Properties

Label 26.4.c.b.3.2
Level $26$
Weight $4$
Character 26.3
Analytic conductor $1.534$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,4,Mod(3,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.3"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 26.c (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.53404966015\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{217})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 55x^{2} + 54x + 2916 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3.2
Root \(3.93273 + 6.81169i\) of defining polynomial
Character \(\chi\) \(=\) 26.3
Dual form 26.4.c.b.9.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(4.43273 + 7.67771i) q^{3} +(-2.00000 + 3.46410i) q^{4} +3.86546 q^{5} +(8.86546 - 15.3554i) q^{6} +(7.56727 - 13.1069i) q^{7} +8.00000 q^{8} +(-25.7982 + 44.6838i) q^{9} +(-3.86546 - 6.69517i) q^{10} +(-27.0291 - 46.8158i) q^{11} -35.4618 q^{12} +(-19.7982 + 42.4857i) q^{13} -30.2691 q^{14} +(17.1345 + 29.6779i) q^{15} +(-8.00000 - 13.8564i) q^{16} +(61.9618 - 107.321i) q^{17} +103.193 q^{18} +(-4.43273 + 7.67771i) q^{19} +(-7.73092 + 13.3903i) q^{20} +134.175 q^{21} +(-54.0582 + 93.6316i) q^{22} +(-19.2982 - 33.4254i) q^{23} +(35.4618 + 61.4217i) q^{24} -110.058 q^{25} +(93.3855 - 8.19419i) q^{26} -218.058 q^{27} +(30.2691 + 52.4276i) q^{28} +(93.6928 + 162.281i) q^{29} +(34.2691 - 59.3558i) q^{30} -36.7710 q^{31} +(-16.0000 + 27.7128i) q^{32} +(239.625 - 415.044i) q^{33} -247.847 q^{34} +(29.2510 - 50.6642i) q^{35} +(-103.193 - 178.735i) q^{36} +(160.769 + 278.460i) q^{37} +17.7309 q^{38} +(-413.953 + 36.3226i) q^{39} +30.9237 q^{40} +(13.1546 + 22.7844i) q^{41} +(-134.175 - 232.397i) q^{42} +(-68.8182 + 119.197i) q^{43} +216.233 q^{44} +(-99.7219 + 172.723i) q^{45} +(-38.5964 + 66.8509i) q^{46} -300.466 q^{47} +(70.9237 - 122.843i) q^{48} +(56.9728 + 98.6799i) q^{49} +(110.058 + 190.626i) q^{50} +1098.64 q^{51} +(-107.578 - 153.554i) q^{52} -260.135 q^{53} +(218.058 + 377.688i) q^{54} +(-104.480 - 180.965i) q^{55} +(60.5382 - 104.855i) q^{56} -78.5964 q^{57} +(187.386 - 324.561i) q^{58} +(123.029 - 213.093i) q^{59} -137.076 q^{60} +(-45.6526 + 79.0727i) q^{61} +(36.7710 + 63.6893i) q^{62} +(390.444 + 676.268i) q^{63} +64.0000 q^{64} +(-76.5291 + 164.227i) q^{65} -958.502 q^{66} +(-205.262 - 355.524i) q^{67} +(247.847 + 429.284i) q^{68} +(171.087 - 296.332i) q^{69} -117.004 q^{70} +(212.222 - 367.579i) q^{71} +(-206.386 + 357.470i) q^{72} -421.982 q^{73} +(321.538 - 556.920i) q^{74} +(-487.858 - 844.995i) q^{75} +(-17.7309 - 30.7109i) q^{76} -818.146 q^{77} +(476.865 + 680.665i) q^{78} +733.542 q^{79} +(-30.9237 - 53.5614i) q^{80} +(-270.042 - 467.727i) q^{81} +(26.3092 - 45.5689i) q^{82} -616.843 q^{83} +(-268.349 + 464.795i) q^{84} +(239.511 - 414.845i) q^{85} +275.273 q^{86} +(-830.629 + 1438.69i) q^{87} +(-216.233 - 374.526i) q^{88} +(103.585 + 179.415i) q^{89} +398.887 q^{90} +(407.037 + 580.993i) q^{91} +154.386 q^{92} +(-162.996 - 282.317i) q^{93} +(300.466 + 520.422i) q^{94} +(-17.1345 + 29.6779i) q^{95} -283.695 q^{96} +(370.742 - 642.144i) q^{97} +(113.946 - 197.360i) q^{98} +2789.21 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 3 q^{3} - 8 q^{4} - 14 q^{5} + 6 q^{6} + 45 q^{7} + 32 q^{8} - 59 q^{9} + 14 q^{10} - 5 q^{11} - 24 q^{12} - 35 q^{13} - 180 q^{14} + 98 q^{15} - 32 q^{16} + 130 q^{17} + 236 q^{18} - 3 q^{19}+ \cdots + 4852 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/26\mathbb{Z}\right)^\times\).

\(n\) \(15\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 4.43273 + 7.67771i 0.853079 + 1.47758i 0.878416 + 0.477898i \(0.158601\pi\)
−0.0253362 + 0.999679i \(0.508066\pi\)
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) 3.86546 0.345737 0.172869 0.984945i \(-0.444696\pi\)
0.172869 + 0.984945i \(0.444696\pi\)
\(6\) 8.86546 15.3554i 0.603218 1.04480i
\(7\) 7.56727 13.1069i 0.408594 0.707706i −0.586138 0.810211i \(-0.699352\pi\)
0.994732 + 0.102505i \(0.0326858\pi\)
\(8\) 8.00000 0.353553
\(9\) −25.7982 + 44.6838i −0.955489 + 1.65495i
\(10\) −3.86546 6.69517i −0.122237 0.211720i
\(11\) −27.0291 46.8158i −0.740871 1.28323i −0.952099 0.305790i \(-0.901080\pi\)
0.211228 0.977437i \(-0.432254\pi\)
\(12\) −35.4618 −0.853079
\(13\) −19.7982 + 42.4857i −0.422387 + 0.906416i
\(14\) −30.2691 −0.577839
\(15\) 17.1345 + 29.6779i 0.294941 + 0.510853i
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) 61.9618 107.321i 0.883997 1.53113i 0.0371386 0.999310i \(-0.488176\pi\)
0.846859 0.531818i \(-0.178491\pi\)
\(18\) 103.193 1.35126
\(19\) −4.43273 + 7.67771i −0.0535231 + 0.0927046i −0.891546 0.452931i \(-0.850378\pi\)
0.838023 + 0.545636i \(0.183712\pi\)
\(20\) −7.73092 + 13.3903i −0.0864343 + 0.149709i
\(21\) 134.175 1.39425
\(22\) −54.0582 + 93.6316i −0.523875 + 0.907378i
\(23\) −19.2982 33.4254i −0.174954 0.303030i 0.765191 0.643803i \(-0.222644\pi\)
−0.940145 + 0.340773i \(0.889311\pi\)
\(24\) 35.4618 + 61.4217i 0.301609 + 0.522402i
\(25\) −110.058 −0.880466
\(26\) 93.3855 8.19419i 0.704400 0.0618082i
\(27\) −218.058 −1.55427
\(28\) 30.2691 + 52.4276i 0.204297 + 0.353853i
\(29\) 93.6928 + 162.281i 0.599942 + 1.03913i 0.992829 + 0.119543i \(0.0381429\pi\)
−0.392887 + 0.919587i \(0.628524\pi\)
\(30\) 34.2691 59.3558i 0.208555 0.361228i
\(31\) −36.7710 −0.213041 −0.106521 0.994311i \(-0.533971\pi\)
−0.106521 + 0.994311i \(0.533971\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) 239.625 415.044i 1.26404 2.18939i
\(34\) −247.847 −1.25016
\(35\) 29.2510 50.6642i 0.141266 0.244680i
\(36\) −103.193 178.735i −0.477744 0.827477i
\(37\) 160.769 + 278.460i 0.714332 + 1.23726i 0.963217 + 0.268726i \(0.0866025\pi\)
−0.248885 + 0.968533i \(0.580064\pi\)
\(38\) 17.7309 0.0756930
\(39\) −413.953 + 36.3226i −1.69963 + 0.149135i
\(40\) 30.9237 0.122237
\(41\) 13.1546 + 22.7844i 0.0501074 + 0.0867886i 0.889991 0.455978i \(-0.150710\pi\)
−0.839884 + 0.542766i \(0.817377\pi\)
\(42\) −134.175 232.397i −0.492943 0.853802i
\(43\) −68.8182 + 119.197i −0.244062 + 0.422729i −0.961868 0.273515i \(-0.911814\pi\)
0.717805 + 0.696244i \(0.245147\pi\)
\(44\) 216.233 0.740871
\(45\) −99.7219 + 172.723i −0.330348 + 0.572179i
\(46\) −38.5964 + 66.8509i −0.123711 + 0.214274i
\(47\) −300.466 −0.932499 −0.466249 0.884653i \(-0.654395\pi\)
−0.466249 + 0.884653i \(0.654395\pi\)
\(48\) 70.9237 122.843i 0.213270 0.369394i
\(49\) 56.9728 + 98.6799i 0.166102 + 0.287696i
\(50\) 110.058 + 190.626i 0.311292 + 0.539173i
\(51\) 1098.64 3.01648
\(52\) −107.578 153.554i −0.286893 0.409503i
\(53\) −260.135 −0.674193 −0.337096 0.941470i \(-0.609445\pi\)
−0.337096 + 0.941470i \(0.609445\pi\)
\(54\) 218.058 + 377.688i 0.549518 + 0.951793i
\(55\) −104.480 180.965i −0.256147 0.443659i
\(56\) 60.5382 104.855i 0.144460 0.250212i
\(57\) −78.5964 −0.182638
\(58\) 187.386 324.561i 0.424223 0.734775i
\(59\) 123.029 213.093i 0.271475 0.470209i −0.697765 0.716327i \(-0.745822\pi\)
0.969240 + 0.246118i \(0.0791552\pi\)
\(60\) −137.076 −0.294941
\(61\) −45.6526 + 79.0727i −0.0958233 + 0.165971i −0.909952 0.414714i \(-0.863882\pi\)
0.814129 + 0.580685i \(0.197215\pi\)
\(62\) 36.7710 + 63.6893i 0.0753214 + 0.130460i
\(63\) 390.444 + 676.268i 0.780814 + 1.35241i
\(64\) 64.0000 0.125000
