Properties

Label 208.2.f.b.129.1
Level $208$
Weight $2$
Character 208.129
Analytic conductor $1.661$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,2,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.66088836204\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(1.56155i\) of defining polynomial
Character \(\chi\) \(=\) 208.129
Dual form 208.2.f.b.129.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.56155 q^{3} -1.56155i q^{5} -0.438447i q^{7} -0.561553 q^{9} -5.12311i q^{11} +(0.561553 - 3.56155i) q^{13} +2.43845i q^{15} -3.56155 q^{17} -2.00000i q^{19} +0.684658i q^{21} +3.12311 q^{23} +2.56155 q^{25} +5.56155 q^{27} -5.12311 q^{29} +5.12311i q^{31} +8.00000i q^{33} -0.684658 q^{35} +9.56155i q^{37} +(-0.876894 + 5.56155i) q^{39} -8.00000i q^{41} -9.56155 q^{43} +0.876894i q^{45} +7.56155i q^{47} +6.80776 q^{49} +5.56155 q^{51} +12.2462 q^{53} -8.00000 q^{55} +3.12311i q^{57} -10.0000i q^{59} +2.87689 q^{61} +0.246211i q^{63} +(-5.56155 - 0.876894i) q^{65} +9.12311i q^{67} -4.87689 q^{69} -6.68466i q^{71} -9.36932i q^{73} -4.00000 q^{75} -2.24621 q^{77} +11.1231 q^{79} -7.00000 q^{81} -8.24621i q^{83} +5.56155i q^{85} +8.00000 q^{87} -3.12311i q^{89} +(-1.56155 - 0.246211i) q^{91} -8.00000i q^{93} -3.12311 q^{95} +6.24621i q^{97} +2.87689i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 6 q^{9} - 6 q^{13} - 6 q^{17} - 4 q^{23} + 2 q^{25} + 14 q^{27} - 4 q^{29} + 22 q^{35} - 20 q^{39} - 30 q^{43} - 14 q^{49} + 14 q^{51} + 16 q^{53} - 32 q^{55} + 28 q^{61} - 14 q^{65} - 36 q^{69}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56155 −0.901563 −0.450781 0.892634i \(-0.648855\pi\)
−0.450781 + 0.892634i \(0.648855\pi\)
\(4\) 0 0
\(5\) 1.56155i 0.698348i −0.937058 0.349174i \(-0.886462\pi\)
0.937058 0.349174i \(-0.113538\pi\)
\(6\) 0 0
\(7\) 0.438447i 0.165717i −0.996561 0.0828587i \(-0.973595\pi\)
0.996561 0.0828587i \(-0.0264050\pi\)
\(8\) 0 0
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) 5.12311i 1.54467i −0.635213 0.772337i \(-0.719088\pi\)
0.635213 0.772337i \(-0.280912\pi\)
\(12\) 0 0
\(13\) 0.561553 3.56155i 0.155747 0.987797i
\(14\) 0 0
\(15\) 2.43845i 0.629604i
\(16\) 0 0
\(17\) −3.56155 −0.863803 −0.431902 0.901921i \(-0.642157\pi\)
−0.431902 + 0.901921i \(0.642157\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i −0.973329 0.229416i \(-0.926318\pi\)
0.973329 0.229416i \(-0.0736815\pi\)
\(20\) 0 0
\(21\) 0.684658i 0.149405i
\(22\) 0 0
\(23\) 3.12311 0.651213 0.325606 0.945505i \(-0.394432\pi\)
0.325606 + 0.945505i \(0.394432\pi\)
\(24\) 0 0
\(25\) 2.56155 0.512311
\(26\) 0 0
\(27\) 5.56155 1.07032
\(28\) 0 0
\(29\) −5.12311 −0.951337 −0.475668 0.879625i \(-0.657794\pi\)
−0.475668 + 0.879625i \(0.657794\pi\)
\(30\) 0 0
\(31\) 5.12311i 0.920137i 0.887883 + 0.460068i \(0.152175\pi\)
−0.887883 + 0.460068i \(0.847825\pi\)
\(32\) 0 0
\(33\) 8.00000i 1.39262i
\(34\) 0 0
\(35\) −0.684658 −0.115728
\(36\) 0 0
\(37\) 9.56155i 1.57191i 0.618284 + 0.785955i \(0.287828\pi\)
−0.618284 + 0.785955i \(0.712172\pi\)
\(38\) 0 0
\(39\) −0.876894 + 5.56155i −0.140415 + 0.890561i
\(40\) 0 0
\(41\) 8.00000i 1.24939i −0.780869 0.624695i \(-0.785223\pi\)
0.780869 0.624695i \(-0.214777\pi\)
\(42\) 0 0
\(43\) −9.56155 −1.45812 −0.729062 0.684448i \(-0.760043\pi\)
−0.729062 + 0.684448i \(0.760043\pi\)
\(44\) 0 0
\(45\) 0.876894i 0.130720i
\(46\) 0 0
\(47\) 7.56155i 1.10297i 0.834186 + 0.551483i \(0.185938\pi\)
−0.834186 + 0.551483i \(0.814062\pi\)
\(48\) 0 0
\(49\) 6.80776 0.972538
\(50\) 0 0
\(51\) 5.56155 0.778773
\(52\) 0 0
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) 0 0
\(57\) 3.12311i 0.413665i
\(58\) 0 0
\(59\) 10.0000i 1.30189i −0.759125 0.650945i \(-0.774373\pi\)
0.759125 0.650945i \(-0.225627\pi\)
\(60\) 0 0
\(61\) 2.87689 0.368349 0.184174 0.982894i \(-0.441039\pi\)
0.184174 + 0.982894i \(0.441039\pi\)
\(62\) 0 0
\(63\) 0.246211i 0.0310197i
\(64\) 0 0
\(65\) −5.56155 0.876894i −0.689826 0.108765i
\(66\) 0 0
\(67\) 9.12311i 1.11456i 0.830323 + 0.557282i \(0.188156\pi\)
−0.830323 + 0.557282i \(0.811844\pi\)
\(68\) 0 0
\(69\) −4.87689 −0.587109
\(70\) 0 0
\(71\) 6.68466i 0.793323i −0.917965 0.396662i \(-0.870169\pi\)
0.917965 0.396662i \(-0.129831\pi\)
\(72\) 0 0
\(73\) 9.36932i 1.09660i −0.836283 0.548298i \(-0.815276\pi\)
0.836283 0.548298i \(-0.184724\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) −2.24621 −0.255980
\(78\) 0 0
\(79\) 11.1231 1.25145 0.625724 0.780045i \(-0.284804\pi\)
