Properties

Label 208.4.i.d.81.1
Level $208$
Weight $4$
Character 208.81
Analytic conductor $12.272$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,4,Mod(81,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.81"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 208.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2723972812\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.1
Root \(3.93273 - 6.81169i\) of defining polynomial
Character \(\chi\) \(=\) 208.81
Dual form 208.4.i.d.113.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.43273 - 7.67771i) q^{3} +3.86546 q^{5} +(-7.56727 + 13.1069i) q^{7} +(-25.7982 + 44.6838i) q^{9} +(27.0291 + 46.8158i) q^{11} +(-19.7982 + 42.4857i) q^{13} +(-17.1345 - 29.6779i) q^{15} +(61.9618 - 107.321i) q^{17} +(4.43273 - 7.67771i) q^{19} +134.175 q^{21} +(19.2982 + 33.4254i) q^{23} -110.058 q^{25} +218.058 q^{27} +(93.6928 + 162.281i) q^{29} +36.7710 q^{31} +(239.625 - 415.044i) q^{33} +(-29.2510 + 50.6642i) q^{35} +(160.769 + 278.460i) q^{37} +(413.953 - 36.3226i) q^{39} +(13.1546 + 22.7844i) q^{41} +(68.8182 - 119.197i) q^{43} +(-99.7219 + 172.723i) q^{45} +300.466 q^{47} +(56.9728 + 98.6799i) q^{49} -1098.64 q^{51} -260.135 q^{53} +(104.480 + 180.965i) q^{55} -78.5964 q^{57} +(-123.029 + 213.093i) q^{59} +(-45.6526 + 79.0727i) q^{61} +(-390.444 - 676.268i) q^{63} +(-76.5291 + 164.227i) q^{65} +(205.262 + 355.524i) q^{67} +(171.087 - 296.332i) q^{69} +(-212.222 + 367.579i) q^{71} -421.982 q^{73} +(487.858 + 844.995i) q^{75} -818.146 q^{77} -733.542 q^{79} +(-270.042 - 467.727i) q^{81} +616.843 q^{83} +(239.511 - 414.845i) q^{85} +(830.629 - 1438.69i) q^{87} +(103.585 + 179.415i) q^{89} +(-407.037 - 580.993i) q^{91} +(-162.996 - 282.317i) q^{93} +(17.1345 - 29.6779i) q^{95} +(370.742 - 642.144i) q^{97} -2789.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{3} - 14 q^{5} - 45 q^{7} - 59 q^{9} + 5 q^{11} - 35 q^{13} - 98 q^{15} + 130 q^{17} + 3 q^{19} - 82 q^{21} + 33 q^{23} - 234 q^{25} + 666 q^{27} + 198 q^{29} - 560 q^{31} + 767 q^{33} + 266 q^{35}+ \cdots - 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.43273 7.67771i −0.853079 1.47758i −0.878416 0.477898i \(-0.841399\pi\)
0.0253362 0.999679i \(-0.491934\pi\)
\(4\) 0 0
\(5\) 3.86546 0.345737 0.172869 0.984945i \(-0.444696\pi\)
0.172869 + 0.984945i \(0.444696\pi\)
\(6\) 0 0
\(7\) −7.56727 + 13.1069i −0.408594 + 0.707706i −0.994732 0.102505i \(-0.967314\pi\)
0.586138 + 0.810211i \(0.300648\pi\)
\(8\) 0 0
\(9\) −25.7982 + 44.6838i −0.955489 + 1.65495i
\(10\) 0 0
\(11\) 27.0291 + 46.8158i 0.740871 + 1.28323i 0.952099 + 0.305790i \(0.0989205\pi\)
−0.211228 + 0.977437i \(0.567746\pi\)
\(12\) 0 0
\(13\) −19.7982 + 42.4857i −0.422387 + 0.906416i
\(14\) 0 0
\(15\) −17.1345 29.6779i −0.294941 0.510853i
\(16\) 0 0
\(17\) 61.9618 107.321i 0.883997 1.53113i 0.0371386 0.999310i \(-0.488176\pi\)
0.846859 0.531818i \(-0.178491\pi\)
\(18\) 0 0
\(19\) 4.43273 7.67771i 0.0535231 0.0927046i −0.838023 0.545636i \(-0.816288\pi\)
0.891546 + 0.452931i \(0.149622\pi\)
\(20\) 0 0
\(21\) 134.175 1.39425
\(22\) 0 0
\(23\) 19.2982 + 33.4254i 0.174954 + 0.303030i 0.940145 0.340773i \(-0.110689\pi\)
−0.765191 + 0.643803i \(0.777356\pi\)
\(24\) 0 0
\(25\) −110.058 −0.880466
\(26\) 0 0
\(27\) 218.058 1.55427
\(28\) 0 0
\(29\) 93.6928 + 162.281i 0.599942 + 1.03913i 0.992829 + 0.119543i \(0.0381429\pi\)
−0.392887 + 0.919587i \(0.628524\pi\)
\(30\) 0 0
\(31\) 36.7710 0.213041 0.106521 0.994311i \(-0.466029\pi\)
0.106521 + 0.994311i \(0.466029\pi\)
\(32\) 0 0
\(33\) 239.625 415.044i 1.26404 2.18939i
\(34\) 0 0
\(35\) −29.2510 + 50.6642i −0.141266 + 0.244680i
\(36\) 0 0
\(37\) 160.769 + 278.460i 0.714332 + 1.23726i 0.963217 + 0.268726i \(0.0866025\pi\)
−0.248885 + 0.968533i \(0.580064\pi\)
\(38\) 0 0
\(39\) 413.953 36.3226i 1.69963 0.149135i
\(40\) 0 0
\(41\) 13.1546 + 22.7844i 0.0501074 + 0.0867886i 0.889991 0.455978i \(-0.150710\pi\)
−0.839884 + 0.542766i \(0.817377\pi\)
\(42\) 0 0
\(43\) 68.8182 119.197i 0.244062 0.422729i −0.717805 0.696244i \(-0.754853\pi\)
0.961868 + 0.273515i \(0.0881865\pi\)
\(44\) 0 0
\(45\) −99.7219 + 172.723i −0.330348 + 0.572179i
\(46\) 0 0
\(47\) 300.466 0.932499 0.466249 0.884653i \(-0.345605\pi\)
0.466249 + 0.884653i \(0.345605\pi\)
\(48\) 0 0
\(49\) 56.9728 + 98.6799i 0.166102 + 0.287696i
\(50\) 0 0
\(51\) −1098.64 −3.01648
\(52\) 0 0
\(53\) −260.135 −0.674193 −0.337096 0.941470i \(-0.609445\pi\)
−0.337096 + 0.941470i \(0.609445\pi\)
\(54\) 0 0
\(55\) 104.480 + 180.965i 0.256147 + 0.443659i
\(56\) 0 0
\(57\) −78.5964 −0.182638
\(58\) 0 0
\(59\) −123.029 + 213.093i −0.271475 + 0.470209i −0.969240 0.246118i \(-0.920845\pi\)
0.697765 + 0.716327i \(0.254178\pi\)
\(60\) 0 0
\(61\) −45.6526 + 79.0727i −0.0958233 + 0.165971i −0.909952 0.414714i \(-0.863882\pi\)
0.814129 + 0.580685i \(0.197215\pi\)
\(62\) 0 0
\(63\) −390.444 676.268i −0.780814 1.35241i
\(64\) 0 0
\(65\) −76.5291 + 164.227i −0.146035 + 0.313382i
\(66\) 0 0
\(67\) 205.262 + 355.524i 0.374280 + 0.648272i 0.990219 0.139522i \(-0.0445566\pi\)
−0.615939 + 0.787794i \(0.711223\pi\)
\(68\) 0 0
\(69\) 171.087 296.332i 0.298500 0.517017i
\(70\) 0 0
\(71\) −212.222 + 367.579i −0.354734 + 0.614417i −0.987072 0.160275i \(-0.948762\pi\)
