Properties

Label 1352.2.i.h.1329.1
Level $1352$
Weight $2$
Character 1352.1329
Analytic conductor $10.796$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1352,2,Mod(529,1352)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1352, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1352.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1352 = 2^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1352.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,1,0,2,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.7957743533\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 5x^{2} + 4x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1329.1
Root \(-0.780776 - 1.35234i\) of defining polynomial
Character \(\chi\) \(=\) 1352.1329
Dual form 1352.2.i.h.529.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.780776 - 1.35234i) q^{3} -1.56155 q^{5} +(0.219224 - 0.379706i) q^{7} +(0.280776 - 0.486319i) q^{9} +(2.56155 + 4.43674i) q^{11} +(1.21922 + 2.11176i) q^{15} +(-1.78078 + 3.08440i) q^{17} +(-1.00000 + 1.73205i) q^{19} -0.684658 q^{21} +(-1.56155 - 2.70469i) q^{23} -2.56155 q^{25} -5.56155 q^{27} +(2.56155 + 4.43674i) q^{29} -5.12311 q^{31} +(4.00000 - 6.92820i) q^{33} +(-0.342329 + 0.592932i) q^{35} +(4.78078 + 8.28055i) q^{37} +(4.00000 + 6.92820i) q^{41} +(4.78078 - 8.28055i) q^{43} +(-0.438447 + 0.759413i) q^{45} +7.56155 q^{47} +(3.40388 + 5.89570i) q^{49} +5.56155 q^{51} +12.2462 q^{53} +(-4.00000 - 6.92820i) q^{55} +3.12311 q^{57} +(5.00000 - 8.66025i) q^{59} +(-1.43845 + 2.49146i) q^{61} +(-0.123106 - 0.213225i) q^{63} +(4.56155 + 7.90084i) q^{67} +(-2.43845 + 4.22351i) q^{69} +(-3.34233 + 5.78908i) q^{71} +9.36932 q^{73} +(2.00000 + 3.46410i) q^{75} +2.24621 q^{77} -11.1231 q^{79} +(3.50000 + 6.06218i) q^{81} +8.24621 q^{83} +(2.78078 - 4.81645i) q^{85} +(4.00000 - 6.92820i) q^{87} +(-1.56155 - 2.70469i) q^{89} +(4.00000 + 6.92820i) q^{93} +(1.56155 - 2.70469i) q^{95} +(-3.12311 + 5.40938i) q^{97} +2.87689 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 2 q^{5} + 5 q^{7} - 3 q^{9} + 2 q^{11} + 9 q^{15} - 3 q^{17} - 4 q^{19} + 22 q^{21} + 2 q^{23} - 2 q^{25} - 14 q^{27} + 2 q^{29} - 4 q^{31} + 16 q^{33} + 11 q^{35} + 15 q^{37} + 16 q^{41}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(1015\) \(1185\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.780776 1.35234i −0.450781 0.780776i 0.547653 0.836705i \(-0.315521\pi\)
−0.998435 + 0.0559290i \(0.982188\pi\)
\(4\) 0 0
\(5\) −1.56155 −0.698348 −0.349174 0.937058i \(-0.613538\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(6\) 0 0
\(7\) 0.219224 0.379706i 0.0828587 0.143516i −0.821618 0.570038i \(-0.806928\pi\)
0.904477 + 0.426523i \(0.140262\pi\)
\(8\) 0 0
\(9\) 0.280776 0.486319i 0.0935921 0.162106i
\(10\) 0 0
\(11\) 2.56155 + 4.43674i 0.772337 + 1.33773i 0.936279 + 0.351257i \(0.114246\pi\)
−0.163942 + 0.986470i \(0.552421\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 1.21922 + 2.11176i 0.314802 + 0.545253i
\(16\) 0 0
\(17\) −1.78078 + 3.08440i −0.431902 + 0.748076i −0.997037 0.0769225i \(-0.975491\pi\)
0.565135 + 0.824998i \(0.308824\pi\)
\(18\) 0 0
\(19\) −1.00000 + 1.73205i −0.229416 + 0.397360i −0.957635 0.287984i \(-0.907015\pi\)
0.728219 + 0.685344i \(0.240348\pi\)
\(20\) 0 0
\(21\) −0.684658 −0.149405
\(22\) 0 0
\(23\) −1.56155 2.70469i −0.325606 0.563967i 0.656029 0.754736i \(-0.272235\pi\)
−0.981635 + 0.190769i \(0.938902\pi\)
\(24\) 0 0
\(25\) −2.56155 −0.512311
\(26\) 0 0
\(27\) −5.56155 −1.07032
\(28\) 0 0
\(29\) 2.56155 + 4.43674i 0.475668 + 0.823882i 0.999612 0.0278714i \(-0.00887289\pi\)
−0.523943 + 0.851753i \(0.675540\pi\)
\(30\) 0 0