0.625724 + 0.780045i \(0.284804\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 8.24621i 0.905139i −0.891729 0.452570i \(-0.850507\pi\)
0.891729 0.452570i \(-0.149493\pi\)
\(84\) 0 0
\(85\) 5.56155i 0.603235i
\(86\) 0 0
\(87\) 8.00000 0.857690
\(88\) 0 0
\(89\) 3.12311i 0.331049i −0.986206 0.165524i \(-0.947068\pi\)
0.986206 0.165524i \(-0.0529316\pi\)
\(90\) 0 0
\(91\) −1.56155 0.246211i −0.163695 0.0258100i
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) −3.12311 −0.320424
\(96\) 0 0
\(97\) 6.24621i 0.634207i 0.948391 + 0.317103i \(0.102710\pi\)
−0.948391 + 0.317103i \(0.897290\pi\)
\(98\) 0 0
\(99\) 2.87689i 0.289139i
\(100\) 0 0
\(101\) −11.3693 −1.13129 −0.565645 0.824649i \(-0.691373\pi\)
−0.565645 + 0.824649i \(0.691373\pi\)
\(102\) 0 0
\(103\) −3.12311 −0.307729 −0.153864 0.988092i \(-0.549172\pi\)
−0.153864 + 0.988092i \(0.549172\pi\)
\(104\) 0 0
\(105\) 1.06913 0.104336
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 3.31534i 0.317552i −0.987315 0.158776i \(-0.949245\pi\)
0.987315 0.158776i \(-0.0507548\pi\)
\(110\) 0 0
\(111\) 14.9309i 1.41718i
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 4.87689i 0.454773i
\(116\) 0 0
\(117\) −0.315342 + 2.00000i −0.0291533 + 0.184900i
\(118\) 0 0
\(119\) 1.56155i 0.143147i
\(120\) 0 0
\(121\) −15.2462 −1.38602
\(122\) 0 0
\(123\) 12.4924i 1.12640i
\(124\) 0 0
\(125\) 11.8078i 1.05612i
\(126\) 0 0
\(127\) 4.87689 0.432754 0.216377 0.976310i \(-0.430576\pi\)
0.216377 + 0.976310i \(0.430576\pi\)
\(128\) 0 0
\(129\) 14.9309 1.31459
\(130\) 0 0
\(131\) 3.31534 0.289663 0.144831 0.989456i \(-0.453736\pi\)
0.144831 + 0.989456i \(0.453736\pi\)
\(132\) 0 0
\(133\) −0.876894 −0.0760364
\(134\) 0 0
\(135\) 8.68466i 0.747456i
\(136\) 0 0
\(137\) 3.12311i 0.266825i −0.991061 0.133412i \(-0.957406\pi\)
0.991061 0.133412i \(-0.0425935\pi\)
\(138\) 0 0
\(139\) 7.80776 0.662246 0.331123 0.943588i \(-0.392573\pi\)
0.331123 + 0.943588i \(0.392573\pi\)
\(140\) 0 0
\(141\) 11.8078i 0.994393i
\(142\) 0 0
\(143\) −18.2462 2.87689i −1.52582 0.240578i
\(144\) 0 0
\(145\) 8.00000i 0.664364i
\(146\) 0 0
\(147\) −10.6307 −0.876804
\(148\) 0 0
\(149\) 7.12311i 0.583548i 0.956487 + 0.291774i \(0.0942454\pi\)
−0.956487 + 0.291774i \(0.905755\pi\)
\(150\) 0 0
\(151\) 11.5616i 0.940866i −0.882436 0.470433i \(-0.844098\pi\)
0.882436 0.470433i \(-0.155902\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 12.2462 0.977354 0.488677 0.872465i \(-0.337480\pi\)
0.488677 + 0.872465i \(0.337480\pi\)
\(158\) 0 0
\(159\) −19.1231 −1.51656
\(160\) 0 0
\(161\) 1.36932i 0.107917i
\(162\) 0 0
\(163\) 20.2462i 1.58581i 0.609348 + 0.792903i \(0.291431\pi\)
−0.609348 + 0.792903i \(0.708569\pi\)
\(164\) 0 0
\(165\) 12.4924 0.972534
\(166\) 0 0
\(167\) 6.87689i 0.532150i 0.963952 + 0.266075i \(0.0857269\pi\)
−0.963952 + 0.266075i \(0.914273\pi\)
\(168\) 0 0
\(169\) −12.3693 4.00000i −0.951486 0.307692i
\(170\) 0 0
\(171\) 1.12311i 0.0858860i
\(172\) 0 0
\(173\) 4.24621 0.322833 0.161417 0.986886i \(-0.448394\pi\)
0.161417 + 0.986886i \(0.448394\pi\)
\(174\) 0 0
\(175\) 1.12311i 0.0848988i
\(176\) 0 0
\(177\) 15.6155i 1.17373i
\(178\) 0 0
\(179\) −17.5616 −1.31261 −0.656306 0.754495i \(-0.727882\pi\)
−0.656306 + 0.754495i \(0.727882\pi\)
\(180\) 0 0
\(181\) −8.24621 −0.612936 −0.306468 0.951881i \(-0.599147\pi\)
−0.306468 + 0.951881i \(0.599147\pi\)
\(182\) 0 0
\(183\) −4.49242 −0.332089
\(184\) 0 0
\(185\) 14.9309 1.09774
\(186\) 0 0
\(187\) 18.2462i 1.33430i
\(188\) 0 0
\(189\) 2.43845i 0.177371i
\(190\) 0 0
\(191\) 22.2462 1.60968 0.804840 0.593492i \(-0.202251\pi\)
0.804840 + 0.593492i \(0.202251\pi\)
\(192\) 0 0
\(193\) 23.6155i 1.69988i 0.526877 + 0.849941i \(0.323363\pi\)
−0.526877 + 0.849941i \(0.676637\pi\)
\(194\) 0 0
\(195\) 8.68466 + 1.36932i 0.621921 + 0.0980588i
\(196\) 0 0
\(197\) 9.56155i 0.681232i 0.940202 + 0.340616i \(0.110636\pi\)
−0.940202 + 0.340616i \(0.889364\pi\)
\(198\) 0 0
\(199\) 14.2462 1.00989 0.504944 0.863152i \(-0.331513\pi\)
0.504944 + 0.863152i \(0.331513\pi\)
\(200\) 0 0
\(201\) 14.2462i 1.00485i
\(202\) 0 0
\(203\) 2.24621i 0.157653i
\(204\) 0 0
\(205\) −12.4924 −0.872509
\(206\) 0 0
\(207\) −1.75379 −0.121897
\(208\) 0 0
\(209\) −10.2462 −0.708745
\(210\) 0 0
\(211\) 22.0540 1.51826 0.759129 0.650940i \(-0.225625\pi\)
0.759129 + 0.650940i \(0.225625\pi\)
\(212\) 0 0
\(213\) 10.4384i 0.715231i
\(214\) 0 0
\(215\) 14.9309i 1.01828i