\(65\) −76.5291 + 164.227i −0.146035 + 0.313382i
\(66\) −958.502 −1.78763
\(67\) −205.262 355.524i −0.374280 0.648272i 0.615939 0.787794i \(-0.288777\pi\)
−0.990219 + 0.139522i \(0.955443\pi\)
\(68\) 247.847 + 429.284i 0.441999 + 0.765564i
\(69\) 171.087 296.332i 0.298500 0.517017i
\(70\) −117.004 −0.199781
\(71\) 212.222 367.579i 0.354734 0.614417i −0.632339 0.774692i \(-0.717905\pi\)
0.987072 + 0.160275i \(0.0512382\pi\)
\(72\) −206.386 + 357.470i −0.337816 + 0.585115i
\(73\) −421.982 −0.676565 −0.338283 0.941045i \(-0.609846\pi\)
−0.338283 + 0.941045i \(0.609846\pi\)
\(74\) 321.538 556.920i 0.505109 0.874874i
\(75\) −487.858 844.995i −0.751107 1.30096i
\(76\) −17.7309 30.7109i −0.0267615 0.0463523i
\(77\) −818.146 −1.21086
\(78\) 476.865 + 680.665i 0.692236 + 0.988078i
\(79\) 733.542 1.04468 0.522341 0.852736i \(-0.325059\pi\)
0.522341 + 0.852736i \(0.325059\pi\)
\(80\) −30.9237 53.5614i −0.0432172 0.0748543i
\(81\) −270.042 467.727i −0.370428 0.641600i
\(82\) 26.3092 45.5689i 0.0354313 0.0613688i
\(83\) −616.843 −0.815751 −0.407876 0.913037i \(-0.633730\pi\)
−0.407876 + 0.913037i \(0.633730\pi\)
\(84\) −268.349 + 464.795i −0.348563 + 0.603729i
\(85\) 239.511 414.845i 0.305631 0.529368i
\(86\) 275.273 0.345156
\(87\) −830.629 + 1438.69i −1.02360 + 1.77292i
\(88\) −216.233 374.526i −0.261938 0.453689i
\(89\) 103.585 + 179.415i 0.123371 + 0.213685i 0.921095 0.389338i \(-0.127296\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(90\) 398.887 0.467183
\(91\) 407.037 + 580.993i 0.468891 + 0.669282i
\(92\) 154.386 0.174954
\(93\) −162.996 282.317i −0.181741 0.314785i
\(94\) 300.466 + 520.422i 0.329688 + 0.571036i
\(95\) −17.1345 + 29.6779i −0.0185049 + 0.0320514i
\(96\) −283.695 −0.301609
\(97\) 370.742 642.144i 0.388074 0.672163i −0.604117 0.796896i \(-0.706474\pi\)
0.992190 + 0.124733i \(0.0398073\pi\)
\(98\) 113.946 197.360i 0.117452 0.203432i
\(99\) 2789.21 2.83158
\(100\) 220.116 381.253i 0.220116 0.381253i
\(101\) 206.653 + 357.933i 0.203591 + 0.352630i 0.949683 0.313213i \(-0.101405\pi\)
−0.746092 + 0.665843i \(0.768072\pi\)
\(102\) −1098.64 1902.90i −1.06649 1.84721i
\(103\) −3.76712 −0.00360374 −0.00180187 0.999998i \(-0.500574\pi\)
−0.00180187 + 0.999998i \(0.500574\pi\)
\(104\) −158.386 + 339.885i −0.149336 + 0.320466i
\(105\) 518.647 0.482045
\(106\) 260.135 + 450.566i 0.238363 + 0.412857i
\(107\) −56.9127 98.5756i −0.0514201 0.0890623i 0.839170 0.543870i \(-0.183041\pi\)
−0.890590 + 0.454807i \(0.849708\pi\)
\(108\) 436.116 755.376i 0.388568 0.673019i
\(109\) 1935.63 1.70092 0.850458 0.526044i \(-0.176325\pi\)
0.850458 + 0.526044i \(0.176325\pi\)
\(110\) −208.960 + 361.929i −0.181123 + 0.313714i
\(111\) −1425.29 + 2468.68i −1.21876 + 2.11096i
\(112\) −242.153 −0.204297
\(113\) −949.391 + 1644.39i −0.790365 + 1.36895i 0.135376 + 0.990794i \(0.456776\pi\)
−0.925741 + 0.378158i \(0.876558\pi\)
\(114\) 78.5964 + 136.133i 0.0645722 + 0.111842i
\(115\) −74.5964 129.205i −0.0604882 0.104769i
\(116\) −749.542 −0.599942
\(117\) −1387.66 1980.71i −1.09649 1.56510i
\(118\) −492.116 −0.383924
\(119\) −937.764 1624.25i −0.722392 1.25122i
\(120\) 137.076 + 237.423i 0.104277 + 0.180614i
\(121\) −795.646 + 1378.10i −0.597780 + 1.03539i
\(122\) 182.611 0.135515
\(123\) −116.622 + 201.994i −0.0854912 + 0.148075i
\(124\) 73.5421 127.379i 0.0532603 0.0922495i
\(125\) −908.608 −0.650147
\(126\) 780.887 1352.54i 0.552119 0.956298i
\(127\) −122.302 211.833i −0.0854532 0.148009i 0.820131 0.572176i \(-0.193900\pi\)
−0.905584 + 0.424166i \(0.860567\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) −1220.21 −0.832818
\(130\) 360.978 31.6743i 0.243537 0.0213694i
\(131\) 1615.62 1.07754 0.538769 0.842453i \(-0.318889\pi\)
0.538769 + 0.842453i \(0.318889\pi\)
\(132\) 958.502 + 1660.17i 0.632022 + 1.09469i
\(133\) 67.0873 + 116.199i 0.0437384 + 0.0757572i
\(134\) −410.524 + 711.048i −0.264656 + 0.458397i
\(135\) −842.895 −0.537369
\(136\) 495.695 858.568i 0.312540 0.541336i
\(137\) 1150.97 1993.54i 0.717769 1.24321i −0.244113 0.969747i \(-0.578497\pi\)
0.961882 0.273465i \(-0.0881698\pi\)
\(138\) −684.349 −0.422143
\(139\) 1404.53 2432.73i 0.857058 1.48447i −0.0176640 0.999844i \(-0.505623\pi\)
0.874722 0.484625i \(-0.161044\pi\)
\(140\) 117.004 + 202.657i 0.0706331 + 0.122340i
\(141\) −1331.88 2306.89i −0.795495 1.37784i
\(142\) −848.887 −0.501669
\(143\) 2524.13 221.482i 1.47607 0.129519i
\(144\) 825.542 0.477744
\(145\) 362.166 + 627.289i 0.207422 + 0.359266i
\(146\) 421.982 + 730.894i 0.239202 + 0.414310i
\(147\) −505.091 + 874.842i −0.283396 + 0.490856i
\(148\) −1286.15 −0.714332
\(149\) −1266.58 + 2193.79i −0.696393 + 1.20619i 0.273315 + 0.961925i \(0.411880\pi\)
−0.969709 + 0.244264i \(0.921454\pi\)
\(150\) −975.717 + 1689.99i −0.531113 + 0.919915i
\(151\) −2391.10 −1.28864 −0.644321 0.764755i \(-0.722860\pi\)
−0.644321 + 0.764755i \(0.722860\pi\)
\(152\) −35.4618 + 61.4217i −0.0189233 + 0.0327760i
\(153\) 3197.01 + 5537.38i 1.68930 + 2.92595i
\(154\) 818.146 + 1417.07i 0.428105 + 0.741499i
\(155\) −142.137 −0.0736562
\(156\) 702.080 1506.62i 0.360330 0.773244i
\(157\) 1927.49 0.979811 0.489905 0.871776i \(-0.337031\pi\)
0.489905 + 0.871776i \(0.337031\pi\)
\(158\) −733.542 1270.53i −0.369351 0.639735i
\(159\) −1153.11 1997.24i −0.575140 0.996172i
\(160\) −61.8474 + 107.123i −0.0305591 + 0.0529300i
\(161\) −584.138 −0.285941
\(162\) −540.084 + 935.453i −0.261932 + 0.453680i
\(163\) 1109.26 1921.30i 0.533031 0.923237i −0.466225 0.884666i \(-0.654386\pi\)
0.999256 0.0385709i \(-0.0122805\pi\)
\(164\) −105.237 −0.0501074
\(165\) 926.263 1604.33i 0.437027 0.756953i
\(166\) 616.843 + 1068.40i 0.288412 + 0.499544i
\(167\) 754.135 + 1306.20i 0.349442 + 0.605251i 0.986150 0.165854i \(-0.0530380\pi\)
−0.636709 + 0.771104i \(0.719705\pi\)
\(168\) 1073.40 0.492943
\(169\) −1413.06 1682.28i −0.643179 0.765716i
\(170\) −958.044 −0.432227
\(171\) −228.713 396.142i −0.102281 0.177156i
\(172\) −275.273 476.787i −0.122031 0.211364i
\(173\) 853.236 1477.85i 0.374973 0.649472i −0.615350 0.788254i \(-0.710985\pi\)
0.990323 + 0.138782i \(0.0443186\pi\)
\(174\) 3322.52 1.44758
\(175\) −832.840 + 1442.52i −0.359753 + 0.623111i
\(176\) −432.466 + 749.053i −0.185218 + 0.320807i
\(177\) 2181.42 0.926359
\(178\) 207.171 358.830i 0.0872365 0.151098i
\(179\) −297.611 515.478i −0.124271 0.215244i 0.797177 0.603746i \(-0.206326\pi\)
−0.921448 + 0.388502i \(0.872993\pi\)
\(180\) −398.887 690.893i −0.165174 0.286090i
\(181\) 403.006 0.165498 0.0827492 0.996570i \(-0.473630\pi\)
0.0827492 + 0.996570i \(0.473630\pi\)
\(182\) 599.273 1286.00i 0.244072 0.523763i
\(183\) −809.463 −0.326980
\(184\) −154.386 267.404i −0.0618557 0.107137i
\(185\) 621.446 + 1076.38i 0.246971 + 0.427766i
\(186\) −325.992 + 564.635i −0.128510 + 0.222586i
\(187\) −6699.09 −2.61971
\(188\) 600.932 1040.84i 0.233125 0.403784i
\(189\) −1650.11 + 2858.07i −0.635066 + 1.09997i
\(190\) 68.5382 0.0261699
\(191\) 306.848 531.476i 0.116245 0.201342i −0.802032 0.597281i \(-0.796248\pi\)
0.918277 + 0.395939i \(0.129581\pi\)
\(192\) 283.695 + 491.374i 0.106635 + 0.184697i
\(193\) −1002.66 1736.67i −0.373955 0.647709i 0.616215 0.787578i \(-0.288665\pi\)
−0.990170 + 0.139869i \(0.955332\pi\)
\(194\) −1482.97 −0.548819