0.632339 + 0.774692i \(0.282095\pi\)
\(72\) 0 0
\(73\) −421.982 −0.676565 −0.338283 0.941045i \(-0.609846\pi\)
−0.338283 + 0.941045i \(0.609846\pi\)
\(74\) 0 0
\(75\) 487.858 + 844.995i 0.751107 + 1.30096i
\(76\) 0 0
\(77\) −818.146 −1.21086
\(78\) 0 0
\(79\) −733.542 −1.04468 −0.522341 0.852736i \(-0.674941\pi\)
−0.522341 + 0.852736i \(0.674941\pi\)
\(80\) 0 0
\(81\) −270.042 467.727i −0.370428 0.641600i
\(82\) 0 0
\(83\) 616.843 0.815751 0.407876 0.913037i \(-0.366270\pi\)
0.407876 + 0.913037i \(0.366270\pi\)
\(84\) 0 0
\(85\) 239.511 414.845i 0.305631 0.529368i
\(86\) 0 0
\(87\) 830.629 1438.69i 1.02360 1.77292i
\(88\) 0 0
\(89\) 103.585 + 179.415i 0.123371 + 0.213685i 0.921095 0.389338i \(-0.127296\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(90\) 0 0
\(91\) −407.037 580.993i −0.468891 0.669282i
\(92\) 0 0
\(93\) −162.996 282.317i −0.181741 0.314785i
\(94\) 0 0
\(95\) 17.1345 29.6779i 0.0185049 0.0320514i
\(96\) 0 0
\(97\) 370.742 642.144i 0.388074 0.672163i −0.604117 0.796896i \(-0.706474\pi\)
0.992190 + 0.124733i \(0.0398073\pi\)
\(98\) 0 0
\(99\) −2789.21 −2.83158
\(100\) 0 0
\(101\) 206.653 + 357.933i 0.203591 + 0.352630i 0.949683 0.313213i \(-0.101405\pi\)
−0.746092 + 0.665843i \(0.768072\pi\)
\(102\) 0 0
\(103\) 3.76712 0.00360374 0.00180187 0.999998i \(-0.499426\pi\)
0.00180187 + 0.999998i \(0.499426\pi\)
\(104\) 0 0
\(105\) 518.647 0.482045
\(106\) 0 0
\(107\) 56.9127 + 98.5756i 0.0514201 + 0.0890623i 0.890590 0.454807i \(-0.150292\pi\)
−0.839170 + 0.543870i \(0.816959\pi\)
\(108\) 0 0
\(109\) 1935.63 1.70092 0.850458 0.526044i \(-0.176325\pi\)
0.850458 + 0.526044i \(0.176325\pi\)
\(110\) 0 0
\(111\) 1425.29 2468.68i 1.21876 2.11096i
\(112\) 0 0
\(113\) −949.391 + 1644.39i −0.790365 + 1.36895i 0.135376 + 0.990794i \(0.456776\pi\)
−0.925741 + 0.378158i \(0.876558\pi\)
\(114\) 0 0
\(115\) 74.5964 + 129.205i 0.0604882 + 0.104769i
\(116\) 0 0
\(117\) −1387.66 1980.71i −1.09649 1.56510i
\(118\) 0 0
\(119\) 937.764 + 1624.25i 0.722392 + 1.25122i
\(120\) 0 0
\(121\) −795.646 + 1378.10i −0.597780 + 1.03539i
\(122\) 0 0
\(123\) 116.622 201.994i 0.0854912 0.148075i
\(124\) 0 0
\(125\) −908.608 −0.650147
\(126\) 0 0
\(127\) 122.302 + 211.833i 0.0854532 + 0.148009i 0.905584 0.424166i \(-0.139433\pi\)
−0.820131 + 0.572176i \(0.806100\pi\)
\(128\) 0 0
\(129\) −1220.21 −0.832818
\(130\) 0 0
\(131\) −1615.62 −1.07754 −0.538769 0.842453i \(-0.681111\pi\)
−0.538769 + 0.842453i \(0.681111\pi\)
\(132\) 0 0
\(133\) 67.0873 + 116.199i 0.0437384 + 0.0757572i
\(134\) 0 0
\(135\) 842.895 0.537369
\(136\) 0 0
\(137\) 1150.97 1993.54i 0.717769 1.24321i −0.244113 0.969747i \(-0.578497\pi\)
0.961882 0.273465i \(-0.0881698\pi\)
\(138\) 0 0
\(139\) −1404.53 + 2432.73i −0.857058 + 1.48447i 0.0176640 + 0.999844i \(0.494377\pi\)
−0.874722 + 0.484625i \(0.838956\pi\)
\(140\) 0 0
\(141\) −1331.88 2306.89i −0.795495 1.37784i
\(142\) 0 0
\(143\) −2524.13 + 221.482i −1.47607 + 0.129519i
\(144\) 0 0
\(145\) 362.166 + 627.289i 0.207422 + 0.359266i
\(146\) 0 0
\(147\) 505.091 874.842i 0.283396 0.490856i
\(148\) 0 0
\(149\) −1266.58 + 2193.79i −0.696393 + 1.20619i 0.273315 + 0.961925i \(0.411880\pi\)
−0.969709 + 0.244264i \(0.921454\pi\)
\(150\) 0 0
\(151\) 2391.10 1.28864 0.644321 0.764755i \(-0.277140\pi\)
0.644321 + 0.764755i \(0.277140\pi\)
\(152\) 0 0
\(153\) 3197.01 + 5537.38i 1.68930 + 2.92595i
\(154\) 0 0
\(155\) 142.137 0.0736562
\(156\) 0 0
\(157\) 1927.49 0.979811 0.489905 0.871776i \(-0.337031\pi\)
0.489905 + 0.871776i \(0.337031\pi\)
\(158\) 0 0
\(159\) 1153.11 + 1997.24i 0.575140 + 0.996172i
\(160\) 0 0
\(161\) −584.138 −0.285941
\(162\) 0 0
\(163\) −1109.26 + 1921.30i −0.533031 + 0.923237i 0.466225 + 0.884666i \(0.345614\pi\)
−0.999256 + 0.0385709i \(0.987719\pi\)
\(164\) 0 0
\(165\) 926.263 1604.33i 0.437027 0.756953i
\(166\) 0 0
\(167\) −754.135 1306.20i −0.349442 0.605251i 0.636709 0.771104i \(-0.280295\pi\)
−0.986150 + 0.165854i \(0.946962\pi\)
\(168\) 0 0
\(169\) −1413.06 1682.28i −0.643179 0.765716i
\(170\) 0 0
\(171\) 228.713 + 396.142i 0.102281 + 0.177156i
\(172\) 0 0
\(173\) 853.236 1477.85i 0.374973 0.649472i −0.615350 0.788254i \(-0.710985\pi\)
0.990323 + 0.138782i \(0.0443186\pi\)
\(174\) 0 0
\(175\) 832.840 1442.52i 0.359753 0.623111i
\(176\) 0 0
\(177\) 2181.42 0.926359
\(178\) 0 0
\(179\) 297.611 + 515.478i 0.124271 + 0.215244i 0.921448 0.388502i \(-0.127007\pi\)
−0.797177 + 0.603746i \(0.793674\pi\)
\(180\) 0 0
\(181\) 403.006 0.165498 0.0827492 0.996570i \(-0.473630\pi\)
0.0827492 + 0.996570i \(0.473630\pi\)
\(182\) 0 0
\(183\) 809.463 0.326980
\(184\) 0 0
\(185\) 621.446 + 1076.38i 0.246971 + 0.427766i
\(186\) 0 0
\(187\) 6699.09 2.61971
\(188\) 0 0
\(189\) −1650.11 + 2858.07i −0.635066 + 1.09997i
\(190\) 0 0
\(191\) −306.848 + 531.476i −0.116245 + 0.201342i −0.918277 0.395939i \(-0.870419\pi\)
0.802032 + 0.597281i \(0.203752\pi\)
\(192\) 0 0
\(193\) −1002.66 1736.67i −0.373955 0.647709i 0.616215 0.787578i \(-0.288665\pi\)
−0.990170 + 0.139869i \(0.955332\pi\)
\(194\) 0 0
\(195\) 1600.12 140.404i 0.587625 0.0515616i
\(196\) 0 0
\(197\) 278.750 + 482.809i 0.100813 + 0.174613i 0.912020 0.410146i \(-0.134522\pi\)
−0.811207 + 0.584759i \(0.801189\pi\)
\(198\) 0 0