\(216\) 0 0
\(217\) 2.24621 0.152483
\(218\) 0 0
\(219\) 14.6307i 0.988650i
\(220\) 0 0
\(221\) −2.00000 + 12.6847i −0.134535 + 0.853262i
\(222\) 0 0
\(223\) 27.1771i 1.81991i −0.414705 0.909956i \(-0.636115\pi\)
0.414705 0.909956i \(-0.363885\pi\)
\(224\) 0 0
\(225\) −1.43845 −0.0958965
\(226\) 0 0
\(227\) 3.36932i 0.223629i −0.993729 0.111815i \(-0.964334\pi\)
0.993729 0.111815i \(-0.0356663\pi\)
\(228\) 0 0
\(229\) 20.6847i 1.36688i 0.730006 + 0.683440i \(0.239517\pi\)
−0.730006 + 0.683440i \(0.760483\pi\)
\(230\) 0 0
\(231\) 3.50758 0.230782
\(232\) 0 0
\(233\) −3.56155 −0.233325 −0.116663 0.993172i \(-0.537220\pi\)
−0.116663 + 0.993172i \(0.537220\pi\)
\(234\) 0 0
\(235\) 11.8078 0.770254
\(236\) 0 0
\(237\) −17.3693 −1.12826
\(238\) 0 0
\(239\) 8.93087i 0.577690i 0.957376 + 0.288845i \(0.0932712\pi\)
−0.957376 + 0.288845i \(0.906729\pi\)
\(240\) 0 0
\(241\) 27.1231i 1.74715i −0.486687 0.873576i \(-0.661795\pi\)
0.486687 0.873576i \(-0.338205\pi\)
\(242\) 0 0
\(243\) −5.75379 −0.369106
\(244\) 0 0
\(245\) 10.6307i 0.679169i
\(246\) 0 0
\(247\) −7.12311 1.12311i −0.453232 0.0714615i
\(248\) 0 0
\(249\) 12.8769i 0.816040i
\(250\) 0 0
\(251\) −24.4924 −1.54595 −0.772974 0.634438i \(-0.781232\pi\)
−0.772974 + 0.634438i \(0.781232\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 8.68466i 0.543854i
\(256\) 0 0
\(257\) 0.930870 0.0580661 0.0290330 0.999578i \(-0.490757\pi\)
0.0290330 + 0.999578i \(0.490757\pi\)
\(258\) 0 0
\(259\) 4.19224 0.260493
\(260\) 0 0
\(261\) 2.87689 0.178075
\(262\) 0 0
\(263\) 4.49242 0.277015 0.138507 0.990361i \(-0.455770\pi\)
0.138507 + 0.990361i \(0.455770\pi\)
\(264\) 0 0
\(265\) 19.1231i 1.17472i
\(266\) 0 0
\(267\) 4.87689i 0.298461i
\(268\) 0 0
\(269\) 10.8769 0.663176 0.331588 0.943424i \(-0.392416\pi\)
0.331588 + 0.943424i \(0.392416\pi\)
\(270\) 0 0
\(271\) 14.6847i 0.892029i −0.895026 0.446015i \(-0.852843\pi\)
0.895026 0.446015i \(-0.147157\pi\)
\(272\) 0 0
\(273\) 2.43845 + 0.384472i 0.147582 + 0.0232693i
\(274\) 0 0
\(275\) 13.1231i 0.791353i
\(276\) 0 0
\(277\) 7.36932 0.442779 0.221390 0.975185i \(-0.428941\pi\)
0.221390 + 0.975185i \(0.428941\pi\)
\(278\) 0 0
\(279\) 2.87689i 0.172235i
\(280\) 0 0
\(281\) 9.36932i 0.558927i 0.960156 + 0.279463i \(0.0901565\pi\)
−0.960156 + 0.279463i \(0.909843\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) 4.87689 0.288882
\(286\) 0 0
\(287\) −3.50758 −0.207046
\(288\) 0 0
\(289\) −4.31534 −0.253844
\(290\) 0 0
\(291\) 9.75379i 0.571777i
\(292\) 0 0
\(293\) 12.6847i 0.741046i −0.928823 0.370523i \(-0.879179\pi\)
0.928823 0.370523i \(-0.120821\pi\)
\(294\) 0 0
\(295\) −15.6155 −0.909171
\(296\) 0 0
\(297\) 28.4924i 1.65330i
\(298\) 0 0
\(299\) 1.75379 11.1231i 0.101424 0.643266i
\(300\) 0 0
\(301\) 4.19224i 0.241636i
\(302\) 0 0
\(303\) 17.7538 1.01993
\(304\) 0 0
\(305\) 4.49242i 0.257235i
\(306\) 0 0
\(307\) 18.0000i 1.02731i −0.857996 0.513657i \(-0.828290\pi\)
0.857996 0.513657i \(-0.171710\pi\)
\(308\) 0 0
\(309\) 4.87689 0.277437
\(310\) 0 0
\(311\) −19.1231 −1.08437 −0.542186 0.840259i \(-0.682403\pi\)
−0.542186 + 0.840259i \(0.682403\pi\)
\(312\) 0 0
\(313\) 4.43845 0.250876 0.125438 0.992101i \(-0.459966\pi\)
0.125438 + 0.992101i \(0.459966\pi\)
\(314\) 0 0
\(315\) 0.384472 0.0216625
\(316\) 0 0
\(317\) 15.1231i 0.849398i 0.905335 + 0.424699i \(0.139620\pi\)
−0.905335 + 0.424699i \(0.860380\pi\)
\(318\) 0 0
\(319\) 26.2462i 1.46951i
\(320\) 0 0
\(321\) −6.24621 −0.348630
\(322\) 0 0
\(323\) 7.12311i 0.396340i
\(324\) 0 0
\(325\) 1.43845 9.12311i 0.0797907 0.506059i
\(326\) 0 0
\(327\) 5.17708i 0.286293i
\(328\) 0 0
\(329\) 3.31534 0.182781
\(330\) 0 0
\(331\) 0.246211i 0.0135330i −0.999977 0.00676650i \(-0.997846\pi\)
0.999977 0.00676650i \(-0.00215386\pi\)
\(332\) 0 0
\(333\) 5.36932i 0.294237i
\(334\) 0 0
\(335\) 14.2462 0.778354
\(336\) 0 0
\(337\) 1.31534 0.0716512 0.0358256 0.999358i \(-0.488594\pi\)
0.0358256 + 0.999358i \(0.488594\pi\)
\(338\) 0 0
\(339\) −15.6155 −0.848119
\(340\) 0 0
\(341\) 26.2462 1.42131
\(342\) 0 0
\(343\) 6.05398i 0.326884i
\(344\) 0 0
\(345\) 7.61553i 0.410006i
\(346\) 0 0
\(347\) 1.56155 0.0838285 0.0419143 0.999121i \(-0.486654\pi\)
0.0419143 + 0.999121i \(0.486654\pi\)
\(348\) 0 0
\(349\) 10.9309i 0.585116i −0.956248 0.292558i \(-0.905494\pi\)
0.956248 0.292558i \(-0.0945065\pi\)
\(350\) 0 0
\(351\) 3.12311 19.8078i 0.166699 1.05726i
\(352\) 0 0
\(353\) 7.61553i 0.405334i 0.979248 + 0.202667i \(0.0649608\pi\)