\(31\) −5.12311 −0.920137 −0.460068 0.887883i \(-0.652175\pi\)
−0.460068 + 0.887883i \(0.652175\pi\)
\(32\) 0 0
\(33\) 4.00000 6.92820i 0.696311 1.20605i
\(34\) 0 0
\(35\) −0.342329 + 0.592932i −0.0578642 + 0.100224i
\(36\) 0 0
\(37\) 4.78078 + 8.28055i 0.785955 + 1.36131i 0.928427 + 0.371515i \(0.121162\pi\)
−0.142472 + 0.989799i \(0.545505\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.00000 + 6.92820i 0.624695 + 1.08200i 0.988600 + 0.150567i \(0.0481100\pi\)
−0.363905 + 0.931436i \(0.618557\pi\)
\(42\) 0 0
\(43\) 4.78078 8.28055i 0.729062 1.26277i −0.228219 0.973610i \(-0.573290\pi\)
0.957280 0.289162i \(-0.0933766\pi\)
\(44\) 0 0
\(45\) −0.438447 + 0.759413i −0.0653598 + 0.113207i
\(46\) 0 0
\(47\) 7.56155 1.10297 0.551483 0.834186i \(-0.314062\pi\)
0.551483 + 0.834186i \(0.314062\pi\)
\(48\) 0 0
\(49\) 3.40388 + 5.89570i 0.486269 + 0.842242i
\(50\) 0 0
\(51\) 5.56155 0.778773
\(52\) 0 0
\(53\) 12.2462 1.68215 0.841073 0.540921i \(-0.181924\pi\)
0.841073 + 0.540921i \(0.181924\pi\)
\(54\) 0 0
\(55\) −4.00000 6.92820i −0.539360 0.934199i
\(56\) 0 0
\(57\) 3.12311 0.413665
\(58\) 0 0
\(59\) 5.00000 8.66025i 0.650945 1.12747i −0.331949 0.943297i \(-0.607706\pi\)
0.982894 0.184172i \(-0.0589603\pi\)
\(60\) 0 0
\(61\) −1.43845 + 2.49146i −0.184174 + 0.318999i −0.943298 0.331947i \(-0.892294\pi\)
0.759124 + 0.650946i \(0.225628\pi\)
\(62\) 0 0
\(63\) −0.123106 0.213225i −0.0155099 0.0268638i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.56155 + 7.90084i 0.557282 + 0.965241i 0.997722 + 0.0674592i \(0.0214892\pi\)
−0.440440 + 0.897782i \(0.645177\pi\)
\(68\) 0 0
\(69\) −2.43845 + 4.22351i −0.293555 + 0.508451i
\(70\) 0 0
\(71\) −3.34233 + 5.78908i −0.396662 + 0.687038i −0.993312 0.115464i \(-0.963165\pi\)
0.596650 + 0.802501i \(0.296498\pi\)
\(72\) 0 0
\(73\) 9.36932 1.09660 0.548298 0.836283i \(-0.315276\pi\)
0.548298 + 0.836283i \(0.315276\pi\)
\(74\) 0 0
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 0 0
\(77\) 2.24621 0.255980
\(78\) 0 0
\(79\) −11.1231 −1.25145 −0.625724 0.780045i \(-0.715196\pi\)
−0.625724 + 0.780045i \(0.715196\pi\)
\(80\) 0 0
\(81\) 3.50000 + 6.06218i 0.388889 + 0.673575i
\(82\) 0 0
\(83\) 8.24621 0.905139 0.452570 0.891729i \(-0.350507\pi\)
0.452570 + 0.891729i \(0.350507\pi\)
\(84\) 0 0
\(85\) 2.78078 4.81645i 0.301618 0.522417i
\(86\) 0 0
\(87\) 4.00000 6.92820i 0.428845 0.742781i
\(88\) 0 0
\(89\) −1.56155 2.70469i −0.165524 0.286696i 0.771317 0.636451i \(-0.219598\pi\)
−0.936841 + 0.349755i \(0.886265\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 + 6.92820i 0.414781 + 0.718421i
\(94\) 0 0
\(95\) 1.56155 2.70469i 0.160212 0.277495i
\(96\) 0 0
\(97\) −3.12311 + 5.40938i −0.317103 + 0.549239i −0.979882 0.199576i \(-0.936044\pi\)
0.662779 + 0.748815i \(0.269377\pi\)
\(98\) 0 0
\(99\) 2.87689 0.289139
\(100\) 0 0
\(101\) −5.68466 9.84612i −0.565645 0.979725i −0.996989 0.0775381i \(-0.975294\pi\)
0.431345 0.902187i \(-0.358039\pi\)
\(102\) 0 0
\(103\) −3.12311 −0.307729 −0.153864 0.988092i \(-0.549172\pi\)
−0.153864 + 0.988092i \(0.549172\pi\)
\(104\) 0 0
\(105\) 1.06913 0.104336
\(106\) 0 0
\(107\) 2.00000 + 3.46410i 0.193347 + 0.334887i 0.946357 0.323122i \(-0.104732\pi\)
−0.753010 + 0.658009i \(0.771399\pi\)
\(108\) 0 0
\(109\) −3.31534 −0.317552 −0.158776 0.987315i \(-0.550755\pi\)
−0.158776 + 0.987315i \(0.550755\pi\)
\(110\) 0 0
\(111\) 7.46543 12.9305i 0.708588 1.22731i
\(112\) 0 0
\(113\) −5.00000 + 8.66025i −0.470360 + 0.814688i −0.999425 0.0338931i \(-0.989209\pi\)
0.529065 + 0.848581i \(0.322543\pi\)
\(114\) 0 0
\(115\) 2.43845 + 4.22351i 0.227386 + 0.393845i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.780776 + 1.35234i 0.0715737 + 0.123969i
