Properties

Label 1352.2.a.d.1.2
Level $1352$
Weight $2$
Character 1352.1
Self dual yes
Analytic conductor $10.796$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(1,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-1,0,-1,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.56155\) of defining polynomial
Character \(\chi\) \(=\) 1352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.56155 q^{3} +1.56155 q^{5} +0.438447 q^{7} -0.561553 q^{9} +5.12311 q^{11} +2.43845 q^{15} +3.56155 q^{17} -2.00000 q^{19} +0.684658 q^{21} +3.12311 q^{23} -2.56155 q^{25} -5.56155 q^{27} -5.12311 q^{29} +5.12311 q^{31} +8.00000 q^{33} +0.684658 q^{35} +9.56155 q^{37} +8.00000 q^{41} -9.56155 q^{43} -0.876894 q^{45} -7.56155 q^{47} -6.80776 q^{49} +5.56155 q^{51} +12.2462 q^{53} +8.00000 q^{55} -3.12311 q^{57} +10.0000 q^{59} +2.87689 q^{61} -0.246211 q^{63} +9.12311 q^{67} +4.87689 q^{69} -6.68466 q^{71} -9.36932 q^{73} -4.00000 q^{75} +2.24621 q^{77} -11.1231 q^{79} -7.00000 q^{81} -8.24621 q^{83} +5.56155 q^{85} -8.00000 q^{87} -3.12311 q^{89} +8.00000 q^{93} -3.12311 q^{95} -6.24621 q^{97} -2.87689 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} - q^{5} + 5 q^{7} + 3 q^{9} + 2 q^{11} + 9 q^{15} + 3 q^{17} - 4 q^{19} - 11 q^{21} - 2 q^{23} - q^{25} - 7 q^{27} - 2 q^{29} + 2 q^{31} + 16 q^{33} - 11 q^{35} + 15 q^{37} + 16 q^{41} - 15 q^{43}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.56155 0.901563 0.450781 0.892634i \(-0.351145\pi\)
0.450781 + 0.892634i \(0.351145\pi\)
\(4\) 0 0
\(5\) 1.56155 0.698348 0.349174 0.937058i \(-0.386462\pi\)
0.349174 + 0.937058i \(0.386462\pi\)
\(6\) 0 0
\(7\) 0.438447 0.165717 0.0828587 0.996561i \(-0.473595\pi\)
0.0828587 + 0.996561i \(0.473595\pi\)
\(8\) 0 0
\(9\) −0.561553 −0.187184
\(10\) 0 0
\(11\) 5.12311 1.54467 0.772337 0.635213i \(-0.219088\pi\)
0.772337 + 0.635213i \(0.219088\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.43845 0.629604
\(16\) 0 0
\(17\) 3.56155 0.863803 0.431902 0.901921i \(-0.357843\pi\)
0.431902 + 0.901921i \(0.357843\pi\)
\(18\) 0 0
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) 0.684658 0.149405
\(22\) 0 0
\(23\) 3.12311 0.651213 0.325606 0.945505i \(-0.394432\pi\)
0.325606 + 0.945505i \(0.394432\pi\)
\(24\) 0 0
\(25\) −2.56155 −0.512311
\(26\) 0 0
\(27\) −5.56155 −1.07032
\(28\) 0 0
\(29\) −5.12311 −0.951337 −0.475668 0.879625i \(-0.657794\pi\)
−0.475668 + 0.879625i \(0.657794\pi\)
\(30\) 0 0
\(31\) 5.12311 0.920137 0.460068 0.887883i \(-0.347825\pi\)
0.460068 + 0.887883i \(0.347825\pi\)
\(32\) 0 0
\(33\) 8.00000 1.39262
\(34\) 0 0
\(35\) 0.684658 0.115728
\(36\) 0 0
\(37\) 9.56155 1.57191 0.785955 0.618284i \(-0.212172\pi\)
0.785955 + 0.618284i \(0.212172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) −9.56155 −1.45812 −0.729062 0.684448i \(-0.760043\pi\)
−0.729062 + 0.684448i \(0.760043\pi\)
\(44\) 0 0
\(45\) −0.876894 −0.130720
\(46\) 0 0
\(47\) −7.56155 −1.10297 −0.551483 0.834186i \(-0.685938\pi\)
−0.551483 + 0.834186i \(0.685938\pi\)
\(48\) 0 0
\(49\) −6.80776 −0.972538
\(50\) 0 0
\(51\) 5.56155 0.778773
\(52\) 0 0
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) −3.12311 −0.413665
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 2.87689 0.368349 0.184174 0.982894i \(-0.441039\pi\)
0.184174 + 0.982894i \(0.441039\pi\)
\(62\) 0 0
\(63\) −0.246211 −0.0310197
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.12311 1.11456 0.557282 0.830323i \(-0.311844\pi\)
0.557282 + 0.830323i \(0.311844\pi\)
\(68\) 0 0
\(69\) 4.87689 0.587109
\(70\) 0 0
\(71\) −6.68466 −0.793323 −0.396662 0.917965i \(-0.629831\pi\)
−0.396662 + 0.917965i \(0.629831\pi\)
\(72\) 0 0
\(73\) −9.36932 −1.09660 −0.548298 0.836283i \(-0.684724\pi\)
−0.548298 + 0.836283i \(0.684724\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) 2.24621 0.255980
\(78\) 0 0
\(79\) −11.1231 −1.25145 −0.625724 0.780045i \(-0.715196\pi\)
−0.625724 + 0.780045i \(0.715196\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) −8.24621 −0.905139 −0.452570 0.891729i \(-0.649493\pi\)
−0.452570 + 0.891729i \(0.649493\pi\)
\(84\) 0 0
\(85\) 5.56155 0.603235
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) −3.12311 −0.331049 −0.165524 0.986206i \(-0.552932\pi\)