−0.979248 + 0.202667i \(0.935039\pi\)
\(354\) 0 0
\(355\) −10.4384 −0.554015
\(356\) 0 0
\(357\) 2.43845i 0.129056i
\(358\) 0 0
\(359\) 13.1231i 0.692611i 0.938122 + 0.346306i \(0.112564\pi\)
−0.938122 + 0.346306i \(0.887436\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) 23.8078 1.24958
\(364\) 0 0
\(365\) −14.6307 −0.765805
\(366\) 0 0
\(367\) −28.4924 −1.48729 −0.743646 0.668573i \(-0.766905\pi\)
−0.743646 + 0.668573i \(0.766905\pi\)
\(368\) 0 0
\(369\) 4.49242i 0.233866i
\(370\) 0 0
\(371\) 5.36932i 0.278761i
\(372\) 0 0
\(373\) −35.3693 −1.83135 −0.915677 0.401915i \(-0.868345\pi\)
−0.915677 + 0.401915i \(0.868345\pi\)
\(374\) 0 0
\(375\) 18.4384i 0.952157i
\(376\) 0 0
\(377\) −2.87689 + 18.2462i −0.148168 + 0.939728i
\(378\) 0 0
\(379\) 26.0000i 1.33553i −0.744372 0.667765i \(-0.767251\pi\)
0.744372 0.667765i \(-0.232749\pi\)
\(380\) 0 0
\(381\) −7.61553 −0.390155
\(382\) 0 0
\(383\) 29.8078i 1.52311i 0.648103 + 0.761553i \(0.275563\pi\)
−0.648103 + 0.761553i \(0.724437\pi\)
\(384\) 0 0
\(385\) 3.50758i 0.178763i
\(386\) 0 0
\(387\) 5.36932 0.272938
\(388\) 0 0
\(389\) −11.7538 −0.595941 −0.297970 0.954575i \(-0.596310\pi\)
−0.297970 + 0.954575i \(0.596310\pi\)
\(390\) 0 0
\(391\) −11.1231 −0.562520
\(392\) 0 0
\(393\) −5.17708 −0.261149
\(394\) 0 0
\(395\) 17.3693i 0.873945i
\(396\) 0 0
\(397\) 0.876894i 0.0440101i −0.999758 0.0220050i \(-0.992995\pi\)
0.999758 0.0220050i \(-0.00700499\pi\)
\(398\) 0 0
\(399\) 1.36932 0.0685516
\(400\) 0 0
\(401\) 17.3693i 0.867382i −0.901062 0.433691i \(-0.857211\pi\)
0.901062 0.433691i \(-0.142789\pi\)
\(402\) 0 0
\(403\) 18.2462 + 2.87689i 0.908909 + 0.143308i
\(404\) 0 0
\(405\) 10.9309i 0.543159i
\(406\) 0 0
\(407\) 48.9848 2.42809
\(408\) 0 0
\(409\) 25.3693i 1.25443i 0.778845 + 0.627216i \(0.215806\pi\)
−0.778845 + 0.627216i \(0.784194\pi\)
\(410\) 0 0
\(411\) 4.87689i 0.240559i
\(412\) 0 0
\(413\) −4.38447 −0.215746
\(414\) 0 0
\(415\) −12.8769 −0.632102
\(416\) 0 0
\(417\) −12.1922 −0.597056
\(418\) 0 0
\(419\) 30.4384 1.48702 0.743508 0.668727i \(-0.233161\pi\)
0.743508 + 0.668727i \(0.233161\pi\)
\(420\) 0 0
\(421\) 23.8078i 1.16032i −0.814503 0.580160i \(-0.802990\pi\)
0.814503 0.580160i \(-0.197010\pi\)
\(422\) 0 0
\(423\) 4.24621i 0.206458i
\(424\) 0 0
\(425\) −9.12311 −0.442536
\(426\) 0 0
\(427\) 1.26137i 0.0610418i
\(428\) 0 0
\(429\) 28.4924 + 4.49242i 1.37563 + 0.216896i
\(430\) 0 0
\(431\) 37.4233i 1.80262i 0.433178 + 0.901308i \(0.357392\pi\)
−0.433178 + 0.901308i \(0.642608\pi\)
\(432\) 0 0
\(433\) 9.31534 0.447667 0.223833 0.974627i \(-0.428143\pi\)
0.223833 + 0.974627i \(0.428143\pi\)
\(434\) 0 0
\(435\) 12.4924i 0.598966i
\(436\) 0 0
\(437\) 6.24621i 0.298797i
\(438\) 0 0
\(439\) 37.8617 1.80704 0.903521 0.428544i \(-0.140973\pi\)
0.903521 + 0.428544i \(0.140973\pi\)
\(440\) 0 0
\(441\) −3.82292 −0.182044
\(442\) 0 0
\(443\) 9.17708 0.436016 0.218008 0.975947i \(-0.430044\pi\)
0.218008 + 0.975947i \(0.430044\pi\)
\(444\) 0 0
\(445\) −4.87689 −0.231187
\(446\) 0 0
\(447\) 11.1231i 0.526105i
\(448\) 0 0
\(449\) 16.0000i 0.755087i 0.925992 + 0.377543i \(0.123231\pi\)
−0.925992 + 0.377543i \(0.876769\pi\)
\(450\) 0 0
\(451\) −40.9848 −1.92990
\(452\) 0 0
\(453\) 18.0540i 0.848250i
\(454\) 0 0
\(455\) −0.384472 + 2.43845i −0.0180243 + 0.114316i
\(456\) 0 0
\(457\) 15.6155i 0.730464i −0.930917 0.365232i \(-0.880990\pi\)
0.930917 0.365232i \(-0.119010\pi\)
\(458\) 0 0
\(459\) −19.8078 −0.924547
\(460\) 0 0
\(461\) 9.17708i 0.427419i 0.976897 + 0.213710i \(0.0685546\pi\)
−0.976897 + 0.213710i \(0.931445\pi\)
\(462\) 0 0
\(463\) 1.61553i 0.0750800i 0.999295 + 0.0375400i \(0.0119522\pi\)
−0.999295 + 0.0375400i \(0.988048\pi\)
\(464\) 0 0
\(465\) −12.4924 −0.579322
\(466\) 0 0
\(467\) −16.4924 −0.763178 −0.381589 0.924332i \(-0.624623\pi\)
−0.381589 + 0.924332i \(0.624623\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −19.1231 −0.881146
\(472\) 0 0
\(473\) 48.9848i 2.25233i
\(474\) 0 0
\(475\) 5.12311i 0.235064i
\(476\) 0 0
\(477\) −6.87689 −0.314871
\(478\) 0 0
\(479\) 29.8078i 1.36195i 0.732306 + 0.680976i \(0.238444\pi\)
−0.732306 + 0.680976i \(0.761556\pi\)
\(480\) 0 0
\(481\) 34.0540 + 5.36932i 1.55273 + 0.244820i
\(482\) 0 0
\(483\) 2.13826i 0.0972942i
\(484\) 0 0
\(485\) 9.75379 0.442897
\(486\) 0 0
\(487\) 15.8617i 0.718764i 0.933191 + 0.359382i \(0.117012\pi\)
−0.933191 + 0.359382i \(0.882988\pi\)
\(488\) 0 0