\(120\) 0 0
\(121\) −7.62311 + 13.2036i −0.693010 + 1.20033i
\(122\) 0 0
\(123\) 6.24621 10.8188i 0.563202 0.975494i
\(124\) 0 0
\(125\) 11.8078 1.05612
\(126\) 0 0
\(127\) −2.43845 4.22351i −0.216377 0.374776i 0.737321 0.675543i \(-0.236091\pi\)
−0.953698 + 0.300767i \(0.902757\pi\)
\(128\) 0 0
\(129\) −14.9309 −1.31459
\(130\) 0 0
\(131\) −3.31534 −0.289663 −0.144831 0.989456i \(-0.546264\pi\)
−0.144831 + 0.989456i \(0.546264\pi\)
\(132\) 0 0
\(133\) 0.438447 + 0.759413i 0.0380182 + 0.0658494i
\(134\) 0 0
\(135\) 8.68466 0.747456
\(136\) 0 0
\(137\) −1.56155 + 2.70469i −0.133412 + 0.231077i −0.924990 0.379992i \(-0.875927\pi\)
0.791577 + 0.611069i \(0.209260\pi\)
\(138\) 0 0
\(139\) 3.90388 6.76172i 0.331123 0.573522i −0.651609 0.758555i \(-0.725906\pi\)
0.982732 + 0.185033i \(0.0592392\pi\)
\(140\) 0 0
\(141\) −5.90388 10.2258i −0.497197 0.861170i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.00000 6.92820i −0.332182 0.575356i
\(146\) 0 0
\(147\) 5.31534 9.20644i 0.438402 0.759335i
\(148\) 0 0
\(149\) −3.56155 + 6.16879i −0.291774 + 0.505367i −0.974229 0.225560i \(-0.927579\pi\)
0.682455 + 0.730927i \(0.260912\pi\)
\(150\) 0 0
\(151\) −11.5616 −0.940866 −0.470433 0.882436i \(-0.655902\pi\)
−0.470433 + 0.882436i \(0.655902\pi\)
\(152\) 0 0
\(153\) 1.00000 + 1.73205i 0.0808452 + 0.140028i
\(154\) 0 0
\(155\) 8.00000 0.642575
\(156\) 0 0
\(157\) 12.2462 0.977354 0.488677 0.872465i \(-0.337480\pi\)
0.488677 + 0.872465i \(0.337480\pi\)
\(158\) 0 0
\(159\) −9.56155 16.5611i −0.758280 1.31338i
\(160\) 0 0
\(161\) −1.36932 −0.107917
\(162\) 0 0
\(163\) −10.1231 + 17.5337i −0.792903 + 1.37335i 0.131260 + 0.991348i \(0.458098\pi\)
−0.924162 + 0.382000i \(0.875235\pi\)
\(164\) 0 0
\(165\) −6.24621 + 10.8188i −0.486267 + 0.842239i
\(166\) 0 0
\(167\) −3.43845 5.95557i −0.266075 0.460855i 0.701770 0.712404i \(-0.252394\pi\)
−0.967845 + 0.251548i \(0.919060\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.561553 + 0.972638i 0.0429430 + 0.0743795i
\(172\) 0 0
\(173\) 2.12311 3.67733i 0.161417 0.279582i −0.773960 0.633234i \(-0.781727\pi\)
0.935377 + 0.353652i \(0.115060\pi\)
\(174\) 0 0
\(175\) −0.561553 + 0.972638i −0.0424494 + 0.0735245i
\(176\) 0 0
\(177\) −15.6155 −1.17373
\(178\) 0 0
\(179\) 8.78078 + 15.2088i 0.656306 + 1.13676i 0.981565 + 0.191130i \(0.0612153\pi\)
−0.325259 + 0.945625i \(0.605451\pi\)
\(180\) 0 0
\(181\) 8.24621 0.612936 0.306468 0.951881i \(-0.400853\pi\)
0.306468 + 0.951881i \(0.400853\pi\)
\(182\) 0 0
\(183\) 4.49242 0.332089
\(184\) 0 0
\(185\) −7.46543 12.9305i −0.548870 0.950670i
\(186\) 0 0
\(187\) −18.2462 −1.33430
\(188\) 0 0
\(189\) −1.21922 + 2.11176i −0.0886855 + 0.153608i
\(190\) 0 0
\(191\) 11.1231 19.2658i 0.804840 1.39402i −0.111560 0.993758i \(-0.535585\pi\)
0.916399 0.400265i \(-0.131082\pi\)
\(192\) 0 0
\(193\) 11.8078 + 20.4516i 0.849941 + 1.47214i 0.881260 + 0.472632i \(0.156696\pi\)
−0.0313183 + 0.999509i \(0.509971\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.78078 8.28055i −0.340616 0.589965i 0.643931 0.765084i \(-0.277302\pi\)
−0.984547 + 0.175119i \(0.943969\pi\)
\(198\) 0 0
\(199\) −7.12311 + 12.3376i −0.504944 + 0.874588i 0.495040 + 0.868870i \(0.335153\pi\)
−0.999984 + 0.00571778i \(0.998180\pi\)
\(200\) 0 0
\(201\) 7.12311 12.3376i 0.502425 0.870226i
\(202\) 0 0
\(203\) 2.24621 0.157653
\(204\) 0 0
\(205\) −6.24621 10.8188i −0.436254 0.755615i
\(206\) 0 0
\(207\) −1.75379 −0.121897
\(208\) 0 0
\(209\) −10.2462 −0.708745
\(210\) 0 0
\(211\) 11.0270 + 19.0993i 0.759129 + 1.31485i 0.943295 + 0.331955i \(0.107708\pi\)
−0.184166 + 0.982895i \(0.558958\pi\)
\(212\) 0 0
\(213\) 10.4384 0.715231
\(214\) 0 0