−0.165524 + 0.986206i \(0.552932\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) −3.12311 −0.320424
\(96\) 0 0
\(97\) −6.24621 −0.634207 −0.317103 0.948391i \(-0.602710\pi\)
−0.317103 + 0.948391i \(0.602710\pi\)
\(98\) 0 0
\(99\) −2.87689 −0.289139
\(100\) 0 0
\(101\) 11.3693 1.13129 0.565645 0.824649i \(-0.308627\pi\)
0.565645 + 0.824649i \(0.308627\pi\)
\(102\) 0 0
\(103\) −3.12311 −0.307729 −0.153864 0.988092i \(-0.549172\pi\)
−0.153864 + 0.988092i \(0.549172\pi\)
\(104\) 0 0
\(105\) 1.06913 0.104336
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 3.31534 0.317552 0.158776 0.987315i \(-0.449245\pi\)
0.158776 + 0.987315i \(0.449245\pi\)
\(110\) 0 0
\(111\) 14.9309 1.41718
\(112\) 0 0
\(113\) 10.0000 0.940721 0.470360 0.882474i \(-0.344124\pi\)
0.470360 + 0.882474i \(0.344124\pi\)
\(114\) 0 0
\(115\) 4.87689 0.454773
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.56155 0.143147
\(120\) 0 0
\(121\) 15.2462 1.38602
\(122\) 0 0
\(123\) 12.4924 1.12640
\(124\) 0 0
\(125\) −11.8078 −1.05612
\(126\) 0 0
\(127\) 4.87689 0.432754 0.216377 0.976310i \(-0.430576\pi\)
0.216377 + 0.976310i \(0.430576\pi\)
\(128\) 0 0
\(129\) −14.9309 −1.31459
\(130\) 0 0
\(131\) −3.31534 −0.289663 −0.144831 0.989456i \(-0.546264\pi\)
−0.144831 + 0.989456i \(0.546264\pi\)
\(132\) 0 0
\(133\) −0.876894 −0.0760364
\(134\) 0 0
\(135\) −8.68466 −0.747456
\(136\) 0 0
\(137\) −3.12311 −0.266825 −0.133412 0.991061i \(-0.542594\pi\)
−0.133412 + 0.991061i \(0.542594\pi\)
\(138\) 0 0
\(139\) −7.80776 −0.662246 −0.331123 0.943588i \(-0.607427\pi\)
−0.331123 + 0.943588i \(0.607427\pi\)
\(140\) 0 0
\(141\) −11.8078 −0.994393
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −8.00000 −0.664364
\(146\) 0 0
\(147\) −10.6307 −0.876804
\(148\) 0 0
\(149\) −7.12311 −0.583548 −0.291774 0.956487i \(-0.594245\pi\)
−0.291774 + 0.956487i \(0.594245\pi\)
\(150\) 0 0
\(151\) 11.5616 0.940866 0.470433 0.882436i \(-0.344098\pi\)
0.470433 + 0.882436i \(0.344098\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 12.2462 0.977354 0.488677 0.872465i \(-0.337480\pi\)
0.488677 + 0.872465i \(0.337480\pi\)
\(158\) 0 0
\(159\) 19.1231 1.51656
\(160\) 0 0
\(161\) 1.36932 0.107917
\(162\) 0 0
\(163\) −20.2462 −1.58581 −0.792903 0.609348i \(-0.791431\pi\)
−0.792903 + 0.609348i \(0.791431\pi\)
\(164\) 0 0
\(165\) 12.4924 0.972534
\(166\) 0 0
\(167\) −6.87689 −0.532150 −0.266075 0.963952i \(-0.585727\pi\)
−0.266075 + 0.963952i \(0.585727\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 1.12311 0.0858860
\(172\) 0 0
\(173\) −4.24621 −0.322833 −0.161417 0.986886i \(-0.551606\pi\)
−0.161417 + 0.986886i \(0.551606\pi\)
\(174\) 0 0
\(175\) −1.12311 −0.0848988
\(176\) 0 0
\(177\) 15.6155 1.17373
\(178\) 0 0
\(179\) −17.5616 −1.31261 −0.656306 0.754495i \(-0.727882\pi\)
−0.656306 + 0.754495i \(0.727882\pi\)
\(180\) 0 0
\(181\) 8.24621 0.612936 0.306468 0.951881i \(-0.400853\pi\)
0.306468 + 0.951881i \(0.400853\pi\)
\(182\) 0 0
\(183\) 4.49242 0.332089
\(184\) 0 0
\(185\) 14.9309 1.09774
\(186\) 0 0
\(187\) 18.2462 1.33430
\(188\) 0 0
\(189\) −2.43845 −0.177371
\(190\) 0 0
\(191\) −22.2462 −1.60968 −0.804840 0.593492i \(-0.797749\pi\)
−0.804840 + 0.593492i \(0.797749\pi\)
\(192\) 0 0
\(193\) 23.6155 1.69988 0.849941 0.526877i \(-0.176637\pi\)
0.849941 + 0.526877i \(0.176637\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −9.56155 −0.681232 −0.340616 0.940202i \(-0.610636\pi\)
−0.340616 + 0.940202i \(0.610636\pi\)
\(198\) 0 0
\(199\) 14.2462 1.00989 0.504944 0.863152i \(-0.331513\pi\)
0.504944 + 0.863152i \(0.331513\pi\)
\(200\) 0 0
\(201\) 14.2462 1.00485
\(202\) 0 0
\(203\) −2.24621 −0.157653
\(204\) 0 0
\(205\) 12.4924 0.872509
\(206\) 0 0
\(207\) −1.75379 −0.121897
\(208\) 0 0
\(209\) −10.2462 −0.708745
\(210\) 0 0
\(211\) −22.0540 −1.51826 −0.759129 0.650940i \(-0.774375\pi\)
−0.759129 + 0.650940i \(0.774375\pi\)
\(212\) 0 0
\(213\) −10.4384 −0.715231
\(214\) 0 0
\(215\) −14.9309 −1.01828
\(216\) 0 0
\(217\) 2.24621 0.152483
\(218\) 0 0
\(219\) −14.6307 −0.988650
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −27.1771 −1.81991 −0.909956 0.414705i \(-0.863885\pi\)