\(489\) 31.6155i 1.42970i
\(490\) 0 0
\(491\) −31.8078 −1.43546 −0.717732 0.696319i \(-0.754820\pi\)
−0.717732 + 0.696319i \(0.754820\pi\)
\(492\) 0 0
\(493\) 18.2462 0.821768
\(494\) 0 0
\(495\) 4.49242 0.201919
\(496\) 0 0
\(497\) −2.93087 −0.131467
\(498\) 0 0
\(499\) 25.1231i 1.12466i 0.826911 + 0.562332i \(0.190096\pi\)
−0.826911 + 0.562332i \(0.809904\pi\)
\(500\) 0 0
\(501\) 10.7386i 0.479767i
\(502\) 0 0
\(503\) −9.36932 −0.417757 −0.208879 0.977942i \(-0.566981\pi\)
−0.208879 + 0.977942i \(0.566981\pi\)
\(504\) 0 0
\(505\) 17.7538i 0.790033i
\(506\) 0 0
\(507\) 19.3153 + 6.24621i 0.857824 + 0.277404i
\(508\) 0 0
\(509\) 2.63068i 0.116603i 0.998299 + 0.0583015i \(0.0185685\pi\)
−0.998299 + 0.0583015i \(0.981432\pi\)
\(510\) 0 0
\(511\) −4.10795 −0.181725
\(512\) 0 0
\(513\) 11.1231i 0.491097i
\(514\) 0 0
\(515\) 4.87689i 0.214902i
\(516\) 0 0
\(517\) 38.7386 1.70372
\(518\) 0 0
\(519\) −6.63068 −0.291055
\(520\) 0 0
\(521\) 0.930870 0.0407821 0.0203911 0.999792i \(-0.493509\pi\)
0.0203911 + 0.999792i \(0.493509\pi\)
\(522\) 0 0
\(523\) 13.7538 0.601411 0.300706 0.953717i \(-0.402778\pi\)
0.300706 + 0.953717i \(0.402778\pi\)
\(524\) 0 0
\(525\) 1.75379i 0.0765416i
\(526\) 0 0
\(527\) 18.2462i 0.794817i
\(528\) 0 0
\(529\) −13.2462 −0.575922
\(530\) 0 0
\(531\) 5.61553i 0.243693i
\(532\) 0 0
\(533\) −28.4924 4.49242i −1.23414 0.194588i
\(534\) 0 0
\(535\) 6.24621i 0.270047i
\(536\) 0 0
\(537\) 27.4233 1.18340
\(538\) 0 0
\(539\) 34.8769i 1.50225i
\(540\) 0 0
\(541\) 25.1771i 1.08245i 0.840879 + 0.541224i \(0.182039\pi\)
−0.840879 + 0.541224i \(0.817961\pi\)
\(542\) 0 0
\(543\) 12.8769 0.552600
\(544\) 0 0
\(545\) −5.17708 −0.221762
\(546\) 0 0
\(547\) −23.8078 −1.01795 −0.508973 0.860782i \(-0.669975\pi\)
−0.508973 + 0.860782i \(0.669975\pi\)
\(548\) 0 0
\(549\) −1.61553 −0.0689491
\(550\) 0 0
\(551\) 10.2462i 0.436503i
\(552\) 0 0
\(553\) 4.87689i 0.207387i
\(554\) 0 0
\(555\) −23.3153 −0.989681
\(556\) 0 0
\(557\) 18.9309i 0.802127i 0.916050 + 0.401063i \(0.131359\pi\)
−0.916050 + 0.401063i \(0.868641\pi\)
\(558\) 0 0
\(559\) −5.36932 + 34.0540i −0.227098 + 1.44033i
\(560\) 0 0
\(561\) 28.4924i 1.20295i
\(562\) 0 0
\(563\) 26.9309 1.13500 0.567500 0.823373i \(-0.307911\pi\)
0.567500 + 0.823373i \(0.307911\pi\)
\(564\) 0 0
\(565\) 15.6155i 0.656950i
\(566\) 0 0
\(567\) 3.06913i 0.128891i
\(568\) 0 0
\(569\) −2.19224 −0.0919033 −0.0459517 0.998944i \(-0.514632\pi\)
−0.0459517 + 0.998944i \(0.514632\pi\)
\(570\) 0 0
\(571\) 14.0540 0.588141 0.294070 0.955784i \(-0.404990\pi\)
0.294070 + 0.955784i \(0.404990\pi\)
\(572\) 0 0
\(573\) −34.7386 −1.45123
\(574\) 0 0
\(575\) 8.00000 0.333623
\(576\) 0 0
\(577\) 29.8617i 1.24316i −0.783351 0.621580i \(-0.786491\pi\)
0.783351 0.621580i \(-0.213509\pi\)
\(578\) 0 0
\(579\) 36.8769i 1.53255i
\(580\) 0 0
\(581\) −3.61553 −0.149997
\(582\) 0 0
\(583\) 62.7386i 2.59837i
\(584\) 0 0
\(585\) 3.12311 + 0.492423i 0.129125 + 0.0203592i
\(586\) 0 0
\(587\) 9.50758i 0.392420i 0.980562 + 0.196210i \(0.0628634\pi\)
−0.980562 + 0.196210i \(0.937137\pi\)
\(588\) 0 0
\(589\) 10.2462 0.422188
\(590\) 0 0
\(591\) 14.9309i 0.614174i
\(592\) 0 0
\(593\) 25.7538i 1.05758i −0.848752 0.528791i \(-0.822646\pi\)
0.848752 0.528791i \(-0.177354\pi\)
\(594\) 0 0
\(595\) 2.43845 0.0999666
\(596\) 0 0
\(597\) −22.2462 −0.910477
\(598\) 0 0
\(599\) −41.3693 −1.69030 −0.845152 0.534526i \(-0.820490\pi\)
−0.845152 + 0.534526i \(0.820490\pi\)
\(600\) 0 0
\(601\) 21.8078 0.889557 0.444779 0.895641i \(-0.353282\pi\)
0.444779 + 0.895641i \(0.353282\pi\)
\(602\) 0 0
\(603\) 5.12311i 0.208629i
\(604\) 0 0
\(605\) 23.8078i 0.967923i
\(606\) 0 0
\(607\) 7.61553 0.309105 0.154552 0.987985i \(-0.450606\pi\)
0.154552 + 0.987985i \(0.450606\pi\)
\(608\) 0 0
\(609\) 3.50758i 0.142134i
\(610\) 0 0
\(611\) 26.9309 + 4.24621i 1.08951 + 0.171783i
\(612\) 0 0
\(613\) 18.6307i 0.752486i −0.926521 0.376243i \(-0.877216\pi\)
0.926521 0.376243i \(-0.122784\pi\)
\(614\) 0 0
\(615\) 19.5076 0.786621
\(616\) 0 0
\(617\) 1.75379i 0.0706049i −0.999377 0.0353024i \(-0.988761\pi\)
0.999377 0.0353024i \(-0.0112395\pi\)
\(618\) 0 0
\(619\) 17.6155i 0.708028i −0.935240 0.354014i \(-0.884817\pi\)
0.935240 0.354014i \(-0.115183\pi\)
\(620\) 0 0
\(621\) 17.3693 0.697007
\(622\) 0 0
\(623\) −1.36932 −0.0548605
\(624\) 0 0
\(625\) −5.63068 −0.225227
\(626\) 0 0
\(627\) 16.0000 0.638978
\(628\) 0 0
\(629\) 34.0540i 1.35782i
\(630\) 0 0