\(195\) −1600.12 + 140.404i −0.587625 + 0.0515616i
\(196\) −455.783 −0.166102
\(197\) 278.750 + 482.809i 0.100813 + 0.174613i 0.912020 0.410146i \(-0.134522\pi\)
−0.811207 + 0.584759i \(0.801189\pi\)
\(198\) −2789.21 4831.05i −1.00111 1.73398i
\(199\) −2766.99 + 4792.56i −0.985661 + 1.70721i −0.346698 + 0.937977i \(0.612697\pi\)
−0.638963 + 0.769237i \(0.720636\pi\)
\(200\) −880.466 −0.311292
\(201\) 1819.74 3151.89i 0.638581 1.10605i
\(202\) 413.305 715.866i 0.143961 0.249347i
\(203\) 2835.99 0.980531
\(204\) −2197.28 + 3805.80i −0.754120 + 1.30617i
\(205\) 50.8486 + 88.0723i 0.0173240 + 0.0300060i
\(206\) 3.76712 + 6.52485i 0.00127412 + 0.00220683i
\(207\) 1991.43 0.668668
\(208\) 747.084 65.5535i 0.249043 0.0218525i
\(209\) 479.251 0.158615
\(210\) −518.647 898.323i −0.170429 0.295191i
\(211\) 2341.87 + 4056.23i 0.764079 + 1.32342i 0.940732 + 0.339151i \(0.110140\pi\)
−0.176653 + 0.984273i \(0.556527\pi\)
\(212\) 520.269 901.132i 0.168548 0.291934i
\(213\) 3762.89 1.21046
\(214\) −113.825 + 197.151i −0.0363595 + 0.0629766i
\(215\) −266.014 + 460.750i −0.0843815 + 0.146153i
\(216\) −1744.47 −0.549518
\(217\) −278.256 + 481.954i −0.0870473 + 0.150770i
\(218\) −1935.63 3352.61i −0.601364 1.04159i
\(219\) −1870.53 3239.86i −0.577164 0.999677i
\(220\) 835.840 0.256147
\(221\) 3332.87 + 4757.25i 1.01445 + 1.44800i
\(222\) 5701.17 1.72359
\(223\) 1191.93 + 2064.48i 0.357926 + 0.619947i 0.987614 0.156902i \(-0.0501505\pi\)
−0.629688 + 0.776848i \(0.716817\pi\)
\(224\) 242.153 + 419.421i 0.0722299 + 0.125106i
\(225\) 2839.30 4917.82i 0.841275 1.45713i
\(226\) 3797.57 1.11774
\(227\) 777.037 1345.87i 0.227197 0.393517i −0.729779 0.683683i \(-0.760377\pi\)
0.956976 + 0.290166i \(0.0937105\pi\)
\(228\) 157.193 272.266i 0.0456594 0.0790844i
\(229\) −2915.60 −0.841346 −0.420673 0.907212i \(-0.638206\pi\)
−0.420673 + 0.907212i \(0.638206\pi\)
\(230\) −149.193 + 258.409i −0.0427716 + 0.0740827i
\(231\) −3626.62 6281.49i −1.03296 1.78914i
\(232\) 749.542 + 1298.24i 0.212111 + 0.367388i
\(233\) −4233.93 −1.19045 −0.595223 0.803561i \(-0.702936\pi\)
−0.595223 + 0.803561i \(0.702936\pi\)
\(234\) −2043.03 + 4384.21i −0.570757 + 1.22481i
\(235\) −1161.44 −0.322400
\(236\) 492.116 + 852.371i 0.135738 + 0.235104i
\(237\) 3251.59 + 5631.93i 0.891197 + 1.54360i
\(238\) −1875.53 + 3248.51i −0.510808 + 0.884746i
\(239\) 2372.55 0.642124 0.321062 0.947058i \(-0.395960\pi\)
0.321062 + 0.947058i \(0.395960\pi\)
\(240\) 274.153 474.846i 0.0737353 0.127713i
\(241\) −162.882 + 282.119i −0.0435358 + 0.0754062i −0.886972 0.461823i \(-0.847196\pi\)
0.843436 + 0.537229i \(0.180529\pi\)
\(242\) 3182.58 0.845389
\(243\) −549.739 + 952.175i −0.145127 + 0.251367i
\(244\) −182.611 316.291i −0.0479117 0.0829854i
\(245\) 220.226 + 381.443i 0.0574275 + 0.0994674i
\(246\) 466.486 0.120903
\(247\) −238.433 340.332i −0.0614215 0.0876714i
\(248\) −294.168 −0.0753214
\(249\) −2734.30 4735.95i −0.695901 1.20534i
\(250\) 908.608 + 1573.76i 0.229862 + 0.398132i
\(251\) 1300.88 2253.20i 0.327136 0.566616i −0.654806 0.755797i \(-0.727250\pi\)
0.981942 + 0.189181i \(0.0605832\pi\)
\(252\) −3123.55 −0.780814
\(253\) −1043.23 + 1806.92i −0.259237 + 0.449012i
\(254\) −244.604 + 423.667i −0.0604245 + 0.104658i
\(255\) 4246.75 1.04291
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −2108.55 3652.11i −0.511781 0.886430i −0.999907 0.0136569i \(-0.995653\pi\)
0.488126 0.872773i \(-0.337681\pi\)
\(258\) 1220.21 + 2113.47i 0.294446 + 0.509995i
\(259\) 4866.33 1.16749
\(260\) −415.840 593.558i −0.0991895 0.141580i
\(261\) −9668.41 −2.29295
\(262\) −1615.62 2798.34i −0.380967 0.659855i
\(263\) −3237.16 5606.93i −0.758981 1.31459i −0.943371 0.331740i \(-0.892364\pi\)
0.184390 0.982853i \(-0.440969\pi\)
\(264\) 1917.00 3320.35i 0.446907 0.774066i
\(265\) −1005.54 −0.233094
\(266\) 134.175 232.397i 0.0309277 0.0535684i
\(267\) −918.332 + 1590.60i −0.210491 + 0.364580i
\(268\) 1642.10 0.374280
\(269\) 650.517 1126.73i 0.147445 0.255382i −0.782837 0.622226i \(-0.786228\pi\)
0.930282 + 0.366844i \(0.119562\pi\)
\(270\) 842.895 + 1459.94i 0.189989 + 0.329070i
\(271\) 1539.82 + 2667.05i 0.345157 + 0.597829i 0.985382 0.170358i \(-0.0544923\pi\)
−0.640225 + 0.768187i \(0.721159\pi\)
\(272\) −1982.78 −0.441999
\(273\) −2656.42 + 5700.50i −0.588914 + 1.26377i
\(274\) −4603.89 −1.01508
\(275\) 2974.78 + 5152.46i 0.652312 + 1.12984i
\(276\) 684.349 + 1185.33i 0.149250 + 0.258509i
\(277\) 3143.95 5445.48i 0.681955 1.18118i −0.292428 0.956288i \(-0.594463\pi\)
0.974383 0.224894i \(-0.0722034\pi\)
\(278\) −5618.14 −1.21206
\(279\) 948.626 1643.07i 0.203558 0.352573i
\(280\) 234.008 405.313i 0.0499452 0.0865075i
\(281\) −3226.00 −0.684864 −0.342432 0.939543i \(-0.611251\pi\)
−0.342432 + 0.939543i \(0.611251\pi\)
\(282\) −2663.77 + 4613.78i −0.562500 + 0.974279i
\(283\) 193.292 + 334.791i 0.0406007 + 0.0703225i 0.885612 0.464426i \(-0.153739\pi\)
−0.845011 + 0.534749i \(0.820406\pi\)
\(284\) 848.887 + 1470.32i 0.177367 + 0.307209i
\(285\) −303.811 −0.0631446
\(286\) −2907.75 4150.44i −0.601184 0.858113i
\(287\) 398.178 0.0818944
\(288\) −825.542 1429.88i −0.168908 0.292557i
\(289\) −5222.04 9044.84i −1.06290 1.84100i
\(290\) 724.331 1254.58i 0.146670 0.254039i
\(291\) 6573.60 1.32423
\(292\) 843.964 1461.79i 0.169141 0.292961i
\(293\) −1096.41 + 1899.04i −0.218611 + 0.378645i −0.954384 0.298583i \(-0.903486\pi\)
0.735773 + 0.677229i \(0.236819\pi\)
\(294\) 2020.36 0.400782
\(295\) 475.564 823.701i 0.0938590 0.162569i
\(296\) 1286.15 + 2227.68i 0.252554 + 0.437437i
\(297\) 5893.92 + 10208.6i 1.15151 + 1.99448i
\(298\) 5066.34 0.984849
\(299\) 1802.17 158.133i 0.348569 0.0305855i
\(300\) 3902.87 0.751107
\(301\) 1041.53 + 1803.99i 0.199445 + 0.345449i
\(302\) 2391.10 + 4141.51i 0.455604 + 0.789129i
\(303\) −1832.07 + 3173.24i −0.347359 + 0.601643i
\(304\) 141.847 0.0267615
\(305\) −176.468 + 305.652i −0.0331297 + 0.0573823i
\(306\) 6394.01 11074.8i 1.19451 2.06896i
\(307\) −8083.96 −1.50285 −0.751427 0.659817i \(-0.770634\pi\)
−0.751427 + 0.659817i \(0.770634\pi\)
\(308\) 1636.29 2834.14i 0.302716 0.524319i
\(309\) −16.6986 28.9229i −0.00307428 0.00532481i
\(310\) 142.137 + 246.188i 0.0260414 + 0.0451050i
\(311\) 244.409 0.0445632 0.0222816 0.999752i \(-0.492907\pi\)
0.0222816 + 0.999752i \(0.492907\pi\)
\(312\) −3311.62 + 290.581i −0.600909 + 0.0527273i
\(313\) 4444.13 0.802546 0.401273 0.915958i \(-0.368568\pi\)
0.401273 + 0.915958i \(0.368568\pi\)
\(314\) −1927.49 3338.51i −0.346415 0.600009i
\(315\) 1509.24 + 2614.09i 0.269957 + 0.467578i
\(316\) −1467.08 + 2541.06i −0.261171 + 0.452361i
\(317\) 930.597 0.164882 0.0824409 0.996596i \(-0.473728\pi\)
0.0824409 + 0.996596i \(0.473728\pi\)
\(318\) −2306.21 + 3994.48i −0.406685 + 0.704400i
\(319\) 5064.86 8772.60i 0.888959 1.53972i
\(320\) 247.389 0.0432172
\(321\) 504.557 873.918i 0.0877309 0.151954i
\(322\) 584.138 + 1011.76i 0.101096 + 0.175103i
\(323\) 549.320 + 951.451i 0.0946285 + 0.163901i
\(324\) 2160.34 0.370428
\(325\) 2178.95 4675.90i 0.371897 0.798068i
\(326\) −4437.05 −0.753820
\(327\) 8580.13 + 14861.2i 1.45102 + 2.51323i
\(328\) 105.237 + 182.275i 0.0177156 + 0.0306844i
\(329\) −2273.71 + 3938.17i −0.381014 + 0.659935i
\(330\) −3705.05 −0.618050