−0.909956 + 0.414705i \(0.863885\pi\)
\(224\) 0 0
\(225\) 1.43845 0.0958965
\(226\) 0 0
\(227\) −3.36932 −0.223629 −0.111815 0.993729i \(-0.535666\pi\)
−0.111815 + 0.993729i \(0.535666\pi\)
\(228\) 0 0
\(229\) 20.6847 1.36688 0.683440 0.730006i \(-0.260483\pi\)
0.683440 + 0.730006i \(0.260483\pi\)
\(230\) 0 0
\(231\) 3.50758 0.230782
\(232\) 0 0
\(233\) 3.56155 0.233325 0.116663 0.993172i \(-0.462780\pi\)
0.116663 + 0.993172i \(0.462780\pi\)
\(234\) 0 0
\(235\) −11.8078 −0.770254
\(236\) 0 0
\(237\) −17.3693 −1.12826
\(238\) 0 0
\(239\) 8.93087 0.577690 0.288845 0.957376i \(-0.406729\pi\)
0.288845 + 0.957376i \(0.406729\pi\)
\(240\) 0 0
\(241\) −27.1231 −1.74715 −0.873576 0.486687i \(-0.838205\pi\)
−0.873576 + 0.486687i \(0.838205\pi\)
\(242\) 0 0
\(243\) 5.75379 0.369106
\(244\) 0 0
\(245\) −10.6307 −0.679169
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.8769 −0.816040
\(250\) 0 0
\(251\) −24.4924 −1.54595 −0.772974 0.634438i \(-0.781232\pi\)
−0.772974 + 0.634438i \(0.781232\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) 0 0
\(255\) 8.68466 0.543854
\(256\) 0 0
\(257\) −0.930870 −0.0580661 −0.0290330 0.999578i \(-0.509243\pi\)
−0.0290330 + 0.999578i \(0.509243\pi\)
\(258\) 0 0
\(259\) 4.19224 0.260493
\(260\) 0 0
\(261\) 2.87689 0.178075
\(262\) 0 0
\(263\) −4.49242 −0.277015 −0.138507 0.990361i \(-0.544230\pi\)
−0.138507 + 0.990361i \(0.544230\pi\)
\(264\) 0 0
\(265\) 19.1231 1.17472
\(266\) 0 0
\(267\) −4.87689 −0.298461
\(268\) 0 0
\(269\) 10.8769 0.663176 0.331588 0.943424i \(-0.392416\pi\)
0.331588 + 0.943424i \(0.392416\pi\)
\(270\) 0 0
\(271\) 14.6847 0.892029 0.446015 0.895026i \(-0.352843\pi\)
0.446015 + 0.895026i \(0.352843\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −13.1231 −0.791353
\(276\) 0 0
\(277\) −7.36932 −0.442779 −0.221390 0.975185i \(-0.571059\pi\)
−0.221390 + 0.975185i \(0.571059\pi\)
\(278\) 0 0
\(279\) −2.87689 −0.172235
\(280\) 0 0
\(281\) 9.36932 0.558927 0.279463 0.960156i \(-0.409843\pi\)
0.279463 + 0.960156i \(0.409843\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) −4.87689 −0.288882
\(286\) 0 0
\(287\) 3.50758 0.207046
\(288\) 0 0
\(289\) −4.31534 −0.253844
\(290\) 0 0
\(291\) −9.75379 −0.571777
\(292\) 0 0
\(293\) −12.6847 −0.741046 −0.370523 0.928823i \(-0.620821\pi\)
−0.370523 + 0.928823i \(0.620821\pi\)
\(294\) 0 0
\(295\) 15.6155 0.909171
\(296\) 0 0
\(297\) −28.4924 −1.65330
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −4.19224 −0.241636
\(302\) 0 0
\(303\) 17.7538 1.01993
\(304\) 0 0
\(305\) 4.49242 0.257235
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 0 0
\(309\) −4.87689 −0.277437
\(310\) 0 0
\(311\) −19.1231 −1.08437 −0.542186 0.840259i \(-0.682403\pi\)
−0.542186 + 0.840259i \(0.682403\pi\)
\(312\) 0 0
\(313\) 4.43845 0.250876 0.125438 0.992101i \(-0.459966\pi\)
0.125438 + 0.992101i \(0.459966\pi\)
\(314\) 0 0
\(315\) −0.384472 −0.0216625
\(316\) 0 0
\(317\) −15.1231 −0.849398 −0.424699 0.905335i \(-0.639620\pi\)
−0.424699 + 0.905335i \(0.639620\pi\)
\(318\) 0 0
\(319\) −26.2462 −1.46951
\(320\) 0 0
\(321\) −6.24621 −0.348630
\(322\) 0 0
\(323\) −7.12311 −0.396340
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.17708 0.286293
\(328\) 0 0
\(329\) −3.31534 −0.182781
\(330\) 0 0
\(331\) −0.246211 −0.0135330 −0.00676650 0.999977i \(-0.502154\pi\)
−0.00676650 + 0.999977i \(0.502154\pi\)
\(332\) 0 0
\(333\) −5.36932 −0.294237
\(334\) 0 0
\(335\) 14.2462 0.778354
\(336\) 0 0
\(337\) −1.31534 −0.0716512 −0.0358256 0.999358i \(-0.511406\pi\)
−0.0358256 + 0.999358i \(0.511406\pi\)
\(338\) 0 0
\(339\) 15.6155 0.848119
\(340\) 0 0
\(341\) 26.2462 1.42131
\(342\) 0 0
\(343\) −6.05398 −0.326884
\(344\) 0 0
\(345\) 7.61553 0.410006
\(346\) 0 0
\(347\) −1.56155 −0.0838285 −0.0419143 0.999121i \(-0.513346\pi\)
−0.0419143 + 0.999121i \(0.513346\pi\)
\(348\) 0 0
\(349\) −10.9309 −0.585116 −0.292558 0.956248i \(-0.594506\pi\)
−0.292558 + 0.956248i \(0.594506\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.61553 −0.405334 −0.202667 0.979248i \(-0.564961\pi\)
−0.202667 + 0.979248i \(0.564961\pi\)
\(354\) 0 0
\(355\) −10.4384 −0.554015
\(356\) 0 0
\(357\) 2.43845 0.129056
\(358\) 0 0