\(631\) 11.5616i 0.460258i −0.973160 0.230129i \(-0.926085\pi\)
0.973160 0.230129i \(-0.0739148\pi\)
\(632\) 0 0
\(633\) −34.4384 −1.36881
\(634\) 0 0
\(635\) 7.61553i 0.302213i
\(636\) 0 0
\(637\) 3.82292 24.2462i 0.151470 0.960670i
\(638\) 0 0
\(639\) 3.75379i 0.148498i
\(640\) 0 0
\(641\) 3.75379 0.148266 0.0741329 0.997248i \(-0.476381\pi\)
0.0741329 + 0.997248i \(0.476381\pi\)
\(642\) 0 0
\(643\) 25.1231i 0.990759i 0.868677 + 0.495379i \(0.164971\pi\)
−0.868677 + 0.495379i \(0.835029\pi\)
\(644\) 0 0
\(645\) 23.3153i 0.918041i
\(646\) 0 0
\(647\) −3.12311 −0.122782 −0.0613910 0.998114i \(-0.519554\pi\)
−0.0613910 + 0.998114i \(0.519554\pi\)
\(648\) 0 0
\(649\) −51.2311 −2.01099
\(650\) 0 0
\(651\) −3.50758 −0.137473
\(652\) 0 0
\(653\) 13.6155 0.532817 0.266408 0.963860i \(-0.414163\pi\)
0.266408 + 0.963860i \(0.414163\pi\)
\(654\) 0 0
\(655\) 5.17708i 0.202285i
\(656\) 0 0
\(657\) 5.26137i 0.205265i
\(658\) 0 0
\(659\) −6.73863 −0.262500 −0.131250 0.991349i \(-0.541899\pi\)
−0.131250 + 0.991349i \(0.541899\pi\)
\(660\) 0 0
\(661\) 32.8769i 1.27876i 0.768890 + 0.639381i \(0.220810\pi\)
−0.768890 + 0.639381i \(0.779190\pi\)
\(662\) 0 0
\(663\) 3.12311 19.8078i 0.121291 0.769270i
\(664\) 0 0
\(665\) 1.36932i 0.0530998i
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) 42.4384i 1.64077i
\(670\) 0 0
\(671\) 14.7386i 0.568979i
\(672\) 0 0
\(673\) −22.3002 −0.859609 −0.429805 0.902922i \(-0.641418\pi\)
−0.429805 + 0.902922i \(0.641418\pi\)
\(674\) 0 0
\(675\) 14.2462 0.548337
\(676\) 0 0
\(677\) −28.7386 −1.10452 −0.552258 0.833673i \(-0.686234\pi\)
−0.552258 + 0.833673i \(0.686234\pi\)
\(678\) 0 0
\(679\) 2.73863 0.105099
\(680\) 0 0
\(681\) 5.26137i 0.201616i
\(682\) 0 0
\(683\) 12.2462i 0.468588i 0.972166 + 0.234294i \(0.0752779\pi\)
−0.972166 + 0.234294i \(0.924722\pi\)
\(684\) 0 0
\(685\) −4.87689 −0.186337
\(686\) 0 0
\(687\) 32.3002i 1.23233i
\(688\) 0 0
\(689\) 6.87689 43.6155i 0.261989 1.66162i
\(690\) 0 0
\(691\) 27.8617i 1.05991i 0.848026 + 0.529955i \(0.177791\pi\)
−0.848026 + 0.529955i \(0.822209\pi\)
\(692\) 0 0
\(693\) 1.26137 0.0479153
\(694\) 0 0
\(695\) 12.1922i 0.462478i
\(696\) 0 0
\(697\) 28.4924i 1.07923i
\(698\) 0 0
\(699\) 5.56155 0.210357
\(700\) 0 0
\(701\) 37.2311 1.40620 0.703099 0.711092i \(-0.251799\pi\)
0.703099 + 0.711092i \(0.251799\pi\)
\(702\) 0 0
\(703\) 19.1231 0.721242
\(704\) 0 0
\(705\) −18.4384 −0.694432
\(706\) 0 0
\(707\) 4.98485i 0.187474i
\(708\) 0 0
\(709\) 7.12311i 0.267514i 0.991014 + 0.133757i \(0.0427041\pi\)
−0.991014 + 0.133757i \(0.957296\pi\)
\(710\) 0 0
\(711\) −6.24621 −0.234251
\(712\) 0 0
\(713\) 16.0000i 0.599205i
\(714\) 0 0
\(715\) −4.49242 + 28.4924i −0.168007 + 1.06556i
\(716\) 0 0
\(717\) 13.9460i 0.520824i
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 1.36932i 0.0509960i
\(722\) 0 0
\(723\) 42.3542i 1.57517i
\(724\) 0 0
\(725\) −13.1231 −0.487380
\(726\) 0 0
\(727\) −39.2311 −1.45500 −0.727500 0.686108i \(-0.759318\pi\)
−0.727500 + 0.686108i \(0.759318\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) 34.0540 1.25953
\(732\) 0 0
\(733\) 4.30019i 0.158831i 0.996842 + 0.0794155i \(0.0253054\pi\)
−0.996842 + 0.0794155i \(0.974695\pi\)
\(734\) 0 0
\(735\) 16.6004i 0.612314i
\(736\) 0 0
\(737\) 46.7386 1.72164
\(738\) 0 0
\(739\) 15.8617i 0.583484i −0.956497 0.291742i \(-0.905765\pi\)
0.956497 0.291742i \(-0.0942348\pi\)
\(740\) 0 0
\(741\) 11.1231 + 1.75379i 0.408617 + 0.0644270i
\(742\) 0 0
\(743\) 7.94602i 0.291511i 0.989321 + 0.145756i \(0.0465613\pi\)
−0.989321 + 0.145756i \(0.953439\pi\)
\(744\) 0 0
\(745\) 11.1231 0.407519
\(746\) 0 0
\(747\) 4.63068i 0.169428i
\(748\) 0 0
\(749\) 1.75379i 0.0640820i
\(750\) 0 0
\(751\) 3.50758 0.127993 0.0639967 0.997950i \(-0.479615\pi\)
0.0639967 + 0.997950i \(0.479615\pi\)
\(752\) 0 0
\(753\) 38.2462 1.39377
\(754\) 0 0
\(755\) −18.0540 −0.657051
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 24.9848i 0.906892i
\(760\) 0 0
\(761\) 44.8769i 1.62679i 0.581714 + 0.813393i \(0.302382\pi\)
−0.581714 + 0.813393i \(0.697618\pi\)
\(762\) 0 0
\(763\) −1.45360 −0.0526239
\(764\) 0 0
\(765\) 3.12311i 0.112916i
\(766\) 0 0
\(767\) −35.6155 5.61553i −1.28600 0.202765i
\(768\) 0 0
\(769\) 28.4924i 1.02746i 0.857951 + 0.513732i \(0.171737\pi\)
−0.857951 + 0.513732i \(0.828263\pi\)
\(770\) 0 0
\(771\) −1.45360 −0.0523502
\(772\) 0 0
\(773\) 14.0540i 0.505486i −0.967533 0.252743i \(-0.918667\pi\)