\(331\) −2413.68 + 4180.61i −0.400809 + 0.694221i −0.993824 0.110970i \(-0.964604\pi\)
0.593015 + 0.805191i \(0.297937\pi\)
\(332\) 1233.69 2136.81i 0.203938 0.353231i
\(333\) −16590.2 −2.73014
\(334\) 1508.27 2612.40i 0.247092 0.427977i
\(335\) −793.432 1374.26i −0.129402 0.224132i
\(336\) −1073.40 1859.18i −0.174282 0.301865i
\(337\) 10709.7 1.73115 0.865573 0.500782i \(-0.166954\pi\)
0.865573 + 0.500782i \(0.166954\pi\)
\(338\) −1500.73 + 4129.78i −0.241506 + 0.664586i
\(339\) −16833.6 −2.69698
\(340\) 958.044 + 1659.38i 0.152815 + 0.264684i
\(341\) 993.888 + 1721.47i 0.157836 + 0.273380i
\(342\) −457.426 + 792.284i −0.0723238 + 0.125269i
\(343\) 6915.66 1.08866
\(344\) −550.546 + 953.574i −0.0862891 + 0.149457i
\(345\) 661.331 1145.46i 0.103203 0.178752i
\(346\) −3412.94 −0.530292
\(347\) −3200.54 + 5543.51i −0.495142 + 0.857611i −0.999984 0.00560066i \(-0.998217\pi\)
0.504842 + 0.863211i \(0.331551\pi\)
\(348\) −3322.52 5754.77i −0.511798 0.886460i
\(349\) 1215.01 + 2104.46i 0.186355 + 0.322777i 0.944032 0.329853i \(-0.106999\pi\)
−0.757677 + 0.652630i \(0.773666\pi\)
\(350\) 3331.36 0.508768
\(351\) 4317.16 9264.35i 0.656504 1.40882i
\(352\) 1729.86 0.261938
\(353\) −4040.01 6997.51i −0.609145 1.05507i −0.991382 0.131006i \(-0.958179\pi\)
0.382237 0.924064i \(-0.375154\pi\)
\(354\) −2181.42 3778.33i −0.327517 0.567277i
\(355\) 820.335 1420.86i 0.122645 0.212427i
\(356\) −828.683 −0.123371
\(357\) 8313.71 14399.8i 1.23252 2.13478i
\(358\) −595.223 + 1030.96i −0.0878729 + 0.152200i
\(359\) 8715.23 1.28126 0.640630 0.767850i \(-0.278673\pi\)
0.640630 + 0.767850i \(0.278673\pi\)
\(360\) −797.775 + 1381.79i −0.116796 + 0.202296i
\(361\) 3390.20 + 5872.00i 0.494271 + 0.856102i
\(362\) −403.006 698.027i −0.0585126 0.101347i
\(363\) −14107.5 −2.03982
\(364\) −2826.69 + 248.031i −0.407030 + 0.0357152i
\(365\) −1631.15 −0.233914
\(366\) 809.463 + 1402.03i 0.115605 + 0.200233i
\(367\) −1410.44 2442.95i −0.200611 0.347469i 0.748114 0.663570i \(-0.230959\pi\)
−0.948726 + 0.316101i \(0.897626\pi\)
\(368\) −308.771 + 534.807i −0.0437386 + 0.0757575i
\(369\) −1357.46 −0.191508
\(370\) 1242.89 2152.75i 0.174635 0.302477i
\(371\) −1968.51 + 3409.56i −0.275471 + 0.477130i
\(372\) 1303.97 0.181741
\(373\) 6464.84 11197.4i 0.897418 1.55437i 0.0666351 0.997777i \(-0.478774\pi\)
0.830783 0.556596i \(-0.187893\pi\)
\(374\) 6699.09 + 11603.2i 0.926208 + 1.60424i
\(375\) −4027.61 6976.03i −0.554627 0.960642i
\(376\) −2403.73 −0.329688
\(377\) −8749.55 + 767.737i −1.19529 + 0.104882i
\(378\) 6600.42 0.898119
\(379\) 1144.02 + 1981.51i 0.155052 + 0.268557i 0.933078 0.359675i \(-0.117112\pi\)
−0.778026 + 0.628232i \(0.783779\pi\)
\(380\) −68.5382 118.712i −0.00925246 0.0160257i
\(381\) 1084.26 1878.00i 0.145797 0.252527i
\(382\) −1227.39 −0.164395
\(383\) −6078.10 + 10527.6i −0.810904 + 1.40453i 0.101328 + 0.994853i \(0.467691\pi\)
−0.912232 + 0.409674i \(0.865642\pi\)
\(384\) 567.389 982.747i 0.0754023 0.130601i
\(385\) −3162.51 −0.418640
\(386\) −2005.33 + 3473.33i −0.264426 + 0.458000i
\(387\) −3550.77 6150.12i −0.466398 0.807825i
\(388\) 1482.97 + 2568.58i 0.194037 + 0.336082i
\(389\) −1479.71 −0.192864 −0.0964322 0.995340i \(-0.530743\pi\)
−0.0964322 + 0.995340i \(0.530743\pi\)
\(390\) 1843.30 + 2631.08i 0.239332 + 0.341615i
\(391\) −4783.01 −0.618637
\(392\) 455.783 + 789.439i 0.0587258 + 0.101716i
\(393\) 7161.62 + 12404.3i 0.919226 + 1.59215i
\(394\) 557.500 965.617i 0.0712853 0.123470i
\(395\) 2835.48 0.361186
\(396\) −5578.42 + 9662.10i −0.707894 + 1.22611i
\(397\) −7635.63 + 13225.3i −0.965292 + 1.67194i −0.256465 + 0.966554i \(0.582558\pi\)
−0.708827 + 0.705382i \(0.750775\pi\)
\(398\) 11067.9 1.39393
\(399\) −594.760 + 1030.15i −0.0746247 + 0.129254i
\(400\) 880.466 + 1525.01i 0.110058 + 0.190626i
\(401\) −1282.27 2220.96i −0.159685 0.276582i 0.775070 0.631875i \(-0.217714\pi\)
−0.934755 + 0.355293i \(0.884381\pi\)
\(402\) −7278.97 −0.903089
\(403\) 728.000 1562.24i 0.0899858 0.193104i
\(404\) −1653.22 −0.203591
\(405\) −1043.84 1807.98i −0.128071 0.221825i
\(406\) −2835.99 4912.09i −0.346670 0.600450i
\(407\) 8690.89 15053.1i 1.05846 1.83330i
\(408\) 8789.12 1.06649
\(409\) −526.235 + 911.465i −0.0636201 + 0.110193i −0.896081 0.443890i \(-0.853598\pi\)
0.832461 + 0.554084i \(0.186931\pi\)
\(410\) 101.697 176.145i 0.0122499 0.0212175i
\(411\) 20407.8 2.44925
\(412\) 7.53424 13.0497i 0.000900936 0.00156047i
\(413\) −1861.99 3225.06i −0.221846 0.384249i
\(414\) −1991.43 3449.26i −0.236410 0.409474i
\(415\) −2384.38 −0.282036
\(416\) −860.626 1228.43i −0.101432 0.144781i
\(417\) 24903.7 2.92455
\(418\) −479.251 830.087i −0.0560788 0.0971313i
\(419\) −4355.81 7544.48i −0.507864 0.879647i −0.999959 0.00910485i \(-0.997102\pi\)
0.492094 0.870542i \(-0.336232\pi\)
\(420\) −1037.29 + 1796.65i −0.120511 + 0.208732i
\(421\) 213.335 0.0246967 0.0123484 0.999924i \(-0.496069\pi\)
0.0123484 + 0.999924i \(0.496069\pi\)
\(422\) 4683.73 8112.46i 0.540286 0.935802i
\(423\) 7751.47 13425.9i 0.890992 1.54324i
\(424\) −2081.08 −0.238363
\(425\) −6819.41 + 11811.6i −0.778329 + 1.34811i
\(426\) −3762.89 6517.51i −0.427964 0.741255i
\(427\) 690.932 + 1196.73i 0.0783057 + 0.135629i
\(428\) 455.301 0.0514201
\(429\) 12889.2 + 18397.8i 1.45058 + 2.07052i
\(430\) 1064.06 0.119333
\(431\) −4476.72 7753.91i −0.500316 0.866573i −1.00000 0.000364932i \(-0.999884\pi\)
0.499684 0.866208i \(-0.333449\pi\)
\(432\) 1744.47 + 3021.50i 0.194284 + 0.336510i
\(433\) −2930.72 + 5076.16i −0.325269 + 0.563382i −0.981567 0.191120i \(-0.938788\pi\)
0.656298 + 0.754502i \(0.272122\pi\)
\(434\) 1113.03 0.123104
\(435\) −3210.76 + 5561.21i −0.353895 + 0.612964i
\(436\) −3871.26 + 6705.22i −0.425229 + 0.736518i
\(437\) 342.175 0.0374564
\(438\) −3741.06 + 6479.71i −0.408116 + 0.706878i
\(439\) 5221.77 + 9044.36i 0.567702 + 0.983289i 0.996793 + 0.0800275i \(0.0255008\pi\)
−0.429090 + 0.903262i \(0.641166\pi\)
\(440\) −835.840 1447.72i −0.0905616 0.156857i
\(441\) −5879.19 −0.634833
\(442\) 4906.93 10530.0i 0.528052 1.13317i
\(443\) 8789.73 0.942692 0.471346 0.881948i \(-0.343768\pi\)
0.471346 + 0.881948i \(0.343768\pi\)
\(444\) −5701.17 9874.71i −0.609382 1.05548i
\(445\) 400.405 + 693.522i 0.0426540 + 0.0738789i
\(446\) 2383.86 4128.97i 0.253092 0.438369i
\(447\) −22457.7 −2.37632
\(448\) 484.305 838.841i 0.0510743 0.0884632i
\(449\) −4318.06 + 7479.09i −0.453857 + 0.786103i −0.998622 0.0524857i \(-0.983286\pi\)
0.544765 + 0.838589i \(0.316619\pi\)
\(450\) −11357.2 −1.18974
\(451\) 711.114 1231.69i 0.0742463 0.128598i
\(452\) −3797.57 6577.58i −0.395182 0.684476i
\(453\) −10599.1 18358.2i −1.09931 1.90407i
\(454\) −3108.15 −0.321305
\(455\) 1573.38 + 2245.81i 0.162113 + 0.231396i
\(456\) −628.771 −0.0645722
\(457\) −2438.48 4223.57i −0.249600 0.432320i 0.713815 0.700335i \(-0.246966\pi\)
−0.963415 + 0.268014i \(0.913633\pi\)
\(458\) 2915.60 + 5049.97i 0.297461 + 0.515217i
\(459\) −13511.3 + 23402.2i −1.37397 + 2.37979i
\(460\) 596.771 0.0604882
\(461\) 5901.96 10222.5i 0.596272 1.03277i −0.397094 0.917778i \(-0.629981\pi\)
0.993366 0.114996i \(-0.0366855\pi\)
\(462\) −7253.24 + 12563.0i −0.730414 + 1.26511i
\(463\) −4797.53 −0.481555 −0.240777 0.970580i \(-0.577402\pi\)
−0.240777 + 0.970580i \(0.577402\pi\)