\(199\) 2766.99 4792.56i 0.985661 1.70721i 0.346698 0.937977i \(-0.387303\pi\)
0.638963 0.769237i \(-0.279364\pi\)
\(200\) 0 0
\(201\) 1819.74 3151.89i 0.638581 1.10605i
\(202\) 0 0
\(203\) −2835.99 −0.980531
\(204\) 0 0
\(205\) 50.8486 + 88.0723i 0.0173240 + 0.0300060i
\(206\) 0 0
\(207\) −1991.43 −0.668668
\(208\) 0 0
\(209\) 479.251 0.158615
\(210\) 0 0
\(211\) −2341.87 4056.23i −0.764079 1.32342i −0.940732 0.339151i \(-0.889860\pi\)
0.176653 0.984273i \(-0.443473\pi\)
\(212\) 0 0
\(213\) 3762.89 1.21046
\(214\) 0 0
\(215\) 266.014 460.750i 0.0843815 0.146153i
\(216\) 0 0
\(217\) −278.256 + 481.954i −0.0870473 + 0.150770i
\(218\) 0 0
\(219\) 1870.53 + 3239.86i 0.577164 + 0.999677i
\(220\) 0 0
\(221\) 3332.87 + 4757.25i 1.01445 + 1.44800i
\(222\) 0 0
\(223\) −1191.93 2064.48i −0.357926 0.619947i 0.629688 0.776848i \(-0.283183\pi\)
−0.987614 + 0.156902i \(0.949849\pi\)
\(224\) 0 0
\(225\) 2839.30 4917.82i 0.841275 1.45713i
\(226\) 0 0
\(227\) −777.037 + 1345.87i −0.227197 + 0.393517i −0.956976 0.290166i \(-0.906290\pi\)
0.729779 + 0.683683i \(0.239623\pi\)
\(228\) 0 0
\(229\) −2915.60 −0.841346 −0.420673 0.907212i \(-0.638206\pi\)
−0.420673 + 0.907212i \(0.638206\pi\)
\(230\) 0 0
\(231\) 3626.62 + 6281.49i 1.03296 + 1.78914i
\(232\) 0 0
\(233\) −4233.93 −1.19045 −0.595223 0.803561i \(-0.702936\pi\)
−0.595223 + 0.803561i \(0.702936\pi\)
\(234\) 0 0
\(235\) 1161.44 0.322400
\(236\) 0 0
\(237\) 3251.59 + 5631.93i 0.891197 + 1.54360i
\(238\) 0 0
\(239\) −2372.55 −0.642124 −0.321062 0.947058i \(-0.604040\pi\)
−0.321062 + 0.947058i \(0.604040\pi\)
\(240\) 0 0
\(241\) −162.882 + 282.119i −0.0435358 + 0.0754062i −0.886972 0.461823i \(-0.847196\pi\)
0.843436 + 0.537229i \(0.180529\pi\)
\(242\) 0 0
\(243\) 549.739 952.175i 0.145127 0.251367i
\(244\) 0 0
\(245\) 220.226 + 381.443i 0.0574275 + 0.0994674i
\(246\) 0 0
\(247\) 238.433 + 340.332i 0.0614215 + 0.0876714i
\(248\) 0 0
\(249\) −2734.30 4735.95i −0.695901 1.20534i
\(250\) 0 0
\(251\) −1300.88 + 2253.20i −0.327136 + 0.566616i −0.981942 0.189181i \(-0.939417\pi\)
0.654806 + 0.755797i \(0.272750\pi\)
\(252\) 0 0
\(253\) −1043.23 + 1806.92i −0.259237 + 0.449012i
\(254\) 0 0
\(255\) −4246.75 −1.04291
\(256\) 0 0
\(257\) −2108.55 3652.11i −0.511781 0.886430i −0.999907 0.0136569i \(-0.995653\pi\)
0.488126 0.872773i \(-0.337681\pi\)
\(258\) 0 0
\(259\) −4866.33 −1.16749
\(260\) 0 0
\(261\) −9668.41 −2.29295
\(262\) 0 0
\(263\) 3237.16 + 5606.93i 0.758981 + 1.31459i 0.943371 + 0.331740i \(0.107636\pi\)
−0.184390 + 0.982853i \(0.559031\pi\)
\(264\) 0 0
\(265\) −1005.54 −0.233094
\(266\) 0 0
\(267\) 918.332 1590.60i 0.210491 0.364580i
\(268\) 0 0
\(269\) 650.517 1126.73i 0.147445 0.255382i −0.782837 0.622226i \(-0.786228\pi\)
0.930282 + 0.366844i \(0.119562\pi\)
\(270\) 0 0
\(271\) −1539.82 2667.05i −0.345157 0.597829i 0.640225 0.768187i \(-0.278841\pi\)
−0.985382 + 0.170358i \(0.945508\pi\)
\(272\) 0 0
\(273\) −2656.42 + 5700.50i −0.588914 + 1.26377i
\(274\) 0 0
\(275\) −2974.78 5152.46i −0.652312 1.12984i
\(276\) 0 0
\(277\) 3143.95 5445.48i 0.681955 1.18118i −0.292428 0.956288i \(-0.594463\pi\)
0.974383 0.224894i \(-0.0722034\pi\)
\(278\) 0 0
\(279\) −948.626 + 1643.07i −0.203558 + 0.352573i
\(280\) 0 0
\(281\) −3226.00 −0.684864 −0.342432 0.939543i \(-0.611251\pi\)
−0.342432 + 0.939543i \(0.611251\pi\)
\(282\) 0 0
\(283\) −193.292 334.791i −0.0406007 0.0703225i 0.845011 0.534749i \(-0.179594\pi\)
−0.885612 + 0.464426i \(0.846261\pi\)
\(284\) 0 0
\(285\) −303.811 −0.0631446
\(286\) 0 0
\(287\) −398.178 −0.0818944
\(288\) 0 0
\(289\) −5222.04 9044.84i −1.06290 1.84100i
\(290\) 0 0
\(291\) −6573.60 −1.32423
\(292\) 0 0
\(293\) −1096.41 + 1899.04i −0.218611 + 0.378645i −0.954384 0.298583i \(-0.903486\pi\)
0.735773 + 0.677229i \(0.236819\pi\)
\(294\) 0 0
\(295\) −475.564 + 823.701i −0.0938590 + 0.162569i
\(296\) 0 0
\(297\) 5893.92 + 10208.6i 1.15151 + 1.99448i
\(298\) 0 0
\(299\) −1802.17 + 158.133i −0.348569 + 0.0305855i
\(300\) 0 0
\(301\) 1041.53 + 1803.99i 0.199445 + 0.345449i
\(302\) 0 0
\(303\) 1832.07 3173.24i 0.347359 0.601643i
\(304\) 0 0
\(305\) −176.468 + 305.652i −0.0331297 + 0.0573823i
\(306\) 0 0
\(307\) 8083.96 1.50285 0.751427 0.659817i \(-0.229366\pi\)
0.751427 + 0.659817i \(0.229366\pi\)
\(308\) 0 0
\(309\) −16.6986 28.9229i −0.00307428 0.00532481i
\(310\) 0 0
\(311\) −244.409 −0.0445632 −0.0222816 0.999752i \(-0.507093\pi\)
−0.0222816 + 0.999752i \(0.507093\pi\)
\(312\) 0 0
\(313\) 4444.13 0.802546 0.401273 0.915958i \(-0.368568\pi\)
0.401273 + 0.915958i \(0.368568\pi\)
\(314\) 0 0
\(315\) −1509.24 2614.09i −0.269957 0.467578i
\(316\) 0 0
\(317\) 930.597 0.164882 0.0824409 0.996596i \(-0.473728\pi\)
0.0824409 + 0.996596i \(0.473728\pi\)
\(318\) 0 0
\(319\) −5064.86 + 8772.60i −0.888959 + 1.53972i
\(320\) 0 0
\(321\) 504.557 873.918i 0.0877309 0.151954i
\(322\) 0 0
\(323\) −549.320 951.451i −0.0946285 0.163901i
\(324\) 0 0
\(325\) 2178.95 4675.90i 0.371897 0.798068i
\(326\) 0 0
\(327\) −8580.13 14861.2i −1.45102 2.51323i
\(328\) 0 0
\(329\) −2273.71 + 3938.17i −0.381014 + 0.659935i
\(330\) 0 0
\(331\) 2413.68 4180.61i 0.400809 0.694221i −0.593015 0.805191i \(-0.702063\pi\)
0.993824 + 0.110970i \(0.0353958\pi\)
\(332\) 0 0
\(333\) −16590.2 −2.73014
\(334\) 0 0
\(335\) 793.432 + 1374.26i 0.129402 + 0.224132i
