-s + 3.52·11-s + 1.16i·13-s − 3.02i·17-s − 16.3i·19-s + (8.64 + 8.50i)21-s + 16.0·23-s − 5.19i·27-s + 0.746·29-s + 29.1i·31-s + 6.10i·33-s − 29.5·37-s − 2.01·39-s + ⋯
L(s)  = 1  + 0.577i·3-s + (0.701 − 0.712i)7-s − 0.333·9-s + 0.320·11-s + 0.0896i·13-s − 0.177i·17-s − 0.858i·19-s + (0.411 + 0.404i)21-s + 0.697·23-s − 0.192i·27-s + 0.0257·29-s + 0.938i·31-s + 0.185i·33-s − 0.798·37-s − 0.0517·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.712 + 0.701i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $0.712 + 0.701i$
Analytic conductor: \(57.2208\)
Root analytic conductor: \(7.56444\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2100} (601, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2100,\ (\ :1),\ 0.712 + 0.701i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.011008866\)
\(L(\frac12)\) \(\approx\) \(2.011008866\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - 1.73iT \)
5 \( 1 \)
7 \( 1 + (-4.90 + 4.99i)T \)
good11 \( 1 - 3.52T + 121T^{2} \)
13 \( 1 - 1.16iT - 169T^{2} \)
17 \( 1 + 3.02iT - 289T^{2} \)
19 \( 1 + 16.3iT - 361T^{2} \)
23 \( 1 - 16.0T + 529T^{2} \)
29 \( 1 - 0.746T + 841T^{2} \)
31 \( 1 - 29.1iT - 961T^{2} \)
37 \( 1 + 29.5T + 1.36e3T^{2} \)
41 \( 1 + 39.0iT - 1.68e3T^{2} \)
43 \( 1 - 27.0T + 1.84e3T^{2} \)
47 \( 1 + 45.4iT - 2.20e3T^{2} \)
53 \( 1 + 33.1T + 2.80e3T^{2} \)
59 \( 1 + 60.9iT - 3.48e3T^{2} \)
61 \( 1 - 29.9iT - 3.72e3T^{2} \)
67 \( 1 + 68.8T + 4.48e3T^{2} \)
71 \( 1 - 79.4T + 5.04e3T^{2} \)
73 \( 1 + 62.5iT - 5.32e3T^{2} \)
79 \( 1 - 114.T + 6.24e3T^{2} \)
83 \( 1 + 1.64iT - 6.88e3T^{2} \)
89 \( 1 + 36.0iT - 7.92e3T^{2} \)
97 \( 1 - 84.0iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.907521999054178196583688083578, −8.141095935876025651511529563407, −7.20586270578818528780123127317, −6.63470664785132600102066997297, −5.38008222321933832749468033024, −4.80417492200766642503301906178, −3.97053045026559408181147114148, −3.08542634608459486342290959008, −1.80715589142943967350152592612, −0.55646078375958370122948858155, 1.10456635619813145106391111789, 2.02681900891427042301002452853, 3.01305180369874653584502451996, 4.15934283112644240122330321078, 5.14174776244515443925491668490, 5.90378793744123290205033248820, 6.60981839793412261796251392145, 7.65267551504313598673238138707, 8.116909936378158776433014500064, 8.954550948824076556162184341697

Graph of the $Z$-function along the critical line