\(359\) −13.1231 −0.692611 −0.346306 0.938122i \(-0.612564\pi\)
−0.346306 + 0.938122i \(0.612564\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 23.8078 1.24958
\(364\) 0 0
\(365\) −14.6307 −0.765805
\(366\) 0 0
\(367\) 28.4924 1.48729 0.743646 0.668573i \(-0.233095\pi\)
0.743646 + 0.668573i \(0.233095\pi\)
\(368\) 0 0
\(369\) −4.49242 −0.233866
\(370\) 0 0
\(371\) 5.36932 0.278761
\(372\) 0 0
\(373\) −35.3693 −1.83135 −0.915677 0.401915i \(-0.868345\pi\)
−0.915677 + 0.401915i \(0.868345\pi\)
\(374\) 0 0
\(375\) −18.4384 −0.952157
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) 0 0
\(381\) 7.61553 0.390155
\(382\) 0 0
\(383\) 29.8078 1.52311 0.761553 0.648103i \(-0.224437\pi\)
0.761553 + 0.648103i \(0.224437\pi\)
\(384\) 0 0
\(385\) 3.50758 0.178763
\(386\) 0 0
\(387\) 5.36932 0.272938
\(388\) 0 0
\(389\) 11.7538 0.595941 0.297970 0.954575i \(-0.403690\pi\)
0.297970 + 0.954575i \(0.403690\pi\)
\(390\) 0 0
\(391\) 11.1231 0.562520
\(392\) 0 0
\(393\) −5.17708 −0.261149
\(394\) 0 0
\(395\) −17.3693 −0.873945
\(396\) 0 0
\(397\) −0.876894 −0.0440101 −0.0220050 0.999758i \(-0.507005\pi\)
−0.0220050 + 0.999758i \(0.507005\pi\)
\(398\) 0 0
\(399\) −1.36932 −0.0685516
\(400\) 0 0
\(401\) −17.3693 −0.867382 −0.433691 0.901062i \(-0.642789\pi\)
−0.433691 + 0.901062i \(0.642789\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −10.9309 −0.543159
\(406\) 0 0
\(407\) 48.9848 2.42809
\(408\) 0 0
\(409\) −25.3693 −1.25443 −0.627216 0.778845i \(-0.715806\pi\)
−0.627216 + 0.778845i \(0.715806\pi\)
\(410\) 0 0
\(411\) −4.87689 −0.240559
\(412\) 0 0
\(413\) 4.38447 0.215746
\(414\) 0 0
\(415\) −12.8769 −0.632102
\(416\) 0 0
\(417\) −12.1922 −0.597056
\(418\) 0 0
\(419\) −30.4384 −1.48702 −0.743508 0.668727i \(-0.766839\pi\)
−0.743508 + 0.668727i \(0.766839\pi\)
\(420\) 0 0
\(421\) 23.8078 1.16032 0.580160 0.814503i \(-0.302990\pi\)
0.580160 + 0.814503i \(0.302990\pi\)
\(422\) 0 0
\(423\) 4.24621 0.206458
\(424\) 0 0
\(425\) −9.12311 −0.442536
\(426\) 0 0
\(427\) 1.26137 0.0610418
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4233 1.80262 0.901308 0.433178i \(-0.142608\pi\)
0.901308 + 0.433178i \(0.142608\pi\)
\(432\) 0 0
\(433\) −9.31534 −0.447667 −0.223833 0.974627i \(-0.571857\pi\)
−0.223833 + 0.974627i \(0.571857\pi\)
\(434\) 0 0
\(435\) −12.4924 −0.598966
\(436\) 0 0
\(437\) −6.24621 −0.298797
\(438\) 0 0
\(439\) 37.8617 1.80704 0.903521 0.428544i \(-0.140973\pi\)
0.903521 + 0.428544i \(0.140973\pi\)
\(440\) 0 0
\(441\) 3.82292 0.182044
\(442\) 0 0
\(443\) −9.17708 −0.436016 −0.218008 0.975947i \(-0.569956\pi\)
−0.218008 + 0.975947i \(0.569956\pi\)
\(444\) 0 0
\(445\) −4.87689 −0.231187
\(446\) 0 0
\(447\) −11.1231 −0.526105
\(448\) 0 0
\(449\) 16.0000 0.755087 0.377543 0.925992i \(-0.376769\pi\)
0.377543 + 0.925992i \(0.376769\pi\)
\(450\) 0 0
\(451\) 40.9848 1.92990
\(452\) 0 0
\(453\) 18.0540 0.848250
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15.6155 0.730464 0.365232 0.930917i \(-0.380990\pi\)
0.365232 + 0.930917i \(0.380990\pi\)
\(458\) 0 0
\(459\) −19.8078 −0.924547
\(460\) 0 0
\(461\) −9.17708 −0.427419 −0.213710 0.976897i \(-0.568555\pi\)
−0.213710 + 0.976897i \(0.568555\pi\)
\(462\) 0 0
\(463\) −1.61553 −0.0750800 −0.0375400 0.999295i \(-0.511952\pi\)
−0.0375400 + 0.999295i \(0.511952\pi\)
\(464\) 0 0
\(465\) 12.4924 0.579322
\(466\) 0 0
\(467\) −16.4924 −0.763178 −0.381589 0.924332i \(-0.624623\pi\)
−0.381589 + 0.924332i \(0.624623\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 19.1231 0.881146
\(472\) 0 0
\(473\) −48.9848 −2.25233
\(474\) 0 0
\(475\) 5.12311 0.235064
\(476\) 0 0
\(477\) −6.87689 −0.314871
\(478\) 0 0
\(479\) −29.8078 −1.36195 −0.680976 0.732306i \(-0.738444\pi\)
−0.680976 + 0.732306i \(0.738444\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 2.13826 0.0972942
\(484\) 0 0
\(485\) −9.75379 −0.442897
\(486\) 0 0
\(487\) 15.8617 0.718764 0.359382 0.933191i \(-0.382988\pi\)
0.359382 + 0.933191i \(0.382988\pi\)
\(488\) 0 0
\(489\) −31.6155 −1.42970
\(490\) 0 0
\(491\) −31.8078 −1.43546 −0.717732 0.696319i \(-0.754820\pi\)
−0.717732 + 0.696319i \(0.754820\pi\)
\(492\) 0 0
\(493\) −18.2462 −0.821768
\(494\) 0 0
\(495\) −4.49242 −0.201919
\(496\) 0 0