\(336\) 0 0
\(337\) 10709.7 1.73115 0.865573 0.500782i \(-0.166954\pi\)
0.865573 + 0.500782i \(0.166954\pi\)
\(338\) 0 0
\(339\) 16833.6 2.69698
\(340\) 0 0
\(341\) 993.888 + 1721.47i 0.157836 + 0.273380i
\(342\) 0 0
\(343\) −6915.66 −1.08866
\(344\) 0 0
\(345\) 661.331 1145.46i 0.103203 0.178752i
\(346\) 0 0
\(347\) 3200.54 5543.51i 0.495142 0.857611i −0.504842 0.863211i \(-0.668449\pi\)
0.999984 + 0.00560066i \(0.00178275\pi\)
\(348\) 0 0
\(349\) 1215.01 + 2104.46i 0.186355 + 0.322777i 0.944032 0.329853i \(-0.106999\pi\)
−0.757677 + 0.652630i \(0.773666\pi\)
\(350\) 0 0
\(351\) −4317.16 + 9264.35i −0.656504 + 1.40882i
\(352\) 0 0
\(353\) −4040.01 6997.51i −0.609145 1.05507i −0.991382 0.131006i \(-0.958179\pi\)
0.382237 0.924064i \(-0.375154\pi\)
\(354\) 0 0
\(355\) −820.335 + 1420.86i −0.122645 + 0.212427i
\(356\) 0 0
\(357\) 8313.71 14399.8i 1.23252 2.13478i
\(358\) 0 0
\(359\) −8715.23 −1.28126 −0.640630 0.767850i \(-0.721327\pi\)
−0.640630 + 0.767850i \(0.721327\pi\)
\(360\) 0 0
\(361\) 3390.20 + 5872.00i 0.494271 + 0.856102i
\(362\) 0 0
\(363\) 14107.5 2.03982
\(364\) 0 0
\(365\) −1631.15 −0.233914
\(366\) 0 0
\(367\) 1410.44 + 2442.95i 0.200611 + 0.347469i 0.948726 0.316101i \(-0.102374\pi\)
−0.748114 + 0.663570i \(0.769041\pi\)
\(368\) 0 0
\(369\) −1357.46 −0.191508
\(370\) 0 0
\(371\) 1968.51 3409.56i 0.275471 0.477130i
\(372\) 0 0
\(373\) 6464.84 11197.4i 0.897418 1.55437i 0.0666351 0.997777i \(-0.478774\pi\)
0.830783 0.556596i \(-0.187893\pi\)
\(374\) 0 0
\(375\) 4027.61 + 6976.03i 0.554627 + 0.960642i
\(376\) 0 0
\(377\) −8749.55 + 767.737i −1.19529 + 0.104882i
\(378\) 0 0
\(379\) −1144.02 1981.51i −0.155052 0.268557i 0.778026 0.628232i \(-0.216221\pi\)
−0.933078 + 0.359675i \(0.882888\pi\)
\(380\) 0 0
\(381\) 1084.26 1878.00i 0.145797 0.252527i
\(382\) 0 0
\(383\) 6078.10 10527.6i 0.810904 1.40453i −0.101328 0.994853i \(-0.532309\pi\)
0.912232 0.409674i \(-0.134358\pi\)
\(384\) 0 0
\(385\) −3162.51 −0.418640
\(386\) 0 0
\(387\) 3550.77 + 6150.12i 0.466398 + 0.807825i
\(388\) 0 0
\(389\) −1479.71 −0.192864 −0.0964322 0.995340i \(-0.530743\pi\)
−0.0964322 + 0.995340i \(0.530743\pi\)
\(390\) 0 0
\(391\) 4783.01 0.618637
\(392\) 0 0
\(393\) 7161.62 + 12404.3i 0.919226 + 1.59215i
\(394\) 0 0
\(395\) −2835.48 −0.361186
\(396\) 0 0
\(397\) −7635.63 + 13225.3i −0.965292 + 1.67194i −0.256465 + 0.966554i \(0.582558\pi\)
−0.708827 + 0.705382i \(0.750775\pi\)
\(398\) 0 0
\(399\) 594.760 1030.15i 0.0746247 0.129254i
\(400\) 0 0
\(401\) −1282.27 2220.96i −0.159685 0.276582i 0.775070 0.631875i \(-0.217714\pi\)
−0.934755 + 0.355293i \(0.884381\pi\)
\(402\) 0 0
\(403\) −728.000 + 1562.24i −0.0899858 + 0.193104i
\(404\) 0 0
\(405\) −1043.84 1807.98i −0.128071 0.221825i
\(406\) 0 0
\(407\) −8690.89 + 15053.1i −1.05846 + 1.83330i
\(408\) 0 0
\(409\) −526.235 + 911.465i −0.0636201 + 0.110193i −0.896081 0.443890i \(-0.853598\pi\)
0.832461 + 0.554084i \(0.186931\pi\)
\(410\) 0 0
\(411\) −20407.8 −2.44925
\(412\) 0 0
\(413\) −1861.99 3225.06i −0.221846 0.384249i
\(414\) 0 0
\(415\) 2384.38 0.282036
\(416\) 0 0
\(417\) 24903.7 2.92455
\(418\) 0 0
\(419\) 4355.81 + 7544.48i 0.507864 + 0.879647i 0.999959 + 0.00910485i \(0.00289820\pi\)
−0.492094 + 0.870542i \(0.663768\pi\)
\(420\) 0 0
\(421\) 213.335 0.0246967 0.0123484 0.999924i \(-0.496069\pi\)
0.0123484 + 0.999924i \(0.496069\pi\)
\(422\) 0 0
\(423\) −7751.47 + 13425.9i −0.890992 + 1.54324i
\(424\) 0 0
\(425\) −6819.41 + 11811.6i −0.778329 + 1.34811i
\(426\) 0 0
\(427\) −690.932 1196.73i −0.0783057 0.135629i
\(428\) 0 0
\(429\) 12889.2 + 18397.8i 1.45058 + 2.07052i
\(430\) 0 0
\(431\) 4476.72 + 7753.91i 0.500316 + 0.866573i 1.00000 0.000364932i \(0.000116162\pi\)
−0.499684 + 0.866208i \(0.666551\pi\)
\(432\) 0 0
\(433\) −2930.72 + 5076.16i −0.325269 + 0.563382i −0.981567 0.191120i \(-0.938788\pi\)
0.656298 + 0.754502i \(0.272122\pi\)
\(434\) 0 0
\(435\) 3210.76 5561.21i 0.353895 0.612964i
\(436\) 0 0
\(437\) 342.175 0.0374564
\(438\) 0 0
\(439\) −5221.77 9044.36i −0.567702 0.983289i −0.996793 0.0800275i \(-0.974499\pi\)
0.429090 0.903262i \(-0.358834\pi\)
\(440\) 0 0
\(441\) −5879.19 −0.634833
\(442\) 0 0
\(443\) −8789.73 −0.942692 −0.471346 0.881948i \(-0.656232\pi\)
−0.471346 + 0.881948i \(0.656232\pi\)
\(444\) 0 0
\(445\) 400.405 + 693.522i 0.0426540 + 0.0738789i
\(446\) 0 0
\(447\) 22457.7 2.37632
\(448\) 0 0
\(449\) −4318.06 + 7479.09i −0.453857 + 0.786103i −0.998622 0.0524857i \(-0.983286\pi\)
0.544765 + 0.838589i \(0.316619\pi\)
\(450\) 0 0
\(451\) −711.114 + 1231.69i −0.0742463 + 0.128598i
\(452\) 0 0
\(453\) −10599.1 18358.2i −1.09931 1.90407i
\(454\) 0 0
\(455\) −1573.38 2245.81i −0.162113 0.231396i
\(456\) 0 0
\(457\) −2438.48 4223.57i −0.249600 0.432320i 0.713815 0.700335i \(-0.246966\pi\)
−0.963415 + 0.268014i \(0.913633\pi\)
\(458\) 0 0
\(459\) 13511.3 23402.2i 1.37397 2.37979i
\(460\) 0 0
\(461\) 5901.96 10222.5i 0.596272 1.03277i −0.397094 0.917778i \(-0.629981\pi\)
0.993366 0.114996i \(-0.0366855\pi\)
\(462\) 0 0
\(463\) 4797.53 0.481555 0.240777 0.970580i \(-0.422598\pi\)
0.240777 + 0.970580i \(0.422598\pi\)
\(464\) 0 0
\(465\) −630.055 1091.29i −0.0628346 0.108833i
\(466\) 0 0
\(467\) 13188.7 1.30686 0.653428 0.756989i \(-0.273330\pi\)