0.967533 0.252743i \(-0.0813328\pi\)
\(774\) 0 0
\(775\) 13.1231i 0.471396i
\(776\) 0 0
\(777\) −6.54640 −0.234851
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −34.2462 −1.22543
\(782\) 0 0
\(783\) −28.4924 −1.01824
\(784\) 0 0
\(785\) 19.1231i 0.682533i
\(786\) 0 0
\(787\) 3.36932i 0.120103i −0.998195 0.0600516i \(-0.980873\pi\)
0.998195 0.0600516i \(-0.0191265\pi\)
\(788\) 0 0
\(789\) −7.01515 −0.249746
\(790\) 0 0
\(791\) 4.38447i 0.155894i
\(792\) 0 0
\(793\) 1.61553 10.2462i 0.0573691 0.363854i
\(794\) 0 0
\(795\) 29.8617i 1.05909i
\(796\) 0 0
\(797\) 12.2462 0.433783 0.216892 0.976196i \(-0.430408\pi\)
0.216892 + 0.976196i \(0.430408\pi\)
\(798\) 0 0
\(799\) 26.9309i 0.952746i
\(800\) 0 0
\(801\) 1.75379i 0.0619671i
\(802\) 0 0
\(803\) −48.0000 −1.69388
\(804\) 0 0
\(805\) −2.13826 −0.0753638
\(806\) 0 0
\(807\) −16.9848 −0.597895
\(808\) 0 0
\(809\) 42.6847 1.50071 0.750356 0.661034i \(-0.229882\pi\)
0.750356 + 0.661034i \(0.229882\pi\)
\(810\) 0 0
\(811\) 23.3693i 0.820608i 0.911949 + 0.410304i \(0.134577\pi\)
−0.911949 + 0.410304i \(0.865423\pi\)
\(812\) 0 0
\(813\) 22.9309i 0.804221i
\(814\) 0 0
\(815\) 31.6155 1.10744
\(816\) 0 0
\(817\) 19.1231i 0.669033i
\(818\) 0 0
\(819\) 0.876894 + 0.138261i 0.0306412 + 0.00483122i
\(820\) 0 0
\(821\) 42.5464i 1.48488i −0.669913 0.742440i \(-0.733669\pi\)
0.669913 0.742440i \(-0.266331\pi\)
\(822\) 0 0
\(823\) 50.3542 1.75524 0.877618 0.479361i \(-0.159131\pi\)
0.877618 + 0.479361i \(0.159131\pi\)
\(824\) 0 0
\(825\) 20.4924i 0.713455i
\(826\) 0 0
\(827\) 22.0000i 0.765015i 0.923952 + 0.382507i \(0.124939\pi\)
−0.923952 + 0.382507i \(0.875061\pi\)
\(828\) 0 0
\(829\) −6.87689 −0.238844 −0.119422 0.992844i \(-0.538104\pi\)
−0.119422 + 0.992844i \(0.538104\pi\)
\(830\) 0 0
\(831\) −11.5076 −0.399193
\(832\) 0 0
\(833\) −24.2462 −0.840081
\(834\) 0 0
\(835\) 10.7386 0.371626
\(836\) 0 0
\(837\) 28.4924i 0.984842i
\(838\) 0 0
\(839\) 43.8617i 1.51428i −0.653255 0.757138i \(-0.726597\pi\)
0.653255 0.757138i \(-0.273403\pi\)
\(840\) 0 0
\(841\) −2.75379 −0.0949582
\(842\) 0 0
\(843\) 14.6307i 0.503907i
\(844\) 0 0
\(845\) −6.24621 + 19.3153i −0.214876 + 0.664468i
\(846\) 0 0
\(847\) 6.68466i 0.229688i
\(848\) 0 0
\(849\) 18.7386 0.643108
\(850\) 0 0
\(851\) 29.8617i 1.02365i
\(852\) 0 0
\(853\) 4.68466i 0.160400i 0.996779 + 0.0801998i \(0.0255558\pi\)
−0.996779 + 0.0801998i \(0.974444\pi\)
\(854\) 0 0
\(855\) 1.75379 0.0599783
\(856\) 0 0
\(857\) −50.4924 −1.72479 −0.862394 0.506237i \(-0.831036\pi\)
−0.862394 + 0.506237i \(0.831036\pi\)
\(858\) 0 0
\(859\) 10.2462 0.349596 0.174798 0.984604i \(-0.444073\pi\)
0.174798 + 0.984604i \(0.444073\pi\)
\(860\) 0 0
\(861\) 5.47727 0.186665
\(862\) 0 0
\(863\) 48.0540i 1.63578i −0.575377 0.817888i \(-0.695145\pi\)
0.575377 0.817888i \(-0.304855\pi\)
\(864\) 0 0
\(865\) 6.63068i 0.225450i
\(866\) 0 0
\(867\) 6.73863 0.228856
\(868\) 0 0
\(869\) 56.9848i 1.93308i
\(870\) 0 0
\(871\) 32.4924 + 5.12311i 1.10096 + 0.173590i
\(872\) 0 0
\(873\) 3.50758i 0.118714i
\(874\) 0 0
\(875\) −5.17708 −0.175017
\(876\) 0 0
\(877\) 7.42329i 0.250667i −0.992115 0.125333i \(-0.960000\pi\)
0.992115 0.125333i \(-0.0400000\pi\)
\(878\) 0 0
\(879\) 19.8078i 0.668099i
\(880\) 0 0
\(881\) −42.7926 −1.44172 −0.720860 0.693081i \(-0.756253\pi\)
−0.720860 + 0.693081i \(0.756253\pi\)
\(882\) 0 0
\(883\) 31.8078 1.07042 0.535208 0.844720i \(-0.320233\pi\)
0.535208 + 0.844720i \(0.320233\pi\)
\(884\) 0 0
\(885\) 24.3845 0.819675
\(886\) 0 0
\(887\) 5.26137 0.176659 0.0883297 0.996091i \(-0.471847\pi\)
0.0883297 + 0.996091i \(0.471847\pi\)
\(888\) 0 0
\(889\) 2.13826i 0.0717150i
\(890\) 0 0
\(891\) 35.8617i 1.20141i
\(892\) 0 0
\(893\) 15.1231 0.506075
\(894\) 0 0
\(895\) 27.4233i 0.916660i
\(896\) 0 0
\(897\) −2.73863 + 17.3693i −0.0914403 + 0.579945i
\(898\) 0 0
\(899\) 26.2462i 0.875360i
\(900\) 0 0
\(901\) −43.6155 −1.45304
\(902\) 0 0
\(903\) 6.54640i 0.217850i
\(904\) 0 0
\(905\) 12.8769i 0.428042i
\(906\) 0 0
\(907\) 22.4384 0.745056 0.372528 0.928021i \(-0.378491\pi\)
0.372528 + 0.928021i \(0.378491\pi\)
\(908\) 0 0
\(909\) 6.38447 0.211760
\(910\) 0 0
\(911\) −25.7538 −0.853261 −0.426631 0.904426i \(-0.640300\pi\)
−0.426631 + 0.904426i \(0.640300\pi\)
\(912\) 0 0
\(913\) −42.2462 −1.39815
\(914\) 0 0
\(915\) 7.01515i 0.231914i
\(916\) 0 0
\(917\) 1.45360i 0.0480022i
\(918\) 0 0
\(919\) −1.75379 −0.0578522 −0.0289261 0.999582i \(-0.509209\pi\)