\(464\) 1499.08 2596.49i 0.149985 0.259782i
\(465\) −630.055 1091.29i −0.0628346 0.108833i
\(466\) 4233.93 + 7333.38i 0.420886 + 0.728996i
\(467\) −13188.7 −1.30686 −0.653428 0.756989i \(-0.726670\pi\)
−0.653428 + 0.756989i \(0.726670\pi\)
\(468\) 9636.71 845.581i 0.951831 0.0835193i
\(469\) −6213.09 −0.611714
\(470\) 1161.44 + 2011.67i 0.113985 + 0.197429i
\(471\) 8544.03 + 14798.7i 0.835856 + 1.44775i
\(472\) 984.233 1704.74i 0.0959809 0.166244i
\(473\) 7440.38 0.723275
\(474\) 6503.19 11263.9i 0.630172 1.09149i
\(475\) 487.858 844.995i 0.0471252 0.0816233i
\(476\) 7502.11 0.722392
\(477\) 6711.00 11623.8i 0.644184 1.11576i
\(478\) −2372.55 4109.38i −0.227025 0.393219i
\(479\) −9024.41 15630.7i −0.860827 1.49100i −0.871132 0.491049i \(-0.836614\pi\)
0.0103054 0.999947i \(-0.496720\pi\)
\(480\) −1096.61 −0.104277
\(481\) −15013.5 + 1317.37i −1.42320 + 0.124879i
\(482\) 651.526 0.0615689
\(483\) −2589.33 4484.85i −0.243931 0.422500i
\(484\) −3182.58 5512.39i −0.298890 0.517693i
\(485\) 1433.09 2482.18i 0.134171 0.232392i
\(486\) 2198.96 0.205240
\(487\) −5750.62 + 9960.37i −0.535084 + 0.926792i 0.464076 + 0.885796i \(0.346387\pi\)
−0.999159 + 0.0409963i \(0.986947\pi\)
\(488\) −365.221 + 632.582i −0.0338787 + 0.0586796i
\(489\) 19668.2 1.81887
\(490\) 440.453 762.886i 0.0406074 0.0703340i
\(491\) 2000.33 + 3464.67i 0.183856 + 0.318449i 0.943191 0.332252i \(-0.107809\pi\)
−0.759334 + 0.650701i \(0.774475\pi\)
\(492\) −466.486 807.978i −0.0427456 0.0740375i
\(493\) 23221.5 2.12139
\(494\) −351.040 + 753.310i −0.0319717 + 0.0686093i
\(495\) 10781.6 0.978981
\(496\) 294.168 + 509.514i 0.0266301 + 0.0461247i
\(497\) −3211.88 5563.14i −0.289884 0.502094i
\(498\) −5468.60 + 9471.89i −0.492076 + 0.852301i
\(499\) −8322.72 −0.746645 −0.373323 0.927702i \(-0.621782\pi\)
−0.373323 + 0.927702i \(0.621782\pi\)
\(500\) 1817.22 3147.51i 0.162537 0.281522i
\(501\) −6685.76 + 11580.1i −0.596203 + 1.03265i
\(502\) −5203.54 −0.462640
\(503\) 3563.74 6172.58i 0.315903 0.547160i −0.663726 0.747976i \(-0.731026\pi\)
0.979629 + 0.200816i \(0.0643592\pi\)
\(504\) 3123.55 + 5410.15i 0.276059 + 0.478149i
\(505\) 798.808 + 1383.58i 0.0703890 + 0.121917i
\(506\) 4172.90 0.366617
\(507\) 6652.32 18306.2i 0.582722 1.60356i
\(508\) 978.417 0.0854532
\(509\) 7174.46 + 12426.5i 0.624759 + 1.08211i 0.988587 + 0.150649i \(0.0481362\pi\)
−0.363828 + 0.931466i \(0.618530\pi\)
\(510\) −4246.75 7355.59i −0.368724 0.638649i
\(511\) −3193.25 + 5530.87i −0.276441 + 0.478809i
\(512\) 512.000 0.0441942
\(513\) 966.593 1674.19i 0.0831893 0.144088i
\(514\) −4217.10 + 7304.22i −0.361884 + 0.626801i
\(515\) −14.5617 −0.00124595
\(516\) 2440.42 4226.93i 0.208205 0.360621i
\(517\) 8121.32 + 14066.5i 0.690861 + 1.19661i
\(518\) −4866.33 8428.73i −0.412769 0.714937i
\(519\) 15128.7 1.27953
\(520\) −612.233 + 1313.81i −0.0516311 + 0.110797i
\(521\) 3535.86 0.297329 0.148665 0.988888i \(-0.452502\pi\)
0.148665 + 0.988888i \(0.452502\pi\)
\(522\) 9668.41 + 16746.2i 0.810680 + 1.40414i
\(523\) −6982.44 12093.9i −0.583787 1.01115i −0.995025 0.0996211i \(-0.968237\pi\)
0.411238 0.911528i \(-0.365096\pi\)
\(524\) −3231.24 + 5596.68i −0.269385 + 0.466588i
\(525\) −14767.0 −1.22759
\(526\) −6474.32 + 11213.9i −0.536680 + 0.929558i
\(527\) −2278.40 + 3946.31i −0.188328 + 0.326193i
\(528\) −7668.02 −0.632022
\(529\) 5338.66 9246.83i 0.438782 0.759993i
\(530\) 1005.54 + 1741.65i 0.0824110 + 0.142740i
\(531\) 6347.86 + 10994.8i 0.518783 + 0.898558i
\(532\) −536.699 −0.0437384
\(533\) −1228.45 + 107.791i −0.0998312 + 0.00875978i
\(534\) 3673.33 0.297679
\(535\) −219.994 381.040i −0.0177779 0.0307922i
\(536\) −1642.10 2844.19i −0.132328 0.229199i
\(537\) 2638.46 4569.95i 0.212026 0.367240i
\(538\) −2602.07 −0.208519
\(539\) 3079.85 5334.46i 0.246120 0.426292i
\(540\) 1685.79 2919.88i 0.134342 0.232688i
\(541\) −10661.6 −0.847277 −0.423638 0.905831i \(-0.639247\pi\)
−0.423638 + 0.905831i \(0.639247\pi\)
\(542\) 3079.64 5334.10i 0.244063 0.422729i
\(543\) 1786.42 + 3094.17i 0.141183 + 0.244537i
\(544\) 1982.78 + 3434.27i 0.156270 + 0.270668i
\(545\) 7482.10 0.588070
\(546\) 12530.0 1099.45i 0.982112 0.0861763i
\(547\) −3393.59 −0.265264 −0.132632 0.991165i \(-0.542343\pi\)
−0.132632 + 0.991165i \(0.542343\pi\)
\(548\) 4603.89 + 7974.18i 0.358884 + 0.621606i
\(549\) −2355.51 4079.86i −0.183116 0.317166i
\(550\) 5949.55 10304.9i 0.461254 0.798915i
\(551\) −1661.26 −0.128443
\(552\) 1368.70 2370.66i 0.105536 0.182793i
\(553\) 5550.91 9614.46i 0.426851 0.739328i
\(554\) −12575.8 −0.964430
\(555\) −5509.41 + 9542.58i −0.421372 + 0.729837i
\(556\) 5618.14 + 9730.90i 0.428529 + 0.742234i
\(557\) 4124.51 + 7143.87i 0.313754 + 0.543439i 0.979172 0.203033i \(-0.0650798\pi\)
−0.665418 + 0.746471i \(0.731746\pi\)
\(558\) −3794.50 −0.287875
\(559\) −3701.67 5283.67i −0.280079 0.399777i
\(560\) −936.031 −0.0706331
\(561\) −29695.3 51433.7i −2.23482 3.87083i
\(562\) 3226.00 + 5587.59i 0.242136 + 0.419392i
\(563\) −4434.39 + 7680.59i −0.331949 + 0.574953i −0.982894 0.184172i \(-0.941040\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(564\) 10655.1 0.795495
\(565\) −3669.83 + 6356.34i −0.273259 + 0.473298i
\(566\) 386.584 669.583i 0.0287091 0.0497255i
\(567\) −8173.93 −0.605419
\(568\) 1697.77 2940.63i 0.125417 0.217229i
\(569\) 3204.24 + 5549.91i 0.236079 + 0.408901i 0.959586 0.281417i \(-0.0908043\pi\)
−0.723507 + 0.690317i \(0.757471\pi\)
\(570\) 303.811 + 526.216i 0.0223250 + 0.0386680i
\(571\) 10045.2 0.736212 0.368106 0.929784i \(-0.380006\pi\)
0.368106 + 0.929784i \(0.380006\pi\)
\(572\) −4281.02 + 9186.80i −0.312934 + 0.671537i
\(573\) 5440.70 0.396664
\(574\) −398.178 689.664i −0.0289540 0.0501498i
\(575\) 2123.92 + 3678.75i 0.154041 + 0.266807i
\(576\) −1651.08 + 2859.76i −0.119436 + 0.206869i
\(577\) −24528.9 −1.76976 −0.884880 0.465818i \(-0.845760\pi\)
−0.884880 + 0.465818i \(0.845760\pi\)
\(578\) −10444.1 + 18089.7i −0.751585 + 1.30178i
\(579\) 8889.08 15396.3i 0.638027 1.10510i
\(580\) −2897.32 −0.207422
\(581\) −4667.82 + 8084.90i −0.333311 + 0.577312i
\(582\) −6573.60 11385.8i −0.468186 0.810922i
\(583\) 7031.21 + 12178.4i 0.499490 + 0.865142i
\(584\) −3375.86 −0.239202
\(585\) −5363.95 7656.36i −0.379098 0.541114i
\(586\) 4385.64 0.309163
\(587\) 7951.88 + 13773.1i 0.559130 + 0.968441i 0.997569 + 0.0696803i \(0.0221979\pi\)
−0.438440 + 0.898761i \(0.644469\pi\)
\(588\) −2020.36 3499.37i −0.141698 0.245428i
\(589\) 162.996 282.317i 0.0114026 0.0197499i
\(590\) −1902.26 −0.132737
\(591\) −2471.24 + 4280.32i −0.172002 + 0.297917i
\(592\) 2572.31 4455.36i 0.178583 0.309315i
\(593\) −5436.51 −0.376477 −0.188238 0.982123i \(-0.560278\pi\)
−0.188238 + 0.982123i \(0.560278\pi\)
\(594\) 11787.8 20417.1i 0.814244 1.41031i
\(595\) −3624.89 6278.49i −0.249758 0.432593i
\(596\) −5066.34 8775.15i −0.348197 0.603094i
\(597\) −49061.2 −3.36339
\(598\) −2076.07 2963.32i −0.141968 0.202641i
\(599\) 6872.46 0.468783 0.234392 0.972142i \(-0.424690\pi\)
0.234392 + 0.972142i \(0.424690\pi\)
\(600\) −3902.87 6759.96i −0.265556 0.459957i
\(601\) 708.911 + 1227.87i 0.0481149 + 0.0833375i 0.889080 0.457752i \(-0.151345\pi\)
−0.840965 + 0.541090i \(0.818012\pi\)
\(602\) 2083.07 3607.97i 0.141029 0.244269i