0.653428 + 0.756989i \(0.273330\pi\)
\(468\) 0 0
\(469\) −6213.09 −0.611714
\(470\) 0 0
\(471\) −8544.03 14798.7i −0.835856 1.44775i
\(472\) 0 0
\(473\) 7440.38 0.723275
\(474\) 0 0
\(475\) −487.858 + 844.995i −0.0471252 + 0.0816233i
\(476\) 0 0
\(477\) 6711.00 11623.8i 0.644184 1.11576i
\(478\) 0 0
\(479\) 9024.41 + 15630.7i 0.860827 + 1.49100i 0.871132 + 0.491049i \(0.163386\pi\)
−0.0103054 + 0.999947i \(0.503280\pi\)
\(480\) 0 0
\(481\) −15013.5 + 1317.37i −1.42320 + 0.124879i
\(482\) 0 0
\(483\) 2589.33 + 4484.85i 0.243931 + 0.422500i
\(484\) 0 0
\(485\) 1433.09 2482.18i 0.134171 0.232392i
\(486\) 0 0
\(487\) 5750.62 9960.37i 0.535084 0.926792i −0.464076 0.885796i \(-0.653613\pi\)
0.999159 0.0409963i \(-0.0130532\pi\)
\(488\) 0 0
\(489\) 19668.2 1.81887
\(490\) 0 0
\(491\) −2000.33 3464.67i −0.183856 0.318449i 0.759334 0.650701i \(-0.225525\pi\)
−0.943191 + 0.332252i \(0.892191\pi\)
\(492\) 0 0
\(493\) 23221.5 2.12139
\(494\) 0 0
\(495\) −10781.6 −0.978981
\(496\) 0 0
\(497\) −3211.88 5563.14i −0.289884 0.502094i
\(498\) 0 0
\(499\) 8322.72 0.746645 0.373323 0.927702i \(-0.378218\pi\)
0.373323 + 0.927702i \(0.378218\pi\)
\(500\) 0 0
\(501\) −6685.76 + 11580.1i −0.596203 + 1.03265i
\(502\) 0 0
\(503\) −3563.74 + 6172.58i −0.315903 + 0.547160i −0.979629 0.200816i \(-0.935641\pi\)
0.663726 + 0.747976i \(0.268974\pi\)
\(504\) 0 0
\(505\) 798.808 + 1383.58i 0.0703890 + 0.121917i
\(506\) 0 0
\(507\) −6652.32 + 18306.2i −0.582722 + 1.60356i
\(508\) 0 0
\(509\) 7174.46 + 12426.5i 0.624759 + 1.08211i 0.988587 + 0.150649i \(0.0481362\pi\)
−0.363828 + 0.931466i \(0.618530\pi\)
\(510\) 0 0
\(511\) 3193.25 5530.87i 0.276441 0.478809i
\(512\) 0 0
\(513\) 966.593 1674.19i 0.0831893 0.144088i
\(514\) 0 0
\(515\) 14.5617 0.00124595
\(516\) 0 0
\(517\) 8121.32 + 14066.5i 0.690861 + 1.19661i
\(518\) 0 0
\(519\) −15128.7 −1.27953
\(520\) 0 0
\(521\) 3535.86 0.297329 0.148665 0.988888i \(-0.452502\pi\)
0.148665 + 0.988888i \(0.452502\pi\)
\(522\) 0 0
\(523\) 6982.44 + 12093.9i 0.583787 + 1.01115i 0.995025 + 0.0996211i \(0.0317631\pi\)
−0.411238 + 0.911528i \(0.634904\pi\)
\(524\) 0 0
\(525\) −14767.0 −1.22759
\(526\) 0 0
\(527\) 2278.40 3946.31i 0.188328 0.326193i
\(528\) 0 0
\(529\) 5338.66 9246.83i 0.438782 0.759993i
\(530\) 0 0
\(531\) −6347.86 10994.8i −0.518783 0.898558i
\(532\) 0 0
\(533\) −1228.45 + 107.791i −0.0998312 + 0.00875978i
\(534\) 0 0
\(535\) 219.994 + 381.040i 0.0177779 + 0.0307922i
\(536\) 0 0
\(537\) 2638.46 4569.95i 0.212026 0.367240i
\(538\) 0 0
\(539\) −3079.85 + 5334.46i −0.246120 + 0.426292i
\(540\) 0 0
\(541\) −10661.6 −0.847277 −0.423638 0.905831i \(-0.639247\pi\)
−0.423638 + 0.905831i \(0.639247\pi\)
\(542\) 0 0
\(543\) −1786.42 3094.17i −0.141183 0.244537i
\(544\) 0 0
\(545\) 7482.10 0.588070
\(546\) 0 0
\(547\) 3393.59 0.265264 0.132632 0.991165i \(-0.457657\pi\)
0.132632 + 0.991165i \(0.457657\pi\)
\(548\) 0 0
\(549\) −2355.51 4079.86i −0.183116 0.317166i
\(550\) 0 0
\(551\) 1661.26 0.128443
\(552\) 0 0
\(553\) 5550.91 9614.46i 0.426851 0.739328i
\(554\) 0 0
\(555\) 5509.41 9542.58i 0.421372 0.729837i
\(556\) 0 0
\(557\) 4124.51 + 7143.87i 0.313754 + 0.543439i 0.979172 0.203033i \(-0.0650798\pi\)
−0.665418 + 0.746471i \(0.731746\pi\)
\(558\) 0 0
\(559\) 3701.67 + 5283.67i 0.280079 + 0.399777i
\(560\) 0 0
\(561\) −29695.3 51433.7i −2.23482 3.87083i
\(562\) 0 0
\(563\) 4434.39 7680.59i 0.331949 0.574953i −0.650945 0.759125i \(-0.725627\pi\)
0.982894 + 0.184172i \(0.0589604\pi\)
\(564\) 0 0
\(565\) −3669.83 + 6356.34i −0.273259 + 0.473298i
\(566\) 0 0
\(567\) 8173.93 0.605419
\(568\) 0 0
\(569\) 3204.24 + 5549.91i 0.236079 + 0.408901i 0.959586 0.281417i \(-0.0908043\pi\)
−0.723507 + 0.690317i \(0.757471\pi\)
\(570\) 0 0
\(571\) −10045.2 −0.736212 −0.368106 0.929784i \(-0.619994\pi\)
−0.368106 + 0.929784i \(0.619994\pi\)
\(572\) 0 0
\(573\) 5440.70 0.396664
\(574\) 0 0
\(575\) −2123.92 3678.75i −0.154041 0.266807i
\(576\) 0 0
\(577\) −24528.9 −1.76976 −0.884880 0.465818i \(-0.845760\pi\)
−0.884880 + 0.465818i \(0.845760\pi\)
\(578\) 0 0
\(579\) −8889.08 + 15396.3i −0.638027 + 1.10510i
\(580\) 0 0
\(581\) −4667.82 + 8084.90i −0.333311 + 0.577312i
\(582\) 0 0
\(583\) −7031.21 12178.4i −0.499490 0.865142i
\(584\) 0 0
\(585\) −5363.95 7656.36i −0.379098 0.541114i
\(586\) 0 0
\(587\) −7951.88 13773.1i −0.559130 0.968441i −0.997569 0.0696803i \(-0.977802\pi\)
0.438440 0.898761i \(-0.355531\pi\)
\(588\) 0 0
\(589\) 162.996 282.317i 0.0114026 0.0197499i
\(590\) 0 0
\(591\) 2471.24 4280.32i 0.172002 0.297917i
\(592\) 0 0
\(593\) −5436.51 −0.376477 −0.188238 0.982123i \(-0.560278\pi\)
−0.188238 + 0.982123i \(0.560278\pi\)
\(594\) 0 0
\(595\) 3624.89 + 6278.49i 0.249758 + 0.432593i
\(596\) 0 0
\(597\) −49061.2 −3.36339
\(598\) 0 0
\(599\) −6872.46 −0.468783 −0.234392 0.972142i \(-0.575310\pi\)
−0.234392 + 0.972142i \(0.575310\pi\)
\(600\) 0 0
\(601\) 708.911 + 1227.87i 0.0481149 + 0.0833375i 0.889080 0.457752i \(-0.151345\pi\)
−0.840965 + 0.541090i \(0.818012\pi\)
\(602\) 0 0
\(603\) −21181.6 −1.43048
\(604\) 0 0
\(605\) −3075.54 + 5326.98i −0.206675 + 0.357971i
\(606\) 0 0
\(607\) −6796.67 + 11772.2i −0.454478 + 0.787180i −0.998658 0.0517890i \(-0.983508\pi\)
0.544180 + 0.838969i \(0.316841\pi\)