\(497\) −2.93087 −0.131467
\(498\) 0 0
\(499\) 25.1231 1.12466 0.562332 0.826911i \(-0.309904\pi\)
0.562332 + 0.826911i \(0.309904\pi\)
\(500\) 0 0
\(501\) −10.7386 −0.479767
\(502\) 0 0
\(503\) 9.36932 0.417757 0.208879 0.977942i \(-0.433019\pi\)
0.208879 + 0.977942i \(0.433019\pi\)
\(504\) 0 0
\(505\) 17.7538 0.790033
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.63068 −0.116603 −0.0583015 0.998299i \(-0.518568\pi\)
−0.0583015 + 0.998299i \(0.518568\pi\)
\(510\) 0 0
\(511\) −4.10795 −0.181725
\(512\) 0 0
\(513\) 11.1231 0.491097
\(514\) 0 0
\(515\) −4.87689 −0.214902
\(516\) 0 0
\(517\) −38.7386 −1.70372
\(518\) 0 0
\(519\) −6.63068 −0.291055
\(520\) 0 0
\(521\) 0.930870 0.0407821 0.0203911 0.999792i \(-0.493509\pi\)
0.0203911 + 0.999792i \(0.493509\pi\)
\(522\) 0 0
\(523\) −13.7538 −0.601411 −0.300706 0.953717i \(-0.597222\pi\)
−0.300706 + 0.953717i \(0.597222\pi\)
\(524\) 0 0
\(525\) −1.75379 −0.0765416
\(526\) 0 0
\(527\) 18.2462 0.794817
\(528\) 0 0
\(529\) −13.2462 −0.575922
\(530\) 0 0
\(531\) −5.61553 −0.243693
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −6.24621 −0.270047
\(536\) 0 0
\(537\) −27.4233 −1.18340
\(538\) 0 0
\(539\) −34.8769 −1.50225
\(540\) 0 0
\(541\) 25.1771 1.08245 0.541224 0.840879i \(-0.317961\pi\)
0.541224 + 0.840879i \(0.317961\pi\)
\(542\) 0 0
\(543\) 12.8769 0.552600
\(544\) 0 0
\(545\) 5.17708 0.221762
\(546\) 0 0
\(547\) 23.8078 1.01795 0.508973 0.860782i \(-0.330025\pi\)
0.508973 + 0.860782i \(0.330025\pi\)
\(548\) 0 0
\(549\) −1.61553 −0.0689491
\(550\) 0 0
\(551\) 10.2462 0.436503
\(552\) 0 0
\(553\) −4.87689 −0.207387
\(554\) 0 0
\(555\) 23.3153 0.989681
\(556\) 0 0
\(557\) 18.9309 0.802127 0.401063 0.916050i \(-0.368641\pi\)
0.401063 + 0.916050i \(0.368641\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 28.4924 1.20295
\(562\) 0 0
\(563\) 26.9309 1.13500 0.567500 0.823373i \(-0.307911\pi\)
0.567500 + 0.823373i \(0.307911\pi\)
\(564\) 0 0
\(565\) 15.6155 0.656950
\(566\) 0 0
\(567\) −3.06913 −0.128891
\(568\) 0 0
\(569\) 2.19224 0.0919033 0.0459517 0.998944i \(-0.485368\pi\)
0.0459517 + 0.998944i \(0.485368\pi\)
\(570\) 0 0
\(571\) 14.0540 0.588141 0.294070 0.955784i \(-0.404990\pi\)
0.294070 + 0.955784i \(0.404990\pi\)
\(572\) 0 0
\(573\) −34.7386 −1.45123
\(574\) 0 0
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) 29.8617 1.24316 0.621580 0.783351i \(-0.286491\pi\)
0.621580 + 0.783351i \(0.286491\pi\)
\(578\) 0 0
\(579\) 36.8769 1.53255
\(580\) 0 0
\(581\) −3.61553 −0.149997
\(582\) 0 0
\(583\) 62.7386 2.59837
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.50758 0.392420 0.196210 0.980562i \(-0.437137\pi\)
0.196210 + 0.980562i \(0.437137\pi\)
\(588\) 0 0
\(589\) −10.2462 −0.422188
\(590\) 0 0
\(591\) −14.9309 −0.614174
\(592\) 0 0
\(593\) −25.7538 −1.05758 −0.528791 0.848752i \(-0.677354\pi\)
−0.528791 + 0.848752i \(0.677354\pi\)
\(594\) 0 0
\(595\) 2.43845 0.0999666
\(596\) 0 0
\(597\) 22.2462 0.910477
\(598\) 0 0
\(599\) 41.3693 1.69030 0.845152 0.534526i \(-0.179510\pi\)
0.845152 + 0.534526i \(0.179510\pi\)
\(600\) 0 0
\(601\) 21.8078 0.889557 0.444779 0.895641i \(-0.353282\pi\)
0.444779 + 0.895641i \(0.353282\pi\)
\(602\) 0 0
\(603\) −5.12311 −0.208629
\(604\) 0 0
\(605\) 23.8078 0.967923
\(606\) 0 0
\(607\) −7.61553 −0.309105 −0.154552 0.987985i \(-0.549394\pi\)
−0.154552 + 0.987985i \(0.549394\pi\)
\(608\) 0 0
\(609\) −3.50758 −0.142134
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 18.6307 0.752486 0.376243 0.926521i \(-0.377216\pi\)
0.376243 + 0.926521i \(0.377216\pi\)
\(614\) 0 0
\(615\) 19.5076 0.786621
\(616\) 0 0
\(617\) 1.75379 0.0706049 0.0353024 0.999377i \(-0.488761\pi\)
0.0353024 + 0.999377i \(0.488761\pi\)
\(618\) 0 0
\(619\) 17.6155 0.708028 0.354014 0.935240i \(-0.384817\pi\)
0.354014 + 0.935240i \(0.384817\pi\)
\(620\) 0 0
\(621\) −17.3693 −0.697007
\(622\) 0 0
\(623\) −1.36932 −0.0548605
\(624\) 0 0
\(625\) −5.63068 −0.225227
\(626\) 0 0
\(627\) −16.0000 −0.638978
\(628\) 0 0
\(629\) 34.0540 1.35782
\(630\) 0 0
\(631\) 11.5616 0.460258 0.230129 0.973160i \(-0.426085\pi\)
0.230129 + 0.973160i \(0.426085\pi\)
\(632\) 0 0
\(633\) −34.4384 −1.36881
\(634\) 0 0
\(635\) 7.61553 0.302213