\(603\) 21181.6 1.43048
\(604\) 4782.20 8283.01i 0.322161 0.557998i
\(605\) −3075.54 + 5326.98i −0.206675 + 0.357971i
\(606\) 7328.28 0.491240
\(607\) 6796.67 11772.2i 0.454478 0.787180i −0.544180 0.838969i \(-0.683159\pi\)
0.998658 + 0.0517890i \(0.0164923\pi\)
\(608\) −141.847 245.687i −0.00946163 0.0163880i
\(609\) 12571.2 + 21773.9i 0.836470 + 1.44881i
\(610\) 705.874 0.0468525
\(611\) 5948.68 12765.5i 0.393875 0.845231i
\(612\) −25576.1 −1.68930
\(613\) 8639.71 + 14964.4i 0.569257 + 0.985982i 0.996640 + 0.0819112i \(0.0261024\pi\)
−0.427383 + 0.904071i \(0.640564\pi\)
\(614\) 8083.96 + 14001.8i 0.531339 + 0.920306i
\(615\) −450.796 + 780.802i −0.0295575 + 0.0511951i
\(616\) −6545.17 −0.428105
\(617\) 1088.54 1885.40i 0.0710256 0.123020i −0.828325 0.560247i \(-0.810706\pi\)
0.899351 + 0.437227i \(0.144039\pi\)
\(618\) −33.3973 + 57.8458i −0.00217384 + 0.00376521i
\(619\) 17067.5 1.10824 0.554121 0.832436i \(-0.313055\pi\)
0.554121 + 0.832436i \(0.313055\pi\)
\(620\) 284.274 492.377i 0.0184141 0.0318941i
\(621\) 4208.13 + 7288.69i 0.271927 + 0.470991i
\(622\) −244.409 423.329i −0.0157555 0.0272893i
\(623\) 3135.43 0.201635
\(624\) 3814.92 + 5445.32i 0.244742 + 0.349338i
\(625\) 10245.1 0.655686
\(626\) −4444.13 7697.45i −0.283743 0.491457i
\(627\) 2124.39 + 3679.55i 0.135311 + 0.234365i
\(628\) −3854.98 + 6677.01i −0.244953 + 0.424270i
\(629\) 39846.2 2.52587
\(630\) 3018.49 5228.18i 0.190888 0.330628i
\(631\) 3964.98 6867.55i 0.250148 0.433269i −0.713418 0.700738i \(-0.752854\pi\)
0.963566 + 0.267469i \(0.0861874\pi\)
\(632\) 5868.34 0.369351
\(633\) −20761.7 + 35960.4i −1.30364 + 2.25797i
\(634\) −930.597 1611.84i −0.0582945 0.100969i
\(635\) −472.754 818.834i −0.0295444 0.0511723i
\(636\) 9224.85 0.575140
\(637\) −5320.44 + 466.847i −0.330932 + 0.0290379i
\(638\) −20259.5 −1.25718
\(639\) 10949.9 + 18965.7i 0.677888 + 1.17414i
\(640\) −247.389 428.491i −0.0152796 0.0264650i
\(641\) 2919.53 5056.77i 0.179898 0.311592i −0.761948 0.647639i \(-0.775757\pi\)
0.941845 + 0.336047i \(0.109090\pi\)
\(642\) −2018.23 −0.124070
\(643\) 8511.42 14742.2i 0.522018 0.904161i −0.477654 0.878548i \(-0.658513\pi\)
0.999672 0.0256134i \(-0.00815390\pi\)
\(644\) 1168.28 2023.51i 0.0714853 0.123816i
\(645\) −4716.68 −0.287936
\(646\) 1098.64 1902.90i 0.0669124 0.115896i
\(647\) −10889.6 18861.4i −0.661694 1.14609i −0.980170 0.198157i \(-0.936504\pi\)
0.318476 0.947931i \(-0.396829\pi\)
\(648\) −2160.34 3741.81i −0.130966 0.226840i
\(649\) −13301.5 −0.804512
\(650\) −10277.8 + 901.838i −0.620200 + 0.0544200i
\(651\) −4933.74 −0.297033
\(652\) 4437.05 + 7685.19i 0.266516 + 0.461619i
\(653\) −8520.81 14758.5i −0.510636 0.884447i −0.999924 0.0123250i \(-0.996077\pi\)
0.489288 0.872122i \(-0.337257\pi\)
\(654\) 17160.3 29722.4i 1.02602 1.77712i
\(655\) 6245.12 0.372545
\(656\) 210.474 364.551i 0.0125268 0.0216971i
\(657\) 10886.4 18855.7i 0.646450 1.11968i
\(658\) 9094.82 0.538834
\(659\) −15382.9 + 26644.0i −0.909306 + 1.57496i −0.0942763 + 0.995546i \(0.530054\pi\)
−0.815030 + 0.579419i \(0.803280\pi\)
\(660\) 3705.05 + 6417.34i 0.218514 + 0.378476i
\(661\) −3872.35 6707.11i −0.227862 0.394669i 0.729312 0.684181i \(-0.239840\pi\)
−0.957174 + 0.289512i \(0.906507\pi\)
\(662\) 9654.71 0.566829
\(663\) −21751.1 + 46676.5i −1.27412 + 2.73418i
\(664\) −4934.75 −0.288412
\(665\) 259.323 + 449.161i 0.0151220 + 0.0261921i
\(666\) 16590.2 + 28735.1i 0.965251 + 1.67186i
\(667\) 3616.20 6263.44i 0.209925 0.363601i
\(668\) −6033.08 −0.349442
\(669\) −10567.0 + 18302.6i −0.610679 + 1.05773i
\(670\) −1586.86 + 2748.53i −0.0915013 + 0.158485i
\(671\) 4935.80 0.283971
\(672\) −2146.79 + 3718.36i −0.123236 + 0.213451i
\(673\) 1151.23 + 1993.98i 0.0659384 + 0.114209i 0.897110 0.441808i \(-0.145663\pi\)
−0.831171 + 0.556016i \(0.812329\pi\)
\(674\) −10709.7 18549.8i −0.612053 1.06011i
\(675\) 23999.1 1.36848
\(676\) 8653.71 1530.44i 0.492359 0.0870754i
\(677\) −15932.6 −0.904488 −0.452244 0.891894i \(-0.649376\pi\)
−0.452244 + 0.891894i \(0.649376\pi\)
\(678\) 16833.6 + 29156.6i 0.953525 + 1.65155i
\(679\) −5611.01 9718.55i −0.317129 0.549284i
\(680\) 1916.09 3318.76i 0.108057 0.187160i
\(681\) 13777.6 0.775269
\(682\) 1987.78 3442.93i 0.111607 0.193309i
\(683\) −9229.29 + 15985.6i −0.517055 + 0.895566i 0.482748 + 0.875759i \(0.339639\pi\)
−0.999804 + 0.0198072i \(0.993695\pi\)
\(684\) 1829.70 0.102281
\(685\) 4449.04 7705.97i 0.248159 0.429825i
\(686\) −6915.66 11978.3i −0.384900 0.666666i
\(687\) −12924.1 22385.1i −0.717735 1.24315i
\(688\) 2202.18 0.122031
\(689\) 5150.19 11052.0i 0.284770 0.611099i
\(690\) −2645.32 −0.145950
\(691\) −11489.7 19900.7i −0.632544 1.09560i −0.987030 0.160537i \(-0.948677\pi\)
0.354486 0.935061i \(-0.384656\pi\)
\(692\) 3412.94 + 5911.39i 0.187487 + 0.324736i
\(693\) 21106.7 36557.9i 1.15697 2.00392i
\(694\) 12802.2 0.700236
\(695\) 5429.17 9403.60i 0.296317 0.513236i
\(696\) −6645.04 + 11509.5i −0.361896 + 0.626822i
\(697\) 3260.33 0.177179
\(698\) 2430.02 4208.92i 0.131773 0.228238i
\(699\) −18767.9 32506.9i −1.01554 1.75897i
\(700\) −3331.36 5770.09i −0.179877 0.311555i
\(701\) 8633.81 0.465185 0.232592 0.972574i \(-0.425279\pi\)
0.232592 + 0.972574i \(0.425279\pi\)
\(702\) −20363.5 + 1786.81i −1.09483 + 0.0960667i
\(703\) −2850.58 −0.152933
\(704\) −1729.86 2996.21i −0.0926089 0.160403i
\(705\) −5148.34 8917.19i −0.275032 0.476370i
\(706\) −8080.03 + 13995.0i −0.430731 + 0.746047i
\(707\) 6255.19 0.332745
\(708\) −4362.84 + 7556.66i −0.231590 + 0.401125i
\(709\) 12811.2 22189.7i 0.678612 1.17539i −0.296787 0.954944i \(-0.595915\pi\)
0.975399 0.220447i \(-0.0707515\pi\)
\(710\) −3281.34 −0.173446
\(711\) −18924.1 + 32777.4i −0.998182 + 1.72890i
\(712\) 828.683 + 1435.32i 0.0436183 + 0.0755491i
\(713\) 709.614 + 1229.09i 0.0372725 + 0.0645578i
\(714\) −33254.8 −1.74304
\(715\) 9756.91 856.129i 0.510333 0.0447796i
\(716\) 2380.89 0.124271
\(717\) 10516.9 + 18215.8i 0.547783 + 0.948788i
\(718\) −8715.23 15095.2i −0.452994 0.784608i
\(719\) −17477.4 + 30271.7i −0.906532 + 1.57016i −0.0876845 + 0.996148i \(0.527947\pi\)
−0.818847 + 0.574011i \(0.805387\pi\)
\(720\) 3191.10 0.165174
\(721\) −28.5068 + 49.3753i −0.00147247 + 0.00255039i
\(722\) 6780.40 11744.0i 0.349502 0.605355i
\(723\) −2888.04 −0.148558
\(724\) −806.013 + 1396.05i −0.0413746 + 0.0716629i
\(725\) −10311.7 17860.3i −0.528228 0.914918i
\(726\) 14107.5 + 24435.0i 0.721184 + 1.24913i
\(727\) −23397.0 −1.19360 −0.596800 0.802390i \(-0.703562\pi\)
−0.596800 + 0.802390i \(0.703562\pi\)
\(728\) 3256.30 + 4647.95i 0.165778 + 0.236627i
\(729\) −24329.6 −1.23607
\(730\) 1631.15 + 2825.24i 0.0827010 + 0.143242i
\(731\) 8528.21 + 14771.3i 0.431501 + 0.747382i
\(732\) 1618.93 2804.06i 0.0817449 0.141586i
\(733\) −3541.17 −0.178440 −0.0892198 0.996012i \(-0.528437\pi\)
−0.0892198 + 0.996012i \(0.528437\pi\)
\(734\) −2820.88 + 4885.90i −0.141854 + 0.245698i
\(735\) −1952.41 + 3381.67i −0.0979804 + 0.169707i
\(736\) 1235.08 0.0618557
\(737\) −11096.1 + 19219.0i −0.554586 + 0.960571i
\(738\) 1357.46 + 2351.19i 0.0677084 + 0.117274i
\(739\) 19616.5 + 33976.8i 0.976460 + 1.69128i 0.675029 + 0.737791i \(0.264131\pi\)
0.301431 + 0.953488i \(0.402536\pi\)
\(740\) −4971.57 −0.246971