\(608\) 0 0
\(609\) 12571.2 + 21773.9i 0.836470 + 1.44881i
\(610\) 0 0
\(611\) −5948.68 + 12765.5i −0.393875 + 0.845231i
\(612\) 0 0
\(613\) 8639.71 + 14964.4i 0.569257 + 0.985982i 0.996640 + 0.0819112i \(0.0261024\pi\)
−0.427383 + 0.904071i \(0.640564\pi\)
\(614\) 0 0
\(615\) 450.796 780.802i 0.0295575 0.0511951i
\(616\) 0 0
\(617\) 1088.54 1885.40i 0.0710256 0.123020i −0.828325 0.560247i \(-0.810706\pi\)
0.899351 + 0.437227i \(0.144039\pi\)
\(618\) 0 0
\(619\) −17067.5 −1.10824 −0.554121 0.832436i \(-0.686945\pi\)
−0.554121 + 0.832436i \(0.686945\pi\)
\(620\) 0 0
\(621\) 4208.13 + 7288.69i 0.271927 + 0.470991i
\(622\) 0 0
\(623\) −3135.43 −0.201635
\(624\) 0 0
\(625\) 10245.1 0.655686
\(626\) 0 0
\(627\) −2124.39 3679.55i −0.135311 0.234365i
\(628\) 0 0
\(629\) 39846.2 2.52587
\(630\) 0 0
\(631\) −3964.98 + 6867.55i −0.250148 + 0.433269i −0.963566 0.267469i \(-0.913813\pi\)
0.713418 + 0.700738i \(0.247146\pi\)
\(632\) 0 0
\(633\) −20761.7 + 35960.4i −1.30364 + 2.25797i
\(634\) 0 0
\(635\) 472.754 + 818.834i 0.0295444 + 0.0511723i
\(636\) 0 0
\(637\) −5320.44 + 466.847i −0.330932 + 0.0290379i
\(638\) 0 0
\(639\) −10949.9 18965.7i −0.677888 1.17414i
\(640\) 0 0
\(641\) 2919.53 5056.77i 0.179898 0.311592i −0.761948 0.647639i \(-0.775757\pi\)
0.941845 + 0.336047i \(0.109090\pi\)
\(642\) 0 0
\(643\) −8511.42 + 14742.2i −0.522018 + 0.904161i 0.477654 + 0.878548i \(0.341487\pi\)
−0.999672 + 0.0256134i \(0.991846\pi\)
\(644\) 0 0
\(645\) −4716.68 −0.287936
\(646\) 0 0
\(647\) 10889.6 + 18861.4i 0.661694 + 1.14609i 0.980170 + 0.198157i \(0.0634956\pi\)
−0.318476 + 0.947931i \(0.603171\pi\)
\(648\) 0 0
\(649\) −13301.5 −0.804512
\(650\) 0 0
\(651\) 4933.74 0.297033
\(652\) 0 0
\(653\) −8520.81 14758.5i −0.510636 0.884447i −0.999924 0.0123250i \(-0.996077\pi\)
0.489288 0.872122i \(-0.337257\pi\)
\(654\) 0 0
\(655\) −6245.12 −0.372545
\(656\) 0 0
\(657\) 10886.4 18855.7i 0.646450 1.11968i
\(658\) 0 0
\(659\) 15382.9 26644.0i 0.909306 1.57496i 0.0942763 0.995546i \(-0.469946\pi\)
0.815030 0.579419i \(-0.196720\pi\)
\(660\) 0 0
\(661\) −3872.35 6707.11i −0.227862 0.394669i 0.729312 0.684181i \(-0.239840\pi\)
−0.957174 + 0.289512i \(0.906507\pi\)
\(662\) 0 0
\(663\) 21751.1 46676.5i 1.27412 2.73418i
\(664\) 0 0
\(665\) 259.323 + 449.161i 0.0151220 + 0.0261921i
\(666\) 0 0
\(667\) −3616.20 + 6263.44i −0.209925 + 0.363601i
\(668\) 0 0
\(669\) −10567.0 + 18302.6i −0.610679 + 1.05773i
\(670\) 0 0
\(671\) −4935.80 −0.283971
\(672\) 0 0
\(673\) 1151.23 + 1993.98i 0.0659384 + 0.114209i 0.897110 0.441808i \(-0.145663\pi\)
−0.831171 + 0.556016i \(0.812329\pi\)
\(674\) 0 0
\(675\) −23999.1 −1.36848
\(676\) 0 0
\(677\) −15932.6 −0.904488 −0.452244 0.891894i \(-0.649376\pi\)
−0.452244 + 0.891894i \(0.649376\pi\)
\(678\) 0 0
\(679\) 5611.01 + 9718.55i 0.317129 + 0.549284i
\(680\) 0 0
\(681\) 13777.6 0.775269
\(682\) 0 0
\(683\) 9229.29 15985.6i 0.517055 0.895566i −0.482748 0.875759i \(-0.660361\pi\)
0.999804 0.0198072i \(-0.00630523\pi\)
\(684\) 0 0
\(685\) 4449.04 7705.97i 0.248159 0.429825i
\(686\) 0 0
\(687\) 12924.1 + 22385.1i 0.717735 + 1.24315i
\(688\) 0 0
\(689\) 5150.19 11052.0i 0.284770 0.611099i
\(690\) 0 0
\(691\) 11489.7 + 19900.7i 0.632544 + 1.09560i 0.987030 + 0.160537i \(0.0513226\pi\)
−0.354486 + 0.935061i \(0.615344\pi\)
\(692\) 0 0
\(693\) 21106.7 36557.9i 1.15697 2.00392i
\(694\) 0 0
\(695\) −5429.17 + 9403.60i −0.296317 + 0.513236i
\(696\) 0 0
\(697\) 3260.33 0.177179
\(698\) 0 0
\(699\) 18767.9 + 32506.9i 1.01554 + 1.75897i
\(700\) 0 0
\(701\) 8633.81 0.465185 0.232592 0.972574i \(-0.425279\pi\)
0.232592 + 0.972574i \(0.425279\pi\)
\(702\) 0 0
\(703\) 2850.58 0.152933
\(704\) 0 0
\(705\) −5148.34 8917.19i −0.275032 0.476370i
\(706\) 0 0
\(707\) −6255.19 −0.332745
\(708\) 0 0
\(709\) 12811.2 22189.7i 0.678612 1.17539i −0.296787 0.954944i \(-0.595915\pi\)
0.975399 0.220447i \(-0.0707515\pi\)
\(710\) 0 0
\(711\) 18924.1 32777.4i 0.998182 1.72890i
\(712\) 0 0
\(713\) 709.614 + 1229.09i 0.0372725 + 0.0645578i
\(714\) 0 0
\(715\) −9756.91 + 856.129i −0.510333 + 0.0447796i
\(716\) 0 0
\(717\) 10516.9 + 18215.8i 0.547783 + 0.948788i
\(718\) 0 0
\(719\) 17477.4 30271.7i 0.906532 1.57016i 0.0876845 0.996148i \(-0.472053\pi\)
0.818847 0.574011i \(-0.194613\pi\)
\(720\) 0 0
\(721\) −28.5068 + 49.3753i −0.00147247 + 0.00255039i
\(722\) 0 0
\(723\) 2888.04 0.148558
\(724\) 0 0
\(725\) −10311.7 17860.3i −0.528228 0.914918i
\(726\) 0 0
\(727\) 23397.0 1.19360 0.596800 0.802390i \(-0.296438\pi\)
0.596800 + 0.802390i \(0.296438\pi\)
\(728\) 0 0
\(729\) −24329.6 −1.23607
\(730\) 0 0
\(731\) −8528.21 14771.3i −0.431501 0.747382i
\(732\) 0 0
\(733\) −3541.17 −0.178440 −0.0892198 0.996012i \(-0.528437\pi\)
−0.0892198 + 0.996012i \(0.528437\pi\)
\(734\) 0 0
\(735\) 1952.41 3381.67i 0.0979804 0.169707i
\(736\) 0 0
\(737\) −11096.1 + 19219.0i −0.554586 + 0.960571i
\(738\) 0 0
\(739\) −19616.5 33976.8i −0.976460 1.69128i −0.675029 0.737791i \(-0.735869\pi\)
−0.301431 0.953488i \(-0.597464\pi\)
\(740\) 0 0
\(741\) 1556.07 3339.22i 0.0771437 0.165546i
\(742\) 0 0
\(743\) 19099.4 + 33081.1i 0.943052 + 1.63341i 0.759606 + 0.650383i \(0.225392\pi\)
0.183446 + 0.983030i \(0.441275\pi\)
\(744\) 0 0
\(745\) −4895.93 + 8480.00i −0.240769 + 0.417024i