\(215\) −7.46543 + 12.9305i −0.509138 + 0.881854i
\(216\) 0 0
\(217\) −1.12311 + 1.94528i −0.0762414 + 0.132054i
\(218\) 0 0
\(219\) −7.31534 12.6705i −0.494325 0.856196i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.5885 23.5360i −0.909956 1.57609i −0.814123 0.580693i \(-0.802782\pi\)
−0.0958330 0.995397i \(-0.530551\pi\)
\(224\) 0 0
\(225\) −0.719224 + 1.24573i −0.0479482 + 0.0830488i
\(226\) 0 0
\(227\) −1.68466 + 2.91791i −0.111815 + 0.193669i −0.916502 0.400030i \(-0.869000\pi\)
0.804687 + 0.593699i \(0.202333\pi\)
\(228\) 0 0
\(229\) −20.6847 −1.36688 −0.683440 0.730006i \(-0.739517\pi\)
−0.683440 + 0.730006i \(0.739517\pi\)
\(230\) 0 0
\(231\) −1.75379 3.03765i −0.115391 0.199863i
\(232\) 0 0
\(233\) 3.56155 0.233325 0.116663 0.993172i \(-0.462780\pi\)
0.116663 + 0.993172i \(0.462780\pi\)
\(234\) 0 0
\(235\) −11.8078 −0.770254
\(236\) 0 0
\(237\) 8.68466 + 15.0423i 0.564129 + 0.977100i
\(238\) 0 0
\(239\) −8.93087 −0.577690 −0.288845 0.957376i \(-0.593271\pi\)
−0.288845 + 0.957376i \(0.593271\pi\)
\(240\) 0 0
\(241\) −13.5616 + 23.4893i −0.873576 + 1.51308i −0.0153049 + 0.999883i \(0.504872\pi\)
−0.858272 + 0.513196i \(0.828461\pi\)
\(242\) 0 0
\(243\) −2.87689 + 4.98293i −0.184553 + 0.319655i
\(244\) 0 0
\(245\) −5.31534 9.20644i −0.339585 0.588178i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −6.43845 11.1517i −0.408020 0.706711i
\(250\) 0 0
\(251\) 12.2462 21.2111i 0.772974 1.33883i −0.162952 0.986634i \(-0.552102\pi\)
0.935926 0.352196i \(-0.114565\pi\)
\(252\) 0 0
\(253\) 8.00000 13.8564i 0.502956 0.871145i
\(254\) 0 0
\(255\) −8.68466 −0.543854
\(256\) 0 0
\(257\) 0.465435 + 0.806157i 0.0290330 + 0.0502867i 0.880177 0.474646i \(-0.157424\pi\)
−0.851144 + 0.524933i \(0.824091\pi\)
\(258\) 0 0
\(259\) 4.19224 0.260493
\(260\) 0 0
\(261\) 2.87689 0.178075
\(262\) 0 0
\(263\) 2.24621 + 3.89055i 0.138507 + 0.239902i 0.926932 0.375230i \(-0.122436\pi\)
−0.788424 + 0.615132i \(0.789103\pi\)
\(264\) 0 0
\(265\) −19.1231 −1.17472
\(266\) 0 0
\(267\) −2.43845 + 4.22351i −0.149231 + 0.258475i
\(268\) 0 0
\(269\) −5.43845 + 9.41967i −0.331588 + 0.574327i −0.982823 0.184549i \(-0.940918\pi\)
0.651235 + 0.758876i \(0.274251\pi\)
\(270\) 0 0
\(271\) 7.34233 + 12.7173i 0.446015 + 0.772520i 0.998122 0.0612527i \(-0.0195096\pi\)
−0.552108 + 0.833773i \(0.686176\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.56155 11.3649i −0.395677 0.685332i
\(276\) 0 0
\(277\) 3.68466 6.38202i 0.221390 0.383458i −0.733841 0.679322i \(-0.762274\pi\)
0.955230 + 0.295864i \(0.0956074\pi\)
\(278\) 0 0
\(279\) −1.43845 + 2.49146i −0.0861176 + 0.149160i
\(280\) 0 0
\(281\) −9.36932 −0.558927 −0.279463 0.960156i \(-0.590157\pi\)
−0.279463 + 0.960156i \(0.590157\pi\)
\(282\) 0 0
\(283\) 6.00000 + 10.3923i 0.356663 + 0.617758i 0.987401 0.158237i \(-0.0505811\pi\)
−0.630738 + 0.775996i \(0.717248\pi\)
\(284\) 0 0
\(285\) −4.87689 −0.288882
\(286\) 0 0
\(287\) 3.50758 0.207046
\(288\) 0 0
\(289\) 2.15767 + 3.73720i 0.126922 + 0.219835i
\(290\) 0 0
\(291\) 9.75379 0.571777
\(292\) 0 0
\(293\) −6.34233 + 10.9852i −0.370523 + 0.641764i −0.989646 0.143529i \(-0.954155\pi\)
0.619123 + 0.785294i \(0.287488\pi\)
\(294\) 0 0
\(295\) −7.80776 + 13.5234i −0.454586 + 0.787365i
\(296\) 0 0
\(297\) −14.2462 24.6752i −0.826649 1.43180i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2.09612 3.63058i −0.120818 0.209263i
\(302\) 0 0
\(303\) −8.87689 + 15.3752i −0.509964 + 0.883284i
\(304\) 0 0
\(305\) 2.24621 3.89055i 0.128618 0.222772i
\(306\) 0 0
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0 0
\(309\) 2.43845 + 4.22351i 0.138718 + 0.240267i
\(310\) 0 0
\(311\) −19.1231 −1.08437 −0.542186 0.840259i \(-0.682403\pi\)