\(741\) 1556.07 3339.22i 0.0771437 0.165546i
\(742\) 7874.03 0.389575
\(743\) −19099.4 33081.1i −0.943052 1.63341i −0.759606 0.650383i \(-0.774608\pi\)
−0.183446 0.983030i \(-0.558725\pi\)
\(744\) −1303.97 2258.54i −0.0642551 0.111293i
\(745\) −4895.93 + 8480.00i −0.240769 + 0.417024i
\(746\) −25859.4 −1.26914
\(747\) 15913.4 27562.9i 0.779441 1.35003i
\(748\) 13398.2 23206.3i 0.654928 1.13437i
\(749\) −1722.69 −0.0840399
\(750\) −8055.23 + 13952.1i −0.392180 + 0.679277i
\(751\) 835.377 + 1446.92i 0.0405903 + 0.0703045i 0.885607 0.464436i \(-0.153743\pi\)
−0.845017 + 0.534740i \(0.820409\pi\)
\(752\) 2403.73 + 4163.38i 0.116562 + 0.201892i
\(753\) 23065.9 1.11629
\(754\) 10079.3 + 14386.9i 0.486826 + 0.694882i
\(755\) −9242.70 −0.445532
\(756\) −6600.42 11432.3i −0.317533 0.549983i
\(757\) 18974.3 + 32864.4i 0.911007 + 1.57791i 0.812645 + 0.582759i \(0.198027\pi\)
0.0983617 + 0.995151i \(0.468640\pi\)
\(758\) 2288.05 3963.01i 0.109638 0.189899i
\(759\) −18497.4 −0.884600
\(760\) −137.076 + 237.423i −0.00654247 + 0.0113319i
\(761\) 18886.4 32712.1i 0.899645 1.55823i 0.0716969 0.997426i \(-0.477159\pi\)
0.827948 0.560805i \(-0.189508\pi\)
\(762\) −4337.06 −0.206188
\(763\) 14647.4 25370.1i 0.694984 1.20375i
\(764\) 1227.39 + 2125.91i 0.0581224 + 0.100671i
\(765\) 12357.9 + 21404.5i 0.584053 + 1.01161i
\(766\) 24312.4 1.14679
\(767\) 6617.63 + 9445.82i 0.311537 + 0.444679i
\(768\) −2269.56 −0.106635
\(769\) 6536.64 + 11321.8i 0.306524 + 0.530916i 0.977600 0.210474i \(-0.0675006\pi\)
−0.671075 + 0.741389i \(0.734167\pi\)
\(770\) 3162.51 + 5477.63i 0.148012 + 0.256364i
\(771\) 18693.2 32377.7i 0.873179 1.51239i
\(772\) 8021.32 0.373955
\(773\) 12571.5 21774.6i 0.584951 1.01316i −0.409931 0.912117i \(-0.634447\pi\)
0.994882 0.101048i \(-0.0322196\pi\)
\(774\) −7101.55 + 12300.2i −0.329793 + 0.571218i
\(775\) 4046.96 0.187575
\(776\) 2965.94 5137.15i 0.137205 0.237646i
\(777\) 21571.1 + 37362.3i 0.995959 + 1.72505i
\(778\) 1479.71 + 2562.93i 0.0681879 + 0.118105i
\(779\) −233.243 −0.0107276
\(780\) 2713.86 5823.78i 0.124579 0.267339i
\(781\) −22944.7 −1.05125
\(782\) 4783.01 + 8284.41i 0.218721 + 0.378836i
\(783\) −20430.5 35386.6i −0.932472 1.61509i
\(784\) 911.566 1578.88i 0.0415254 0.0719241i
\(785\) 7450.63 0.338757
\(786\) 14323.2 24808.6i 0.649991 1.12582i
\(787\) −9582.29 + 16597.0i −0.434017 + 0.751740i −0.997215 0.0745822i \(-0.976238\pi\)
0.563197 + 0.826322i \(0.309571\pi\)
\(788\) −2230.00 −0.100813
\(789\) 28698.9 49708.0i 1.29494 2.24290i
\(790\) −2835.48 4911.19i −0.127698 0.221180i
\(791\) 14368.6 + 24887.1i 0.645877 + 1.11869i
\(792\) 22313.7 1.00111
\(793\) −2455.62 3505.08i −0.109964 0.156960i
\(794\) 30542.5 1.36513
\(795\) −4457.29 7720.25i −0.198847 0.344414i
\(796\) −11067.9 19170.2i −0.492830 0.853607i
\(797\) −14495.7 + 25107.3i −0.644246 + 1.11587i 0.340229 + 0.940343i \(0.389496\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(798\) 2379.04 0.105535
\(799\) −18617.4 + 32246.3i −0.824326 + 1.42777i
\(800\) 1760.93 3050.02i 0.0778229 0.134793i
\(801\) −10689.3 −0.471519
\(802\) −2564.54 + 4441.92i −0.112914 + 0.195573i
\(803\) 11405.8 + 19755.4i 0.501248 + 0.868186i
\(804\) 7278.97 + 12607.5i 0.319290 + 0.553027i
\(805\) −2257.96 −0.0988606
\(806\) −3433.88 + 301.309i −0.150066 + 0.0131677i
\(807\) 11534.3 0.503129
\(808\) 1653.22 + 2863.46i 0.0719803 + 0.124674i
\(809\) 8446.41 + 14629.6i 0.367070 + 0.635784i 0.989106 0.147204i \(-0.0470275\pi\)
−0.622036 + 0.782989i \(0.713694\pi\)
\(810\) −2087.67 + 3615.96i −0.0905597 + 0.156854i
\(811\) −42182.9 −1.82644 −0.913220 0.407466i \(-0.866413\pi\)
−0.913220 + 0.407466i \(0.866413\pi\)
\(812\) −5671.99 + 9824.17i −0.245133 + 0.424582i
\(813\) −13651.2 + 23644.6i −0.588892 + 1.01999i
\(814\) −34763.6 −1.49688
\(815\) 4287.81 7426.70i 0.184289 0.319198i
\(816\) −8789.12 15223.2i −0.377060 0.653087i
\(817\) −610.105 1056.73i −0.0261259 0.0452514i
\(818\) 2104.94 0.0899725
\(819\) −36461.8 + 3199.37i −1.55565 + 0.136502i
\(820\) −406.789 −0.0173240
\(821\) 9250.39 + 16022.1i 0.393229 + 0.681092i 0.992873 0.119174i \(-0.0380247\pi\)
−0.599645 + 0.800266i \(0.704691\pi\)
\(822\) −20407.8 35347.4i −0.865942 1.49986i
\(823\) 13934.4 24135.0i 0.590184 1.02223i −0.404024 0.914749i \(-0.632389\pi\)
0.994207 0.107480i \(-0.0342780\pi\)
\(824\) −30.1370 −0.00127412
\(825\) −26372.8 + 45679.0i −1.11295 + 1.92768i
\(826\) −3723.98 + 6450.12i −0.156869 + 0.271705i
\(827\) 2541.96 0.106884 0.0534418 0.998571i \(-0.482981\pi\)
0.0534418 + 0.998571i \(0.482981\pi\)
\(828\) −3982.87 + 6898.53i −0.167167 + 0.289542i
\(829\) −14785.0 25608.4i −0.619427 1.07288i −0.989590 0.143912i \(-0.954032\pi\)
0.370164 0.928967i \(-0.379302\pi\)
\(830\) 2384.38 + 4129.87i 0.0997147 + 0.172711i
\(831\) 55745.1 2.32705
\(832\) −1267.08 + 2719.08i −0.0527984 + 0.113302i
\(833\) 14120.6 0.587333
\(834\) −24903.7 43134.5i −1.03399 1.79092i
\(835\) 2915.08 + 5049.07i 0.120815 + 0.209258i
\(836\) −958.502 + 1660.17i −0.0396537 + 0.0686822i
\(837\) 8018.23 0.331124
\(838\) −8711.62 + 15089.0i −0.359114 + 0.622004i
\(839\) −10803.7 + 18712.6i −0.444561 + 0.770002i −0.998022 0.0628731i \(-0.979974\pi\)
0.553460 + 0.832875i \(0.313307\pi\)
\(840\) 4149.17 0.170429
\(841\) −5362.17 + 9287.54i −0.219860 + 0.380809i
\(842\) −213.335 369.507i −0.00873161 0.0151236i
\(843\) −14300.0 24768.3i −0.584244 1.01194i
\(844\) −18734.9 −0.764079
\(845\) −5462.14 6502.78i −0.222371 0.264737i
\(846\) −31005.9 −1.26005
\(847\) 12041.7 + 20856.9i 0.488499 + 0.846105i
\(848\) 2081.08 + 3604.53i 0.0842741 + 0.145967i
\(849\) −1713.62 + 2968.08i −0.0692713 + 0.119981i
\(850\) 27277.6 1.10072
\(851\) 6205.10 10747.6i 0.249951 0.432928i
\(852\) −7525.78 + 13035.0i −0.302616 + 0.524146i
\(853\) −28695.1 −1.15182 −0.575910 0.817513i \(-0.695352\pi\)
−0.575910 + 0.817513i \(0.695352\pi\)
\(854\) 1381.86 2393.46i 0.0553705 0.0959045i
\(855\) −884.080 1531.27i −0.0353625 0.0612496i
\(856\) −455.301 788.605i −0.0181798 0.0314883i
\(857\) 8720.01 0.347573 0.173786 0.984783i \(-0.444400\pi\)
0.173786 + 0.984783i \(0.444400\pi\)
\(858\) 18976.6 40722.6i 0.755071 1.62033i
\(859\) −1750.23 −0.0695191 −0.0347596 0.999396i \(-0.511067\pi\)
−0.0347596 + 0.999396i \(0.511067\pi\)
\(860\) −1064.06 1843.00i −0.0421907 0.0730765i
\(861\) 1765.01 + 3057.09i 0.0698624 + 0.121005i
\(862\) −8953.45 + 15507.8i −0.353777 + 0.612759i
\(863\) −35493.3 −1.40001 −0.700004 0.714139i \(-0.746819\pi\)
−0.700004 + 0.714139i \(0.746819\pi\)
\(864\) 3488.93 6043.01i 0.137379 0.237948i
\(865\) 3298.15 5712.56i 0.129642 0.224547i
\(866\) 11722.9 0.460000
\(867\) 46295.8 80186.6i 1.81348 3.14104i
\(868\) −1113.03 1927.82i −0.0435237 0.0753852i
\(869\) −19827.0 34341.4i −0.773975 1.34056i
\(870\) 12843.1 0.500483
\(871\) 19168.5 1681.96i 0.745694 0.0654316i
\(872\) 15485.0 0.601364
\(873\) 19128.9 + 33132.3i 0.741600 + 1.28449i
\(874\) −342.175 592.664i −0.0132428 0.0229372i
\(875\) −6875.68 + 11909.0i −0.265646 + 0.460113i
\(876\) 14964.3 0.577164
\(877\) 13213.9 22887.2i 0.508782 0.881237i −0.491166 0.871066i \(-0.663429\pi\)
0.999948 0.0101709i \(-0.00323754\pi\)
\(878\) 10443.5 18088.7i 0.401426 0.695290i
\(879\) −19440.4 −0.745970
\(880\) −1671.68 + 2895.43i −0.0640367 + 0.110915i