\(746\) 0 0
\(747\) −15913.4 + 27562.9i −0.779441 + 1.35003i
\(748\) 0 0
\(749\) −1722.69 −0.0840399
\(750\) 0 0
\(751\) −835.377 1446.92i −0.0405903 0.0703045i 0.845017 0.534740i \(-0.179591\pi\)
−0.885607 + 0.464436i \(0.846257\pi\)
\(752\) 0 0
\(753\) 23065.9 1.11629
\(754\) 0 0
\(755\) 9242.70 0.445532
\(756\) 0 0
\(757\) 18974.3 + 32864.4i 0.911007 + 1.57791i 0.812645 + 0.582759i \(0.198027\pi\)
0.0983617 + 0.995151i \(0.468640\pi\)
\(758\) 0 0
\(759\) 18497.4 0.884600
\(760\) 0 0
\(761\) 18886.4 32712.1i 0.899645 1.55823i 0.0716969 0.997426i \(-0.477159\pi\)
0.827948 0.560805i \(-0.189508\pi\)
\(762\) 0 0
\(763\) −14647.4 + 25370.1i −0.694984 + 1.20375i
\(764\) 0 0
\(765\) 12357.9 + 21404.5i 0.584053 + 1.01161i
\(766\) 0 0
\(767\) −6617.63 9445.82i −0.311537 0.444679i
\(768\) 0 0
\(769\) 6536.64 + 11321.8i 0.306524 + 0.530916i 0.977600 0.210474i \(-0.0675006\pi\)
−0.671075 + 0.741389i \(0.734167\pi\)
\(770\) 0 0
\(771\) −18693.2 + 32377.7i −0.873179 + 1.51239i
\(772\) 0 0
\(773\) 12571.5 21774.6i 0.584951 1.01316i −0.409931 0.912117i \(-0.634447\pi\)
0.994882 0.101048i \(-0.0322196\pi\)
\(774\) 0 0
\(775\) −4046.96 −0.187575
\(776\) 0 0
\(777\) 21571.1 + 37362.3i 0.995959 + 1.72505i
\(778\) 0 0
\(779\) 233.243 0.0107276
\(780\) 0 0
\(781\) −22944.7 −1.05125
\(782\) 0 0
\(783\) 20430.5 + 35386.6i 0.932472 + 1.61509i
\(784\) 0 0
\(785\) 7450.63 0.338757
\(786\) 0 0
\(787\) 9582.29 16597.0i 0.434017 0.751740i −0.563197 0.826322i \(-0.690429\pi\)
0.997215 + 0.0745822i \(0.0237623\pi\)
\(788\) 0 0
\(789\) 28698.9 49708.0i 1.29494 2.24290i
\(790\) 0 0
\(791\) −14368.6 24887.1i −0.645877 1.11869i
\(792\) 0 0
\(793\) −2455.62 3505.08i −0.109964 0.156960i
\(794\) 0 0
\(795\) 4457.29 + 7720.25i 0.198847 + 0.344414i
\(796\) 0 0
\(797\) −14495.7 + 25107.3i −0.644246 + 1.11587i 0.340229 + 0.940343i \(0.389496\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(798\) 0 0
\(799\) 18617.4 32246.3i 0.824326 1.42777i
\(800\) 0 0
\(801\) −10689.3 −0.471519
\(802\) 0 0
\(803\) −11405.8 19755.4i −0.501248 0.868186i
\(804\) 0 0
\(805\) −2257.96 −0.0988606
\(806\) 0 0
\(807\) −11534.3 −0.503129
\(808\) 0 0
\(809\) 8446.41 + 14629.6i 0.367070 + 0.635784i 0.989106 0.147204i \(-0.0470275\pi\)
−0.622036 + 0.782989i \(0.713694\pi\)
\(810\) 0 0
\(811\) 42182.9 1.82644 0.913220 0.407466i \(-0.133587\pi\)
0.913220 + 0.407466i \(0.133587\pi\)
\(812\) 0 0
\(813\) −13651.2 + 23644.6i −0.588892 + 1.01999i
\(814\) 0 0
\(815\) −4287.81 + 7426.70i −0.184289 + 0.319198i
\(816\) 0 0
\(817\) −610.105 1056.73i −0.0261259 0.0452514i
\(818\) 0 0
\(819\) 36461.8 3199.37i 1.55565 0.136502i
\(820\) 0 0
\(821\) 9250.39 + 16022.1i 0.393229 + 0.681092i 0.992873 0.119174i \(-0.0380247\pi\)
−0.599645 + 0.800266i \(0.704691\pi\)
\(822\) 0 0
\(823\) −13934.4 + 24135.0i −0.590184 + 1.02223i 0.404024 + 0.914749i \(0.367611\pi\)
−0.994207 + 0.107480i \(0.965722\pi\)
\(824\) 0 0
\(825\) −26372.8 + 45679.0i −1.11295 + 1.92768i
\(826\) 0 0
\(827\) −2541.96 −0.106884 −0.0534418 0.998571i \(-0.517019\pi\)
−0.0534418 + 0.998571i \(0.517019\pi\)
\(828\) 0 0
\(829\) −14785.0 25608.4i −0.619427 1.07288i −0.989590 0.143912i \(-0.954032\pi\)
0.370164 0.928967i \(-0.379302\pi\)
\(830\) 0 0
\(831\) −55745.1 −2.32705
\(832\) 0 0
\(833\) 14120.6 0.587333
\(834\) 0 0
\(835\) −2915.08 5049.07i −0.120815 0.209258i
\(836\) 0 0
\(837\) 8018.23 0.331124
\(838\) 0 0
\(839\) 10803.7 18712.6i 0.444561 0.770002i −0.553460 0.832875i \(-0.686693\pi\)
0.998022 + 0.0628731i \(0.0200263\pi\)
\(840\) 0 0
\(841\) −5362.17 + 9287.54i −0.219860 + 0.380809i
\(842\) 0 0
\(843\) 14300.0 + 24768.3i 0.584244 + 1.01194i
\(844\) 0 0
\(845\) −5462.14 6502.78i −0.222371 0.264737i
\(846\) 0 0
\(847\) −12041.7 20856.9i −0.488499 0.846105i
\(848\) 0 0
\(849\) −1713.62 + 2968.08i −0.0692713 + 0.119981i
\(850\) 0 0
\(851\) −6205.10 + 10747.6i −0.249951 + 0.432928i
\(852\) 0 0
\(853\) −28695.1 −1.15182 −0.575910 0.817513i \(-0.695352\pi\)
−0.575910 + 0.817513i \(0.695352\pi\)
\(854\) 0 0
\(855\) 884.080 + 1531.27i 0.0353625 + 0.0612496i
\(856\) 0 0
\(857\) 8720.01 0.347573 0.173786 0.984783i \(-0.444400\pi\)
0.173786 + 0.984783i \(0.444400\pi\)
\(858\) 0 0
\(859\) 1750.23 0.0695191 0.0347596 0.999396i \(-0.488933\pi\)
0.0347596 + 0.999396i \(0.488933\pi\)
\(860\) 0 0
\(861\) 1765.01 + 3057.09i 0.0698624 + 0.121005i
\(862\) 0 0
\(863\) 35493.3 1.40001 0.700004 0.714139i \(-0.253181\pi\)
0.700004 + 0.714139i \(0.253181\pi\)
\(864\) 0 0
\(865\) 3298.15 5712.56i 0.129642 0.224547i
\(866\) 0 0
\(867\) −46295.8 + 80186.6i −1.81348 + 3.14104i
\(868\) 0 0
\(869\) −19827.0 34341.4i −0.773975 1.34056i
\(870\) 0 0
\(871\) −19168.5 + 1681.96i −0.745694 + 0.0654316i
\(872\) 0 0
\(873\) 19128.9 + 33132.3i 0.741600 + 1.28449i
\(874\) 0 0
\(875\) 6875.68 11909.0i 0.265646 0.460113i
\(876\) 0 0
\(877\) 13213.9 22887.2i 0.508782 0.881237i −0.491166 0.871066i \(-0.663429\pi\)
0.999948 0.0101709i \(-0.00323754\pi\)
\(878\) 0 0
\(879\) 19440.4 0.745970
\(880\) 0 0
\(881\) −383.063 663.484i −0.0146489 0.0253727i 0.858608 0.512633i \(-0.171330\pi\)
−0.873257 + 0.487260i \(0.837996\pi\)
\(882\) 0 0
\(883\) −6521.89 −0.248561 −0.124280 0.992247i \(-0.539662\pi\)
−0.124280 + 0.992247i \(0.539662\pi\)
\(884\) 0 0