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.75379 0.148498
\(640\) 0 0
\(641\) −3.75379 −0.148266 −0.0741329 0.997248i \(-0.523619\pi\)
−0.0741329 + 0.997248i \(0.523619\pi\)
\(642\) 0 0
\(643\) 25.1231 0.990759 0.495379 0.868677i \(-0.335029\pi\)
0.495379 + 0.868677i \(0.335029\pi\)
\(644\) 0 0
\(645\) −23.3153 −0.918041
\(646\) 0 0
\(647\) −3.12311 −0.122782 −0.0613910 0.998114i \(-0.519554\pi\)
−0.0613910 + 0.998114i \(0.519554\pi\)
\(648\) 0 0
\(649\) 51.2311 2.01099
\(650\) 0 0
\(651\) 3.50758 0.137473
\(652\) 0 0
\(653\) 13.6155 0.532817 0.266408 0.963860i \(-0.414163\pi\)
0.266408 + 0.963860i \(0.414163\pi\)
\(654\) 0 0
\(655\) −5.17708 −0.202285
\(656\) 0 0
\(657\) 5.26137 0.205265
\(658\) 0 0
\(659\) 6.73863 0.262500 0.131250 0.991349i \(-0.458101\pi\)
0.131250 + 0.991349i \(0.458101\pi\)
\(660\) 0 0
\(661\) 32.8769 1.27876 0.639381 0.768890i \(-0.279190\pi\)
0.639381 + 0.768890i \(0.279190\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.36932 −0.0530998
\(666\) 0 0
\(667\) −16.0000 −0.619522
\(668\) 0 0
\(669\) −42.4384 −1.64077
\(670\) 0 0
\(671\) 14.7386 0.568979
\(672\) 0 0
\(673\) 22.3002 0.859609 0.429805 0.902922i \(-0.358582\pi\)
0.429805 + 0.902922i \(0.358582\pi\)
\(674\) 0 0
\(675\) 14.2462 0.548337
\(676\) 0 0
\(677\) −28.7386 −1.10452 −0.552258 0.833673i \(-0.686234\pi\)
−0.552258 + 0.833673i \(0.686234\pi\)
\(678\) 0 0
\(679\) −2.73863 −0.105099
\(680\) 0 0
\(681\) −5.26137 −0.201616
\(682\) 0 0
\(683\) −12.2462 −0.468588 −0.234294 0.972166i \(-0.575278\pi\)
−0.234294 + 0.972166i \(0.575278\pi\)
\(684\) 0 0
\(685\) −4.87689 −0.186337
\(686\) 0 0
\(687\) 32.3002 1.23233
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 27.8617 1.05991 0.529955 0.848026i \(-0.322209\pi\)
0.529955 + 0.848026i \(0.322209\pi\)
\(692\) 0 0
\(693\) −1.26137 −0.0479153
\(694\) 0 0
\(695\) −12.1922 −0.462478
\(696\) 0 0
\(697\) 28.4924 1.07923
\(698\) 0 0
\(699\) 5.56155 0.210357
\(700\) 0 0
\(701\) −37.2311 −1.40620 −0.703099 0.711092i \(-0.748201\pi\)
−0.703099 + 0.711092i \(0.748201\pi\)
\(702\) 0 0
\(703\) −19.1231 −0.721242
\(704\) 0 0
\(705\) −18.4384 −0.694432
\(706\) 0 0
\(707\) 4.98485 0.187474
\(708\) 0 0
\(709\) 7.12311 0.267514 0.133757 0.991014i \(-0.457296\pi\)
0.133757 + 0.991014i \(0.457296\pi\)
\(710\) 0 0
\(711\) 6.24621 0.234251
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 13.9460 0.520824
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) −1.36932 −0.0509960
\(722\) 0 0
\(723\) −42.3542 −1.57517
\(724\) 0 0
\(725\) 13.1231 0.487380
\(726\) 0 0
\(727\) −39.2311 −1.45500 −0.727500 0.686108i \(-0.759318\pi\)
−0.727500 + 0.686108i \(0.759318\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) −34.0540 −1.25953
\(732\) 0 0
\(733\) −4.30019 −0.158831 −0.0794155 0.996842i \(-0.525305\pi\)
−0.0794155 + 0.996842i \(0.525305\pi\)
\(734\) 0 0
\(735\) −16.6004 −0.612314
\(736\) 0 0
\(737\) 46.7386 1.72164
\(738\) 0 0
\(739\) 15.8617 0.583484 0.291742 0.956497i \(-0.405765\pi\)
0.291742 + 0.956497i \(0.405765\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.94602 0.291511 0.145756 0.989321i \(-0.453439\pi\)
0.145756 + 0.989321i \(0.453439\pi\)
\(744\) 0 0
\(745\) −11.1231 −0.407519
\(746\) 0 0
\(747\) 4.63068 0.169428
\(748\) 0 0
\(749\) −1.75379 −0.0640820
\(750\) 0 0
\(751\) 3.50758 0.127993 0.0639967 0.997950i \(-0.479615\pi\)
0.0639967 + 0.997950i \(0.479615\pi\)
\(752\) 0 0
\(753\) −38.2462 −1.39377
\(754\) 0 0
\(755\) 18.0540 0.657051
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 24.9848 0.906892
\(760\) 0 0
\(761\) 44.8769 1.62679 0.813393 0.581714i \(-0.197618\pi\)
0.813393 + 0.581714i \(0.197618\pi\)
\(762\) 0 0
\(763\) 1.45360 0.0526239
\(764\) 0 0
\(765\) −3.12311 −0.112916
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −28.4924 −1.02746 −0.513732 0.857951i \(-0.671737\pi\)
−0.513732 + 0.857951i \(0.671737\pi\)
\(770\) 0 0
\(771\) −1.45360 −0.0523502
\(772\) 0 0
\(773\) 14.0540 0.505486 0.252743 0.967533i \(-0.418667\pi\)
0.252743 + 0.967533i \(0.418667\pi\)
\(774\) 0 0
\(775\) −13.1231 −0.471396
\(776\) 0 0
\(777\) 6.54640 0.234851
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −34.2462 −1.22543