\(881\) −383.063 663.484i −0.0146489 0.0253727i 0.858608 0.512633i \(-0.171330\pi\)
−0.873257 + 0.487260i \(0.837996\pi\)
\(882\) 5879.19 + 10183.0i 0.224447 + 0.388754i
\(883\) 6521.89 0.248561 0.124280 0.992247i \(-0.460338\pi\)
0.124280 + 0.992247i \(0.460338\pi\)
\(884\) −23145.4 + 2030.91i −0.880614 + 0.0772702i
\(885\) 8432.19 0.320277
\(886\) −8789.73 15224.3i −0.333292 0.577279i
\(887\) −12675.8 21955.2i −0.479834 0.831097i 0.519899 0.854228i \(-0.325970\pi\)
−0.999732 + 0.0231313i \(0.992636\pi\)
\(888\) −11402.3 + 19749.4i −0.430898 + 0.746337i
\(889\) −3701.97 −0.139663
\(890\) 800.810 1387.04i 0.0301609 0.0522402i
\(891\) −14598.0 + 25284.5i −0.548879 + 0.950686i
\(892\) −9535.45 −0.357926
\(893\) 1331.88 2306.89i 0.0499102 0.0864470i
\(894\) 22457.7 + 38897.9i 0.840154 + 1.45519i
\(895\) −1150.40 1992.56i −0.0429651 0.0744178i
\(896\) −1937.22 −0.0722299
\(897\) 9202.64 + 13135.6i 0.342550 + 0.488946i
\(898\) 17272.2 0.641851
\(899\) −3445.18 5967.23i −0.127812 0.221377i
\(900\) 11357.2 + 19671.3i 0.420637 + 0.728565i
\(901\) −16118.4 + 27917.9i −0.595985 + 1.03228i
\(902\) −2844.46 −0.105000
\(903\) −9233.67 + 15993.2i −0.340285 + 0.589390i
\(904\) −7595.13 + 13155.2i −0.279436 + 0.483998i
\(905\) 1557.80 0.0572190
\(906\) −21198.2 + 36716.4i −0.777332 + 1.34638i
\(907\) 4752.28 + 8231.20i 0.173977 + 0.301337i 0.939807 0.341707i \(-0.111005\pi\)
−0.765830 + 0.643043i \(0.777672\pi\)
\(908\) 3108.15 + 5383.47i 0.113599 + 0.196759i
\(909\) −21325.1 −0.778116
\(910\) 2316.47 4970.99i 0.0843847 0.181084i
\(911\) 6435.82 0.234059 0.117030 0.993128i \(-0.462663\pi\)
0.117030 + 0.993128i \(0.462663\pi\)
\(912\) 628.771 + 1089.06i 0.0228297 + 0.0395422i
\(913\) 16672.7 + 28878.0i 0.604367 + 1.04679i
\(914\) −4876.96 + 8447.14i −0.176494 + 0.305697i
\(915\) −3128.95 −0.113049
\(916\) 5831.20 10099.9i 0.210336 0.364313i
\(917\) 12225.9 21175.8i 0.440276 0.762581i
\(918\) 54045.2 1.94309
\(919\) −7476.96 + 12950.5i −0.268381 + 0.464849i −0.968444 0.249232i \(-0.919822\pi\)
0.700063 + 0.714081i \(0.253155\pi\)
\(920\) −596.771 1033.64i −0.0213858 0.0370413i
\(921\) −35834.0 62066.3i −1.28205 2.22058i
\(922\) −23607.8 −0.843256
\(923\) 11415.2 + 16293.8i 0.407082 + 0.581058i
\(924\) 29013.0 1.03296
\(925\) −17694.0 30646.8i −0.628945 1.08936i
\(926\) 4797.53 + 8309.56i 0.170255 + 0.294891i
\(927\) 97.1849 168.329i 0.00344334 0.00596403i
\(928\) −5996.34 −0.212111
\(929\) 19030.9 32962.5i 0.672103 1.16412i −0.305204 0.952287i \(-0.598725\pi\)
0.977307 0.211829i \(-0.0679419\pi\)
\(930\) −1260.11 + 2182.57i −0.0444308 + 0.0769564i
\(931\) −1010.18 −0.0355611
\(932\) 8467.86 14666.8i 0.297611 0.515478i
\(933\) 1083.40 + 1876.50i 0.0380160 + 0.0658456i
\(934\) 13188.7 + 22843.6i 0.462043 + 0.800282i
\(935\) −25895.1 −0.905732
\(936\) −11101.3 15845.7i −0.387668 0.553347i
\(937\) 14572.5 0.508072 0.254036 0.967195i \(-0.418242\pi\)
0.254036 + 0.967195i \(0.418242\pi\)
\(938\) 6213.09 + 10761.4i 0.216274 + 0.374597i
\(939\) 19699.6 + 34120.7i 0.684635 + 1.18582i
\(940\) 2322.88 4023.34i 0.0805999 0.139603i
\(941\) 32190.2 1.11516 0.557582 0.830122i \(-0.311729\pi\)
0.557582 + 0.830122i \(0.311729\pi\)
\(942\) 17088.1 29597.4i 0.591040 1.02371i
\(943\) 507.720 879.397i 0.0175330 0.0303681i
\(944\) −3936.93 −0.135738
\(945\) −6378.42 + 11047.7i −0.219566 + 0.380300i
\(946\) −7440.38 12887.1i −0.255716 0.442914i
\(947\) 21115.5 + 36573.1i 0.724563 + 1.25498i 0.959154 + 0.282886i \(0.0912919\pi\)
−0.234590 + 0.972094i \(0.575375\pi\)
\(948\) −26012.8 −0.891197
\(949\) 8354.48 17928.2i 0.285772 0.613249i
\(950\) −1951.43 −0.0666451
\(951\) 4125.09 + 7144.86i 0.140657 + 0.243626i
\(952\) −7502.11 12994.0i −0.255404 0.442373i
\(953\) 4084.22 7074.07i 0.138826 0.240453i −0.788227 0.615385i \(-0.789001\pi\)
0.927052 + 0.374932i \(0.122334\pi\)
\(954\) −26844.0 −0.911013
\(955\) 1186.11 2054.40i 0.0401901 0.0696114i
\(956\) −4745.11 + 8218.77i −0.160531 + 0.278048i
\(957\) 89804.7 3.03341
\(958\) −18048.8 + 31261.5i −0.608696 + 1.05429i
\(959\) −17419.5 30171.4i −0.586552 1.01594i
\(960\) 1096.61 + 1899.39i 0.0368677 + 0.0638567i
\(961\) −28438.9 −0.954613
\(962\) 17295.3 + 24686.8i 0.579648 + 0.827374i
\(963\) 5872.98 0.196525
\(964\) −651.526 1128.48i −0.0217679 0.0377031i
\(965\) −3875.76 6713.01i −0.129290 0.223937i
\(966\) −5178.66 + 8969.70i −0.172485 + 0.298753i
\(967\) 52022.1 1.73001 0.865003 0.501766i \(-0.167316\pi\)
0.865003 + 0.501766i \(0.167316\pi\)
\(968\) −6365.16 + 11024.8i −0.211347 + 0.366064i
\(969\) −4869.98 + 8435.05i −0.161451 + 0.279642i
\(970\) −5732.35 −0.189747
\(971\) 5972.47 10344.6i 0.197390 0.341890i −0.750291 0.661107i \(-0.770087\pi\)
0.947681 + 0.319218i \(0.103420\pi\)
\(972\) −2198.96 3808.70i −0.0725633 0.125683i
\(973\) −21257.0 36818.2i −0.700378 1.21309i
\(974\) 23002.5 0.756722
\(975\) 45558.9 3997.61i 1.49646 0.131309i
\(976\) 1460.88 0.0479117
\(977\) −9494.95 16445.7i −0.310922 0.538532i 0.667640 0.744484i \(-0.267304\pi\)
−0.978562 + 0.205952i \(0.933971\pi\)
\(978\) −19668.2 34066.4i −0.643068 1.11383i
\(979\) 5599.64 9698.86i 0.182804 0.316626i
\(980\) −1761.81 −0.0574275
\(981\) −49935.8 + 86491.3i −1.62520 + 2.81494i
\(982\) 4000.65 6929.34i 0.130006 0.225177i
\(983\) −47187.4 −1.53107 −0.765537 0.643392i \(-0.777526\pi\)
−0.765537 + 0.643392i \(0.777526\pi\)
\(984\) −932.973 + 1615.96i −0.0302257 + 0.0523524i
\(985\) 1077.50 + 1866.28i 0.0348547 + 0.0603701i
\(986\) −23221.5 40220.8i −0.750024 1.29908i
\(987\) −40314.9 −1.30014
\(988\) 1655.81 145.291i 0.0533182 0.00467845i
\(989\) 5312.27 0.170799
\(990\) −10781.6 18674.2i −0.346122 0.599501i
\(991\) 15379.7 + 26638.5i 0.492991 + 0.853885i 0.999967 0.00807499i \(-0.00257038\pi\)
−0.506977 + 0.861960i \(0.669237\pi\)
\(992\) 588.337 1019.03i 0.0188303 0.0326151i
\(993\) −42796.7 −1.36769
\(994\) −6423.76 + 11126.3i −0.204979 + 0.355034i
\(995\) −10695.7 + 18525.5i −0.340780 + 0.590248i
\(996\) 21874.4 0.695901
\(997\) −24666.1 + 42722.9i −0.783533 + 1.35712i 0.146338 + 0.989235i \(0.453251\pi\)
−0.929871 + 0.367885i \(0.880082\pi\)
\(998\) 8322.72 + 14415.4i 0.263979 + 0.457225i
\(999\) −35057.0 60720.5i −1.11027 1.92304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 26.4.c.b.3.2 4
3.2 odd 2 234.4.h.h.55.1 4
4.3 odd 2 208.4.i.d.81.1 4
13.2 odd 12 338.4.b.e.337.1 4
13.3 even 3 338.4.a.h.1.1 2
13.4 even 6 338.4.c.j.191.2 4
13.5 odd 4 338.4.e.f.23.2 8
13.6 odd 12 338.4.e.f.147.4 8
13.7 odd 12 338.4.e.f.147.2 8
13.8 odd 4 338.4.e.f.23.4 8
13.9 even 3 inner 26.4.c.b.9.2 yes 4
13.10 even 6 338.4.a.g.1.1 2
13.11 odd 12 338.4.b.e.337.3 4
13.12 even 2 338.4.c.j.315.2 4
39.35 odd 6 234.4.h.h.217.1 4
52.35 odd 6 208.4.i.d.113.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.4.c.b.3.2 4 1.1 even 1 trivial
26.4.c.b.9.2 yes 4 13.9 even 3 inner
208.4.i.d.81.1 4 4.3 odd 2
208.4.i.d.113.1 4 52.35 odd 6
234.4.h.h.55.1 4 3.2 odd 2
234.4.h.h.217.1 4 39.35 odd 6
338.4.a.g.1.1 2 13.10 even 6
338.4.a.h.1.1 2 13.3 even 3
338.4.b.e.337.1 4 13.2 odd 12
338.4.b.e.337.3 4 13.11 odd 12
338.4.c.j.191.2 4 13.4 even 6
338.4.c.j.315.2 4 13.12 even 2
338.4.e.f.23.2 8 13.5 odd 4
338.4.e.f.23.4 8 13.8 odd 4
338.4.e.f.147.2 8 13.7 odd 12
338.4.e.f.147.4 8 13.6 odd 12