\(885\) 8432.19 0.320277
\(886\) 0 0
\(887\) 12675.8 + 21955.2i 0.479834 + 0.831097i 0.999732 0.0231313i \(-0.00736359\pi\)
−0.519899 + 0.854228i \(0.674030\pi\)
\(888\) 0 0
\(889\) −3701.97 −0.139663
\(890\) 0 0
\(891\) 14598.0 25284.5i 0.548879 0.950686i
\(892\) 0 0
\(893\) 1331.88 2306.89i 0.0499102 0.0864470i
\(894\) 0 0
\(895\) 1150.40 + 1992.56i 0.0429651 + 0.0744178i
\(896\) 0 0
\(897\) 9202.64 + 13135.6i 0.342550 + 0.488946i
\(898\) 0 0
\(899\) 3445.18 + 5967.23i 0.127812 + 0.221377i
\(900\) 0 0
\(901\) −16118.4 + 27917.9i −0.595985 + 1.03228i
\(902\) 0 0
\(903\) 9233.67 15993.2i 0.340285 0.589390i
\(904\) 0 0
\(905\) 1557.80 0.0572190
\(906\) 0 0
\(907\) −4752.28 8231.20i −0.173977 0.301337i 0.765830 0.643043i \(-0.222328\pi\)
−0.939807 + 0.341707i \(0.888995\pi\)
\(908\) 0 0
\(909\) −21325.1 −0.778116
\(910\) 0 0
\(911\) −6435.82 −0.234059 −0.117030 0.993128i \(-0.537337\pi\)
−0.117030 + 0.993128i \(0.537337\pi\)
\(912\) 0 0
\(913\) 16672.7 + 28878.0i 0.604367 + 1.04679i
\(914\) 0 0
\(915\) 3128.95 0.113049
\(916\) 0 0
\(917\) 12225.9 21175.8i 0.440276 0.762581i
\(918\) 0 0
\(919\) 7476.96 12950.5i 0.268381 0.464849i −0.700063 0.714081i \(-0.746845\pi\)
0.968444 + 0.249232i \(0.0801781\pi\)
\(920\) 0 0
\(921\) −35834.0 62066.3i −1.28205 2.22058i
\(922\) 0 0
\(923\) −11415.2 16293.8i −0.407082 0.581058i
\(924\) 0 0
\(925\) −17694.0 30646.8i −0.628945 1.08936i
\(926\) 0 0
\(927\) −97.1849 + 168.329i −0.00344334 + 0.00596403i
\(928\) 0 0
\(929\) 19030.9 32962.5i 0.672103 1.16412i −0.305204 0.952287i \(-0.598725\pi\)
0.977307 0.211829i \(-0.0679419\pi\)
\(930\) 0 0
\(931\) 1010.18 0.0355611
\(932\) 0 0
\(933\) 1083.40 + 1876.50i 0.0380160 + 0.0658456i
\(934\) 0 0
\(935\) 25895.1 0.905732
\(936\) 0 0
\(937\) 14572.5 0.508072 0.254036 0.967195i \(-0.418242\pi\)
0.254036 + 0.967195i \(0.418242\pi\)
\(938\) 0 0
\(939\) −19699.6 34120.7i −0.684635 1.18582i
\(940\) 0 0
\(941\) 32190.2 1.11516 0.557582 0.830122i \(-0.311729\pi\)
0.557582 + 0.830122i \(0.311729\pi\)
\(942\) 0 0
\(943\) −507.720 + 879.397i −0.0175330 + 0.0303681i
\(944\) 0 0
\(945\) −6378.42 + 11047.7i −0.219566 + 0.380300i
\(946\) 0 0
\(947\) −21115.5 36573.1i −0.724563 1.25498i −0.959154 0.282886i \(-0.908708\pi\)
0.234590 0.972094i \(-0.424625\pi\)
\(948\) 0 0
\(949\) 8354.48 17928.2i 0.285772 0.613249i
\(950\) 0 0
\(951\) −4125.09 7144.86i −0.140657 0.243626i
\(952\) 0 0
\(953\) 4084.22 7074.07i 0.138826 0.240453i −0.788227 0.615385i \(-0.789001\pi\)
0.927052 + 0.374932i \(0.122334\pi\)
\(954\) 0 0
\(955\) −1186.11 + 2054.40i −0.0401901 + 0.0696114i
\(956\) 0 0
\(957\) 89804.7 3.03341
\(958\) 0 0
\(959\) 17419.5 + 30171.4i 0.586552 + 1.01594i
\(960\) 0 0
\(961\) −28438.9 −0.954613
\(962\) 0 0
\(963\) −5872.98 −0.196525
\(964\) 0 0
\(965\) −3875.76 6713.01i −0.129290 0.223937i
\(966\) 0 0
\(967\) −52022.1 −1.73001 −0.865003 0.501766i \(-0.832684\pi\)
−0.865003 + 0.501766i \(0.832684\pi\)
\(968\) 0 0
\(969\) −4869.98 + 8435.05i −0.161451 + 0.279642i
\(970\) 0 0
\(971\) −5972.47 + 10344.6i −0.197390 + 0.341890i −0.947681 0.319218i \(-0.896580\pi\)
0.750291 + 0.661107i \(0.229913\pi\)
\(972\) 0 0
\(973\) −21257.0 36818.2i −0.700378 1.21309i
\(974\) 0 0
\(975\) −45558.9 + 3997.61i −1.49646 + 0.131309i
\(976\) 0 0
\(977\) −9494.95 16445.7i −0.310922 0.538532i 0.667640 0.744484i \(-0.267304\pi\)
−0.978562 + 0.205952i \(0.933971\pi\)
\(978\) 0 0
\(979\) −5599.64 + 9698.86i −0.182804 + 0.316626i
\(980\) 0 0
\(981\) −49935.8 + 86491.3i −1.62520 + 2.81494i
\(982\) 0 0
\(983\) 47187.4 1.53107 0.765537 0.643392i \(-0.222474\pi\)
0.765537 + 0.643392i \(0.222474\pi\)
\(984\) 0 0
\(985\) 1077.50 + 1866.28i 0.0348547 + 0.0603701i
\(986\) 0 0
\(987\) 40314.9 1.30014
\(988\) 0 0
\(989\) 5312.27 0.170799
\(990\) 0 0
\(991\) −15379.7 26638.5i −0.492991 0.853885i 0.506977 0.861960i \(-0.330763\pi\)
−0.999967 + 0.00807499i \(0.997430\pi\)
\(992\) 0 0
\(993\) −42796.7 −1.36769
\(994\) 0 0
\(995\) 10695.7 18525.5i 0.340780 0.590248i
\(996\) 0 0
\(997\) −24666.1 + 42722.9i −0.783533 + 1.35712i 0.146338 + 0.989235i \(0.453251\pi\)
−0.929871 + 0.367885i \(0.880082\pi\)
\(998\) 0 0
\(999\) 35057.0 + 60720.5i 1.11027 + 1.92304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.4.i.d.81.1 4
4.3 odd 2 26.4.c.b.3.2 4
12.11 even 2 234.4.h.h.55.1 4
13.9 even 3 inner 208.4.i.d.113.1 4
52.3 odd 6 338.4.a.h.1.1 2
52.7 even 12 338.4.e.f.147.2 8
52.11 even 12 338.4.b.e.337.3 4
52.15 even 12 338.4.b.e.337.1 4
52.19 even 12 338.4.e.f.147.4 8
52.23 odd 6 338.4.a.g.1.1 2
52.31 even 4 338.4.e.f.23.2 8
52.35 odd 6 26.4.c.b.9.2 yes 4
52.43 odd 6 338.4.c.j.191.2 4
52.47 even 4 338.4.e.f.23.4 8
52.51 odd 2 338.4.c.j.315.2 4
156.35 even 6 234.4.h.h.217.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.c.b.3.2 4 4.3 odd 2
26.4.c.b.9.2 yes 4 52.35 odd 6
208.4.i.d.81.1 4 1.1 even 1 trivial
208.4.i.d.113.1 4 13.9 even 3 inner
234.4.h.h.55.1 4 12.11 even 2
234.4.h.h.217.1 4 156.35 even 6
338.4.a.g.1.1 2 52.23 odd 6
338.4.a.h.1.1 2 52.3 odd 6
338.4.b.e.337.1 4 52.15 even 12
338.4.b.e.337.3 4 52.11 even 12
338.4.c.j.191.2 4 52.43 odd 6
338.4.c.j.315.2 4 52.51 odd 2
338.4.e.f.23.2 8 52.31 even 4
338.4.e.f.23.4 8 52.47 even 4
338.4.e.f.147.2 8 52.7 even 12
338.4.e.f.147.4 8 52.19 even 12