\(782\) 0 0
\(783\) 28.4924 1.01824
\(784\) 0 0
\(785\) 19.1231 0.682533
\(786\) 0 0
\(787\) 3.36932 0.120103 0.0600516 0.998195i \(-0.480873\pi\)
0.0600516 + 0.998195i \(0.480873\pi\)
\(788\) 0 0
\(789\) −7.01515 −0.249746
\(790\) 0 0
\(791\) 4.38447 0.155894
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 29.8617 1.05909
\(796\) 0 0
\(797\) −12.2462 −0.433783 −0.216892 0.976196i \(-0.569592\pi\)
−0.216892 + 0.976196i \(0.569592\pi\)
\(798\) 0 0
\(799\) −26.9309 −0.952746
\(800\) 0 0
\(801\) 1.75379 0.0619671
\(802\) 0 0
\(803\) −48.0000 −1.69388
\(804\) 0 0
\(805\) 2.13826 0.0753638
\(806\) 0 0
\(807\) 16.9848 0.597895
\(808\) 0 0
\(809\) 42.6847 1.50071 0.750356 0.661034i \(-0.229882\pi\)
0.750356 + 0.661034i \(0.229882\pi\)
\(810\) 0 0
\(811\) 23.3693 0.820608 0.410304 0.911949i \(-0.365423\pi\)
0.410304 + 0.911949i \(0.365423\pi\)
\(812\) 0 0
\(813\) 22.9309 0.804221
\(814\) 0 0
\(815\) −31.6155 −1.10744
\(816\) 0 0
\(817\) 19.1231 0.669033
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 42.5464 1.48488 0.742440 0.669913i \(-0.233669\pi\)
0.742440 + 0.669913i \(0.233669\pi\)
\(822\) 0 0
\(823\) 50.3542 1.75524 0.877618 0.479361i \(-0.159131\pi\)
0.877618 + 0.479361i \(0.159131\pi\)
\(824\) 0 0
\(825\) −20.4924 −0.713455
\(826\) 0 0
\(827\) −22.0000 −0.765015 −0.382507 0.923952i \(-0.624939\pi\)
−0.382507 + 0.923952i \(0.624939\pi\)
\(828\) 0 0
\(829\) 6.87689 0.238844 0.119422 0.992844i \(-0.461896\pi\)
0.119422 + 0.992844i \(0.461896\pi\)
\(830\) 0 0
\(831\) −11.5076 −0.399193
\(832\) 0 0
\(833\) −24.2462 −0.840081
\(834\) 0 0
\(835\) −10.7386 −0.371626
\(836\) 0 0
\(837\) −28.4924 −0.984842
\(838\) 0 0
\(839\) 43.8617 1.51428 0.757138 0.653255i \(-0.226597\pi\)
0.757138 + 0.653255i \(0.226597\pi\)
\(840\) 0 0
\(841\) −2.75379 −0.0949582
\(842\) 0 0
\(843\) 14.6307 0.503907
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.68466 0.229688
\(848\) 0 0
\(849\) −18.7386 −0.643108
\(850\) 0 0
\(851\) 29.8617 1.02365
\(852\) 0 0
\(853\) 4.68466 0.160400 0.0801998 0.996779i \(-0.474444\pi\)
0.0801998 + 0.996779i \(0.474444\pi\)
\(854\) 0 0
\(855\) 1.75379 0.0599783
\(856\) 0 0
\(857\) 50.4924 1.72479 0.862394 0.506237i \(-0.168964\pi\)
0.862394 + 0.506237i \(0.168964\pi\)
\(858\) 0 0
\(859\) −10.2462 −0.349596 −0.174798 0.984604i \(-0.555927\pi\)
−0.174798 + 0.984604i \(0.555927\pi\)
\(860\) 0 0
\(861\) 5.47727 0.186665
\(862\) 0 0
\(863\) −48.0540 −1.63578 −0.817888 0.575377i \(-0.804855\pi\)
−0.817888 + 0.575377i \(0.804855\pi\)
\(864\) 0 0
\(865\) −6.63068 −0.225450
\(866\) 0 0
\(867\) −6.73863 −0.228856
\(868\) 0 0
\(869\) −56.9848 −1.93308
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 3.50758 0.118714
\(874\) 0 0
\(875\) −5.17708 −0.175017
\(876\) 0 0
\(877\) 7.42329 0.250667 0.125333 0.992115i \(-0.460000\pi\)
0.125333 + 0.992115i \(0.460000\pi\)
\(878\) 0 0
\(879\) −19.8078 −0.668099
\(880\) 0 0
\(881\) 42.7926 1.44172 0.720860 0.693081i \(-0.243747\pi\)
0.720860 + 0.693081i \(0.243747\pi\)
\(882\) 0 0
\(883\) 31.8078 1.07042 0.535208 0.844720i \(-0.320233\pi\)
0.535208 + 0.844720i \(0.320233\pi\)
\(884\) 0 0
\(885\) 24.3845 0.819675
\(886\) 0 0
\(887\) −5.26137 −0.176659 −0.0883297 0.996091i \(-0.528153\pi\)
−0.0883297 + 0.996091i \(0.528153\pi\)
\(888\) 0 0
\(889\) 2.13826 0.0717150
\(890\) 0 0
\(891\) −35.8617 −1.20141
\(892\) 0 0
\(893\) 15.1231 0.506075
\(894\) 0 0
\(895\) −27.4233 −0.916660
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −26.2462 −0.875360
\(900\) 0 0
\(901\) 43.6155 1.45304
\(902\) 0 0
\(903\) −6.54640 −0.217850
\(904\) 0 0
\(905\) 12.8769 0.428042
\(906\) 0 0
\(907\) 22.4384 0.745056 0.372528 0.928021i \(-0.378491\pi\)
0.372528 + 0.928021i \(0.378491\pi\)
\(908\) 0 0
\(909\) −6.38447 −0.211760
\(910\) 0 0
\(911\) 25.7538 0.853261 0.426631 0.904426i \(-0.359700\pi\)
0.426631 + 0.904426i \(0.359700\pi\)
\(912\) 0 0
\(913\) −42.2462 −1.39815
\(914\) 0 0
\(915\) 7.01515 0.231914
\(916\) 0 0
\(917\) −1.45360 −0.0480022
\(918\) 0 0
\(919\) 1.75379 0.0578522 0.0289261 0.999582i \(-0.490791\pi\)
0.0289261 + 0.999582i \(0.490791\pi\)
\(920\) 0 0
\(921\) 28.1080 0.926188
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −24.4924 −0.805306