−0.0289261 + 0.999582i \(0.509209\pi\)
\(920\) 0 0
\(921\) 28.1080i 0.926188i
\(922\) 0 0
\(923\) −23.8078 3.75379i −0.783642 0.123557i
\(924\) 0 0
\(925\) 24.4924i 0.805306i
\(926\) 0 0
\(927\) 1.75379 0.0576020
\(928\) 0 0
\(929\) 18.7386i 0.614795i −0.951581 0.307397i \(-0.900542\pi\)
0.951581 0.307397i \(-0.0994581\pi\)
\(930\) 0 0
\(931\) 13.6155i 0.446231i
\(932\) 0 0
\(933\) 29.8617 0.977629
\(934\) 0 0
\(935\) 28.4924 0.931802
\(936\) 0 0
\(937\) 19.7538 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(938\) 0 0
\(939\) −6.93087 −0.226180
\(940\) 0 0
\(941\) 42.5464i 1.38697i 0.720470 + 0.693486i \(0.243926\pi\)
−0.720470 + 0.693486i \(0.756074\pi\)
\(942\) 0 0
\(943\) 24.9848i 0.813618i
\(944\) 0 0
\(945\) −3.80776 −0.123867
\(946\) 0 0
\(947\) 15.3693i 0.499436i 0.968319 + 0.249718i \(0.0803379\pi\)
−0.968319 + 0.249718i \(0.919662\pi\)
\(948\) 0 0
\(949\) −33.3693 5.26137i −1.08321 0.170791i
\(950\) 0 0
\(951\) 23.6155i 0.765786i
\(952\) 0 0
\(953\) 20.0540 0.649612 0.324806 0.945781i \(-0.394701\pi\)
0.324806 + 0.945781i \(0.394701\pi\)
\(954\) 0 0
\(955\) 34.7386i 1.12412i
\(956\) 0 0
\(957\) 40.9848i 1.32485i
\(958\) 0 0
\(959\) −1.36932 −0.0442175
\(960\) 0 0
\(961\) 4.75379 0.153348
\(962\) 0 0
\(963\) −2.24621 −0.0723831
\(964\) 0 0
\(965\) 36.8769 1.18711
\(966\) 0 0
\(967\) 15.5616i 0.500426i 0.968191 + 0.250213i \(0.0805006\pi\)
−0.968191 + 0.250213i \(0.919499\pi\)
\(968\) 0 0
\(969\) 11.1231i 0.357326i
\(970\) 0 0
\(971\) 57.1771 1.83490 0.917450 0.397851i \(-0.130244\pi\)
0.917450 + 0.397851i \(0.130244\pi\)
\(972\) 0 0
\(973\) 3.42329i 0.109746i
\(974\) 0 0
\(975\) −2.24621 + 14.2462i −0.0719363 + 0.456244i
\(976\) 0 0
\(977\) 47.2311i 1.51106i −0.655117 0.755528i \(-0.727381\pi\)
0.655117 0.755528i \(-0.272619\pi\)
\(978\) 0 0
\(979\) −16.0000 −0.511362
\(980\) 0 0
\(981\) 1.86174i 0.0594408i
\(982\) 0 0
\(983\) 10.1922i 0.325082i −0.986702 0.162541i \(-0.948031\pi\)
0.986702 0.162541i \(-0.0519690\pi\)
\(984\) 0 0
\(985\) 14.9309 0.475737
\(986\) 0 0
\(987\) −5.17708 −0.164788
\(988\) 0 0
\(989\) −29.8617 −0.949548
\(990\) 0 0
\(991\) 7.61553 0.241915 0.120958 0.992658i \(-0.461403\pi\)
0.120958 + 0.992658i \(0.461403\pi\)
\(992\) 0 0
\(993\) 0.384472i 0.0122008i
\(994\) 0 0
\(995\) 22.2462i 0.705252i
\(996\) 0 0
\(997\) −1.61553 −0.0511643 −0.0255821 0.999673i \(-0.508144\pi\)
−0.0255821 + 0.999673i \(0.508144\pi\)
\(998\) 0 0
\(999\) 53.1771i 1.68245i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.2.f.b.129.1 4
3.2 odd 2 1872.2.c.j.1585.3 4
4.3 odd 2 104.2.f.a.25.3 4
8.3 odd 2 832.2.f.i.129.2 4
8.5 even 2 832.2.f.f.129.4 4
12.11 even 2 936.2.c.d.649.3 4
13.5 odd 4 2704.2.a.t.1.1 2
13.8 odd 4 2704.2.a.s.1.1 2
13.12 even 2 inner 208.2.f.b.129.2 4
20.3 even 4 2600.2.f.b.649.3 4
20.7 even 4 2600.2.f.a.649.2 4
20.19 odd 2 2600.2.k.a.2001.1 4
39.38 odd 2 1872.2.c.j.1585.2 4
52.3 odd 6 1352.2.o.e.1161.1 8
52.7 even 12 1352.2.i.g.1329.1 4
52.11 even 12 1352.2.i.g.529.1 4
52.15 even 12 1352.2.i.h.529.1 4
52.19 even 12 1352.2.i.h.1329.1 4
52.23 odd 6 1352.2.o.e.1161.2 8
52.31 even 4 1352.2.a.e.1.2 2
52.35 odd 6 1352.2.o.e.361.1 8
52.43 odd 6 1352.2.o.e.361.2 8
52.47 even 4 1352.2.a.d.1.2 2
52.51 odd 2 104.2.f.a.25.4 yes 4
104.51 odd 2 832.2.f.i.129.1 4
104.77 even 2 832.2.f.f.129.3 4
156.155 even 2 936.2.c.d.649.2 4
260.103 even 4 2600.2.f.a.649.3 4
260.207 even 4 2600.2.f.b.649.2 4
260.259 odd 2 2600.2.k.a.2001.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.f.a.25.3 4 4.3 odd 2
104.2.f.a.25.4 yes 4 52.51 odd 2
208.2.f.b.129.1 4 1.1 even 1 trivial
208.2.f.b.129.2 4 13.12 even 2 inner
832.2.f.f.129.3 4 104.77 even 2
832.2.f.f.129.4 4 8.5 even 2
832.2.f.i.129.1 4 104.51 odd 2
832.2.f.i.129.2 4 8.3 odd 2
936.2.c.d.649.2 4 156.155 even 2
936.2.c.d.649.3 4 12.11 even 2
1352.2.a.d.1.2 2 52.47 even 4
1352.2.a.e.1.2 2 52.31 even 4
1352.2.i.g.529.1 4 52.11 even 12
1352.2.i.g.1329.1 4 52.7 even 12
1352.2.i.h.529.1 4 52.15 even 12
1352.2.i.h.1329.1 4 52.19 even 12
1352.2.o.e.361.1 8 52.35 odd 6
1352.2.o.e.361.2 8 52.43 odd 6
1352.2.o.e.1161.1 8 52.3 odd 6
1352.2.o.e.1161.2 8 52.23 odd 6
1872.2.c.j.1585.2 4 39.38 odd 2
1872.2.c.j.1585.3 4 3.2 odd 2
2600.2.f.a.649.2 4 20.7 even 4
2600.2.f.a.649.3 4 260.103 even 4
2600.2.f.b.649.2 4 260.207 even 4
2600.2.f.b.649.3 4 20.3 even 4
2600.2.k.a.2001.1 4 20.19 odd 2
2600.2.k.a.2001.2 4 260.259 odd 2
2704.2.a.s.1.1 2 13.8 odd 4
2704.2.a.t.1.1 2 13.5 odd 4