−0.542186 + 0.840259i \(0.682403\pi\)
\(312\) 0 0
\(313\) 4.43845 0.250876 0.125438 0.992101i \(-0.459966\pi\)
0.125438 + 0.992101i \(0.459966\pi\)
\(314\) 0 0
\(315\) 0.192236 + 0.332962i 0.0108313 + 0.0187603i
\(316\) 0 0
\(317\) 15.1231 0.849398 0.424699 0.905335i \(-0.360380\pi\)
0.424699 + 0.905335i \(0.360380\pi\)
\(318\) 0 0
\(319\) −13.1231 + 22.7299i −0.734753 + 1.27263i
\(320\) 0 0
\(321\) 3.12311 5.40938i 0.174315 0.301922i
\(322\) 0 0
\(323\) −3.56155 6.16879i −0.198170 0.343241i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.58854 + 4.48348i 0.143147 + 0.247937i
\(328\) 0 0
\(329\) 1.65767 2.87117i 0.0913903 0.158293i
\(330\) 0 0
\(331\) −0.123106 + 0.213225i −0.00676650 + 0.0117199i −0.869389 0.494129i \(-0.835487\pi\)
0.862622 + 0.505849i \(0.168821\pi\)
\(332\) 0 0
\(333\) 5.36932 0.294237
\(334\) 0 0
\(335\) −7.12311 12.3376i −0.389177 0.674074i
\(336\) 0 0
\(337\) −1.31534 −0.0716512 −0.0358256 0.999358i \(-0.511406\pi\)
−0.0358256 + 0.999358i \(0.511406\pi\)
\(338\) 0 0
\(339\) 15.6155 0.848119
\(340\) 0 0
\(341\) −13.1231 22.7299i −0.710656 1.23089i
\(342\) 0 0
\(343\) 6.05398 0.326884
\(344\) 0 0
\(345\) 3.80776 6.59524i 0.205003 0.355076i
\(346\) 0 0
\(347\) 0.780776 1.35234i 0.0419143 0.0725977i −0.844307 0.535859i \(-0.819988\pi\)
0.886221 + 0.463262i \(0.153321\pi\)
\(348\) 0 0
\(349\) −5.46543 9.46641i −0.292558 0.506725i 0.681856 0.731487i \(-0.261173\pi\)
−0.974414 + 0.224761i \(0.927840\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.80776 6.59524i −0.202667 0.351029i 0.746720 0.665138i \(-0.231628\pi\)
−0.949387 + 0.314109i \(0.898294\pi\)
\(354\) 0 0
\(355\) 5.21922 9.03996i 0.277008 0.479791i
\(356\) 0 0
\(357\) 1.21922 2.11176i 0.0645282 0.111766i
\(358\) 0 0
\(359\) 13.1231 0.692611 0.346306 0.938122i \(-0.387436\pi\)
0.346306 + 0.938122i \(0.387436\pi\)
\(360\) 0 0
\(361\) 7.50000 + 12.9904i 0.394737 + 0.683704i
\(362\) 0 0
\(363\) 23.8078 1.24958
\(364\) 0 0
\(365\) −14.6307 −0.765805
\(366\) 0 0
\(367\) −14.2462 24.6752i −0.743646 1.28803i −0.950825 0.309730i \(-0.899761\pi\)
0.207178 0.978303i \(-0.433572\pi\)
\(368\) 0 0
\(369\) 4.49242 0.233866
\(370\) 0 0
\(371\) 2.68466 4.64996i 0.139381 0.241414i
\(372\) 0 0
\(373\) 17.6847 30.6307i 0.915677 1.58600i 0.109770 0.993957i \(-0.464989\pi\)
0.805907 0.592042i \(-0.201678\pi\)
\(374\) 0 0
\(375\) −9.21922 15.9682i −0.476079 0.824592i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.0000 22.5167i −0.667765 1.15660i −0.978528 0.206116i \(-0.933918\pi\)
0.310763 0.950488i \(-0.399416\pi\)
\(380\) 0 0
\(381\) −3.80776 + 6.59524i −0.195078 + 0.337884i
\(382\) 0 0
\(383\) 14.9039 25.8143i 0.761553 1.31905i −0.180497 0.983576i \(-0.557771\pi\)
0.942050 0.335473i \(-0.108896\pi\)
\(384\) 0 0
\(385\) −3.50758 −0.178763
\(386\) 0 0
\(387\) −2.68466 4.64996i −0.136469 0.236371i
\(388\) 0 0
\(389\) 11.7538 0.595941 0.297970 0.954575i \(-0.403690\pi\)
0.297970 + 0.954575i \(0.403690\pi\)
\(390\) 0 0
\(391\) 11.1231 0.562520
\(392\) 0 0
\(393\) 2.58854 + 4.48348i 0.130575 + 0.226162i
\(394\) 0 0
\(395\) 17.3693 0.873945
\(396\) 0 0
\(397\) −0.438447 + 0.759413i −0.0220050 + 0.0381138i −0.876818 0.480822i \(-0.840338\pi\)
0.854813 + 0.518936i \(0.173672\pi\)
\(398\) 0 0
\(399\) 0.684658 1.18586i 0.0342758 0.0593674i
\(400\) 0 0
\(401\) −8.68466 15.0423i −0.433691 0.751175i 0.563497 0.826118i \(-0.309456\pi\)
−0.997188 + 0.0749432i \(0.976122\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −5.46543 9.46641i −0.271580 0.470390i
\(406\) 0 0
\(407\) −24.4924 + 42.4221i −1.21404 + 2.10279i
\(408\) 0 0
\(409\) −12.6847 + 21.9705i −0.627216 + 1.08637i 0.360892 + 0.932608i \(0.382472\pi\)