\(926\) 0 0
\(927\) 1.75379 0.0576020
\(928\) 0 0
\(929\) 18.7386 0.614795 0.307397 0.951581i \(-0.400542\pi\)
0.307397 + 0.951581i \(0.400542\pi\)
\(930\) 0 0
\(931\) 13.6155 0.446231
\(932\) 0 0
\(933\) −29.8617 −0.977629
\(934\) 0 0
\(935\) 28.4924 0.931802
\(936\) 0 0
\(937\) 19.7538 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(938\) 0 0
\(939\) 6.93087 0.226180
\(940\) 0 0
\(941\) −42.5464 −1.38697 −0.693486 0.720470i \(-0.743926\pi\)
−0.693486 + 0.720470i \(0.743926\pi\)
\(942\) 0 0
\(943\) 24.9848 0.813618
\(944\) 0 0
\(945\) −3.80776 −0.123867
\(946\) 0 0
\(947\) −15.3693 −0.499436 −0.249718 0.968319i \(-0.580338\pi\)
−0.249718 + 0.968319i \(0.580338\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −23.6155 −0.765786
\(952\) 0 0
\(953\) −20.0540 −0.649612 −0.324806 0.945781i \(-0.605299\pi\)
−0.324806 + 0.945781i \(0.605299\pi\)
\(954\) 0 0
\(955\) −34.7386 −1.12412
\(956\) 0 0
\(957\) −40.9848 −1.32485
\(958\) 0 0
\(959\) −1.36932 −0.0442175
\(960\) 0 0
\(961\) −4.75379 −0.153348
\(962\) 0 0
\(963\) 2.24621 0.0723831
\(964\) 0 0
\(965\) 36.8769 1.18711
\(966\) 0 0
\(967\) 15.5616 0.500426 0.250213 0.968191i \(-0.419499\pi\)
0.250213 + 0.968191i \(0.419499\pi\)
\(968\) 0 0
\(969\) −11.1231 −0.357326
\(970\) 0 0
\(971\) −57.1771 −1.83490 −0.917450 0.397851i \(-0.869756\pi\)
−0.917450 + 0.397851i \(0.869756\pi\)
\(972\) 0 0
\(973\) −3.42329 −0.109746
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.2311 1.51106 0.755528 0.655117i \(-0.227381\pi\)
0.755528 + 0.655117i \(0.227381\pi\)
\(978\) 0 0
\(979\) −16.0000 −0.511362
\(980\) 0 0
\(981\) −1.86174 −0.0594408
\(982\) 0 0
\(983\) 10.1922 0.325082 0.162541 0.986702i \(-0.448031\pi\)
0.162541 + 0.986702i \(0.448031\pi\)
\(984\) 0 0
\(985\) −14.9309 −0.475737
\(986\) 0 0
\(987\) −5.17708 −0.164788
\(988\) 0 0
\(989\) −29.8617 −0.949548
\(990\) 0 0
\(991\) −7.61553 −0.241915 −0.120958 0.992658i \(-0.538597\pi\)
−0.120958 + 0.992658i \(0.538597\pi\)
\(992\) 0 0
\(993\) −0.384472 −0.0122008
\(994\) 0 0
\(995\) 22.2462 0.705252
\(996\) 0 0
\(997\) −1.61553 −0.0511643 −0.0255821 0.999673i \(-0.508144\pi\)
−0.0255821 + 0.999673i \(0.508144\pi\)
\(998\) 0 0
\(999\) −53.1771 −1.68245
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.a.d.1.2 2
4.3 odd 2 2704.2.a.s.1.1 2
13.2 odd 12 1352.2.o.e.1161.1 8
13.3 even 3 1352.2.i.g.529.1 4
13.4 even 6 1352.2.i.h.1329.1 4
13.5 odd 4 104.2.f.a.25.3 4
13.6 odd 12 1352.2.o.e.361.1 8
13.7 odd 12 1352.2.o.e.361.2 8
13.8 odd 4 104.2.f.a.25.4 yes 4
13.9 even 3 1352.2.i.g.1329.1 4
13.10 even 6 1352.2.i.h.529.1 4
13.11 odd 12 1352.2.o.e.1161.2 8
13.12 even 2 1352.2.a.e.1.2 2
39.5 even 4 936.2.c.d.649.3 4
39.8 even 4 936.2.c.d.649.2 4
52.31 even 4 208.2.f.b.129.1 4
52.47 even 4 208.2.f.b.129.2 4
52.51 odd 2 2704.2.a.t.1.1 2
65.8 even 4 2600.2.f.a.649.3 4
65.18 even 4 2600.2.f.b.649.3 4
65.34 odd 4 2600.2.k.a.2001.2 4
65.44 odd 4 2600.2.k.a.2001.1 4
65.47 even 4 2600.2.f.b.649.2 4
65.57 even 4 2600.2.f.a.649.2 4
104.5 odd 4 832.2.f.i.129.2 4
104.21 odd 4 832.2.f.i.129.1 4
104.83 even 4 832.2.f.f.129.4 4
104.99 even 4 832.2.f.f.129.3 4
156.47 odd 4 1872.2.c.j.1585.2 4
156.83 odd 4 1872.2.c.j.1585.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.f.a.25.3 4 13.5 odd 4
104.2.f.a.25.4 yes 4 13.8 odd 4
208.2.f.b.129.1 4 52.31 even 4
208.2.f.b.129.2 4 52.47 even 4
832.2.f.f.129.3 4 104.99 even 4
832.2.f.f.129.4 4 104.83 even 4
832.2.f.i.129.1 4 104.21 odd 4
832.2.f.i.129.2 4 104.5 odd 4
936.2.c.d.649.2 4 39.8 even 4
936.2.c.d.649.3 4 39.5 even 4
1352.2.a.d.1.2 2 1.1 even 1 trivial
1352.2.a.e.1.2 2 13.12 even 2
1352.2.i.g.529.1 4 13.3 even 3
1352.2.i.g.1329.1 4 13.9 even 3
1352.2.i.h.529.1 4 13.10 even 6
1352.2.i.h.1329.1 4 13.4 even 6
1352.2.o.e.361.1 8 13.6 odd 12
1352.2.o.e.361.2 8 13.7 odd 12
1352.2.o.e.1161.1 8 13.2 odd 12
1352.2.o.e.1161.2 8 13.11 odd 12
1872.2.c.j.1585.2 4 156.47 odd 4
1872.2.c.j.1585.3 4 156.83 odd 4
2600.2.f.a.649.2 4 65.57 even 4
2600.2.f.a.649.3 4 65.8 even 4
2600.2.f.b.649.2 4 65.47 even 4
2600.2.f.b.649.3 4 65.18 even 4
2600.2.k.a.2001.1 4 65.44 odd 4
2600.2.k.a.2001.2 4 65.34 odd 4
2704.2.a.s.1.1 2 4.3 odd 2
2704.2.a.t.1.1 2 52.51 odd 2