−0.988108 + 0.153762i \(0.950861\pi\)
\(410\) 0 0
\(411\) 4.87689 0.240559
\(412\) 0 0
\(413\) −2.19224 3.79706i −0.107873 0.186841i
\(414\) 0 0
\(415\) −12.8769 −0.632102
\(416\) 0 0
\(417\) −12.1922 −0.597056
\(418\) 0 0
\(419\) 15.2192 + 26.3605i 0.743508 + 1.28779i 0.950889 + 0.309533i \(0.100173\pi\)
−0.207381 + 0.978260i \(0.566494\pi\)
\(420\) 0 0
\(421\) −23.8078 −1.16032 −0.580160 0.814503i \(-0.697010\pi\)
−0.580160 + 0.814503i \(0.697010\pi\)
\(422\) 0 0
\(423\) 2.12311 3.67733i 0.103229 0.178798i
\(424\) 0 0
\(425\) 4.56155 7.90084i 0.221268 0.383247i
\(426\) 0 0
\(427\) 0.630683 + 1.09238i 0.0305209 + 0.0528637i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 18.7116 + 32.4095i 0.901308 + 1.56111i 0.825797 + 0.563967i \(0.190725\pi\)
0.0755108 + 0.997145i \(0.475941\pi\)
\(432\) 0 0
\(433\) 4.65767 8.06732i 0.223833 0.387691i −0.732135 0.681159i \(-0.761476\pi\)
0.955969 + 0.293468i \(0.0948095\pi\)
\(434\) 0 0
\(435\) −6.24621 + 10.8188i −0.299483 + 0.518720i
\(436\) 0 0
\(437\) 6.24621 0.298797
\(438\) 0 0
\(439\) −18.9309 32.7892i −0.903521 1.56494i −0.822890 0.568200i \(-0.807640\pi\)
−0.0806309 0.996744i \(-0.525694\pi\)
\(440\) 0 0
\(441\) 3.82292 0.182044
\(442\) 0 0
\(443\) −9.17708 −0.436016 −0.218008 0.975947i \(-0.569956\pi\)
−0.218008 + 0.975947i \(0.569956\pi\)
\(444\) 0 0
\(445\) 2.43845 + 4.22351i 0.115593 + 0.200214i
\(446\) 0 0
\(447\) 11.1231 0.526105
\(448\) 0 0
\(449\) 8.00000 13.8564i 0.377543 0.653924i −0.613161 0.789958i \(-0.710102\pi\)
0.990704 + 0.136034i \(0.0434356\pi\)
\(450\) 0 0
\(451\) −20.4924 + 35.4939i −0.964950 + 1.67134i
\(452\) 0 0
\(453\) 9.02699 + 15.6352i 0.424125 + 0.734606i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7.80776 + 13.5234i 0.365232 + 0.632600i 0.988813 0.149158i \(-0.0476564\pi\)
−0.623582 + 0.781758i \(0.714323\pi\)
\(458\) 0 0
\(459\) 9.90388 17.1540i 0.462274 0.800681i
\(460\) 0 0
\(461\) −4.58854 + 7.94759i −0.213710 + 0.370156i −0.952873 0.303371i \(-0.901888\pi\)
0.739163 + 0.673527i \(0.235221\pi\)
\(462\) 0 0
\(463\) 1.61553 0.0750800 0.0375400 0.999295i \(-0.488048\pi\)
0.0375400 + 0.999295i \(0.488048\pi\)
\(464\) 0 0
\(465\) −6.24621 10.8188i −0.289661 0.501708i
\(466\) 0 0
\(467\) −16.4924 −0.763178 −0.381589 0.924332i \(-0.624623\pi\)
−0.381589 + 0.924332i \(0.624623\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −9.56155 16.5611i −0.440573 0.763095i
\(472\) 0 0
\(473\) 48.9848 2.25233
\(474\) 0 0
\(475\) 2.56155 4.43674i 0.117532 0.203572i
\(476\) 0 0
\(477\) 3.43845 5.95557i 0.157436 0.272687i
\(478\) 0 0
\(479\) −14.9039 25.8143i −0.680976 1.17948i −0.974683 0.223589i \(-0.928223\pi\)
0.293708 0.955895i \(-0.405111\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 1.06913 + 1.85179i 0.0486471 + 0.0842593i
\(484\) 0 0
\(485\) 4.87689 8.44703i 0.221448 0.383560i
\(486\) 0 0
\(487\) 7.93087 13.7367i 0.359382 0.622468i −0.628476 0.777829i \(-0.716321\pi\)
0.987858 + 0.155361i \(0.0496542\pi\)
\(488\) 0 0
\(489\) 31.6155 1.42970
\(490\) 0 0
\(491\) 15.9039 + 27.5463i 0.717732 + 1.24315i 0.961896 + 0.273415i \(0.0881531\pi\)
−0.244164 + 0.969734i \(0.578514\pi\)
\(492\) 0 0
\(493\) −18.2462 −0.821768
\(494\) 0 0
\(495\) −4.49242 −0.201919
\(496\) 0 0
\(497\) 1.46543 + 2.53821i 0.0657337 + 0.113854i
\(498\) 0 0
\(499\) −25.1231 −1.12466 −0.562332 0.826911i \(-0.690096\pi\)
−0.562332 + 0.826911i \(0.690096\pi\)
\(500\) 0 0
\(501\) −5.36932 + 9.29993i −0.239883 + 0.415490i
\(502\) 0 0
\(503\) −4.68466 + 8.11407i −0.208879 + 0.361788i −0.951362 0.308077i \(-0.900315\pi\)
0.742483 + 0.669865i \(0.233648\pi\)
\(504\) 0 0
\(505\) 8.87689 + 15.3752i 0.395017 + 0.684189i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.31534 2.27824i −0.0583015 0.100981i 0.835402 0.549640i \(-0.185235\pi\)
−0.893703 + 0.448659i \(0.851902\pi\)
\(510\) 0 0
\(511\) 2.05398 3.55759i 0.0908625 0.157378i
\(512\) 0 0
\(513\) 5.56155 9.63289i 0.245549 0.425303i
\(514\) 0 0
\(515\) 4.87689 0.214902
\(516\) 0 0
\(517\) 19.3693 + 33.5486i 0.851862 + 1.47547i
\(518\) 0 0
\(519\) −6.63068 −0.291055
\(520\) 0 0
\(521\) 0.930870 0.0407821 0.0203911 0.999792i \(-0.493509\pi\)
0.0203911 + 0.999792i \(0.493509\pi\)
\(522\) 0 0
\(523\) 6.87689 + 11.9111i 0.300706 + 0.520837i 0.976296 0.216440i \(-0.0694445\pi\)
−0.675590 + 0.737277i \(0.736111\pi\)
\(524\) 0 0
\(525\) 1.75379 0.0765416
\(526\) 0 0
\(527\) 9.12311 15.8017i 0.397409 0.688332i
\(528\) 0 0
\(529\) 6.62311 11.4716i 0.287961 0.498763i
\(530\) 0 0
\(531\) −2.80776 4.86319i −0.121847 0.211044i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −3.12311 5.40938i −0.135024 0.233868i
\(536\) 0 0
\(537\) 13.7116 23.7493i 0.591701 1.02486i
\(538\) 0 0
\(539\) −17.4384 + 30.2043i −0.751127 + 1.30099i
\(540\) 0 0
\(541\) −25.1771 −1.08245 −0.541224 0.840879i \(-0.682039\pi\)
−0.541224 + 0.840879i \(0.682039\pi\)
\(542\) 0 0
\(543\) −6.43845 11.1517i −0.276300 0.478566i
\(544\) 0 0
\(545\) 5.17708 0.221762
\(546\) 0 0
\(547\) 23.8078 1.01795 0.508973 0.860782i \(-0.330025\pi\)
0.508973 + 0.860782i \(0.330025\pi\)
\(548\) 0 0
\(549\) 0.807764 + 1.39909i 0.0344745 + 0.0597116i
\(550\) 0 0
\(551\) −10.2462 −0.436503
\(552\) 0 0
\(553\) −2.43845 + 4.22351i −0.103693 + 0.179602i
\(554\) 0 0
\(555\) −11.6577 + 20.1917i −0.494841 + 0.857089i
\(556\) 0 0
\(557\) 9.46543 + 16.3946i 0.401063 + 0.694662i 0.993855 0.110694i \(-0.0353074\pi\)
−0.592791 + 0.805356i \(0.701974\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 14.2462 + 24.6752i 0.601476 + 1.04179i
\(562\) 0 0
\(563\) −13.4654 + 23.3228i −0.567500 + 0.982940i 0.429312 + 0.903156i \(0.358756\pi\)
−0.996812 + 0.0797832i \(0.974577\pi\)
\(564\) 0 0
\(565\) 7.80776 13.5234i 0.328475 0.568936i
\(566\) 0 0
\(567\) 3.06913 0.128891
\(568\) 0 0
\(569\) −1.09612 1.89853i −0.0459517 0.0795906i 0.842135 0.539267i \(-0.181299\pi\)
−0.888086 + 0.459677i \(0.847965\pi\)
\(570\) 0 0
\(571\) 14.0540 0.588141 0.294070 0.955784i \(-0.404990\pi\)
0.294070 + 0.955784i \(0.404990\pi\)
\(572\) 0 0
\(573\) −34.7386 −1.45123
\(574\) 0 0
\(575\) 4.00000 + 6.92820i 0.166812 + 0.288926i
\(576\) 0 0
\(577\) −29.8617 −1.24316 −0.621580 0.783351i \(-0.713509\pi\)
−0.621580 + 0.783351i \(0.713509\pi\)
\(578\) 0 0
\(579\) 18.4384 31.9363i 0.766276 1.32723i
\(580\) 0 0
\(581\) 1.80776 3.13114i 0.0749987 0.129902i
\(582\) 0 0
\(583\) 31.3693 + 54.3333i 1.29918 + 2.25025i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.75379 + 8.23380i 0.196210 + 0.339845i 0.947296 0.320358i \(-0.103803\pi\)
−0.751087 + 0.660204i \(0.770470\pi\)
\(588\) 0 0
\(589\) 5.12311 8.87348i 0.211094 0.365625i
\(590\) 0 0
\(591\) −7.46543 + 12.9305i −0.307087 + 0.531890i
\(592\) 0 0
\(593\) 25.7538 1.05758 0.528791 0.848752i \(-0.322646\pi\)
0.528791 + 0.848752i \(0.322646\pi\)
\(594\) 0 0
\(595\) −1.21922 2.11176i −0.0499833 0.0865736i
\(596\) 0 0
\(597\) 22.2462 0.910477
\(598\) 0 0
\(599\) 41.3693 1.69030 0.845152 0.534526i \(-0.179510\pi\)
0.845152 + 0.534526i \(0.179510\pi\)
\(600\) 0 0
\(601\) −10.9039 18.8861i −0.444779 0.770379i 0.553258 0.833010i \(-0.313384\pi\)
−0.998037 + 0.0626307i \(0.980051\pi\)
\(602\) 0 0
\(603\) 5.12311 0.208629
\(604\) 0 0
\(605\) 11.9039 20.6181i 0.483962 0.838246i
\(606\) 0 0
\(607\) 3.80776 6.59524i 0.154552 0.267693i −0.778344 0.627839i \(-0.783940\pi\)
0.932896 + 0.360146i \(0.117273\pi\)
\(608\) 0 0
\(609\) −1.75379 3.03765i −0.0710671 0.123092i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.31534 + 16.1346i 0.376243 + 0.651672i 0.990512 0.137424i \(-0.0438824\pi\)
−0.614269 + 0.789097i \(0.710549\pi\)
\(614\) 0 0
\(615\) −9.75379 + 16.8941i −0.393311 + 0.681234i
\(616\) 0 0
\(617\) 0.876894 1.51883i 0.0353024 0.0611456i −0.847834 0.530261i \(-0.822094\pi\)
0.883137 + 0.469116i \(0.155427\pi\)
\(618\) 0 0
\(619\) −17.6155 −0.708028 −0.354014 0.935240i \(-0.615183\pi\)
−0.354014 + 0.935240i \(0.615183\pi\)
\(620\) 0 0
\(621\) 8.68466 + 15.0423i 0.348503 + 0.603625i
\(622\) 0 0
\(623\) −1.36932 −0.0548605
\(624\) 0 0
\(625\) −5.63068 −0.225227
\(626\) 0 0
\(627\) 8.00000 + 13.8564i 0.319489 + 0.553372i
\(628\) 0 0
\(629\) −34.0540 −1.35782
\(630\) 0 0
\(631\) 5.78078 10.0126i 0.230129 0.398595i −0.727717 0.685878i \(-0.759418\pi\)
0.957846 + 0.287282i \(0.0927518\pi\)
\(632\) 0 0
\(633\) 17.2192 29.8246i 0.684403 1.18542i
\(634\) 0 0
\(635\) 3.80776 + 6.59524i 0.151107 + 0.261724i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.87689 + 3.25088i 0.0742488 + 0.128603i
\(640\) 0 0
\(641\) 1.87689 3.25088i 0.0741329 0.128402i −0.826576 0.562825i \(-0.809714\pi\)
0.900709 + 0.434423i \(0.143048\pi\)
\(642\) 0 0
\(643\) 12.5616 21.7572i 0.495379 0.858022i −0.504607 0.863349i \(-0.668362\pi\)
0.999986 + 0.00532735i \(0.00169576\pi\)
\(644\) 0 0
\(645\) 23.3153 0.918041
\(646\) 0 0
\(647\) 1.56155 + 2.70469i 0.0613910 + 0.106332i 0.895087 0.445891i \(-0.147113\pi\)
−0.833696 + 0.552223i \(0.813780\pi\)
\(648\) 0 0
\(649\) 51.2311 2.01099
\(650\) 0 0
\(651\) 3.50758 0.137473
\(652\) 0 0
\(653\) −6.80776 11.7914i −0.266408 0.461433i 0.701523 0.712647i \(-0.252504\pi\)
−0.967932 + 0.251214i \(0.919170\pi\)
\(654\) 0 0
\(655\) 5.17708 0.202285
\(656\) 0 0
\(657\) 2.63068 4.55648i 0.102633 0.177765i
\(658\) 0 0
\(659\) −3.36932 + 5.83583i −0.131250 + 0.227332i −0.924159 0.382009i \(-0.875232\pi\)
0.792909 + 0.609340i \(0.208566\pi\)
\(660\) 0 0
\(661\) 16.4384 + 28.4722i 0.639381 + 1.10744i 0.985569 + 0.169276i \(0.0541429\pi\)
−0.346187 + 0.938165i \(0.612524\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −0.684658 1.18586i −0.0265499 0.0459858i
\(666\) 0 0
\(667\) 8.00000 13.8564i 0.309761 0.536522i
\(668\) 0 0
\(669\) −21.2192 + 36.7528i −0.820383 + 1.42094i
\(670\) 0 0
\(671\) −14.7386 −0.568979
\(672\) 0 0
\(673\) −11.1501 19.3125i −0.429805 0.744443i 0.567051 0.823683i \(-0.308084\pi\)
−0.996856 + 0.0792394i \(0.974751\pi\)
\(674\) 0 0
\(675\) 14.2462 0.548337
\(676\) 0 0
\(677\) −28.7386 −1.10452 −0.552258 0.833673i \(-0.686234\pi\)
−0.552258 + 0.833673i \(0.686234\pi\)
\(678\) 0 0
\(679\) 1.36932 + 2.37173i 0.0525496 + 0.0910185i
\(680\) 0 0
\(681\) 5.26137 0.201616
\(682\) 0 0
\(683\) −6.12311 + 10.6055i −0.234294 + 0.405809i −0.959067 0.283178i \(-0.908611\pi\)
0.724773 + 0.688988i \(0.241945\pi\)
\(684\) 0 0
\(685\) 2.43845 4.22351i 0.0931683 0.161372i
\(686\) 0 0
\(687\) 16.1501 + 27.9728i 0.616164 + 1.06723i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 13.9309 + 24.1290i 0.529955 + 0.917909i 0.999389 + 0.0349419i \(0.0111246\pi\)
−0.469434 + 0.882968i \(0.655542\pi\)
\(692\) 0 0
\(693\) 0.630683 1.09238i 0.0239577 0.0414959i
\(694\) 0 0
\(695\) −6.09612 + 10.5588i −0.231239 + 0.400518i
\(696\) 0 0
\(697\) −28.4924 −1.07923
\(698\) 0 0
\(699\) −2.78078 4.81645i −0.105179 0.182175i
\(700\) 0 0
\(701\) −37.2311 −1.40620 −0.703099 0.711092i \(-0.748201\pi\)
−0.703099 + 0.711092i \(0.748201\pi\)
\(702\) 0 0
\(703\) −19.1231 −0.721242
\(704\) 0 0
\(705\) 9.21922 + 15.9682i 0.347216 + 0.601396i
\(706\) 0 0
\(707\) −4.98485 −0.187474
\(708\) 0 0
\(709\) 3.56155 6.16879i 0.133757 0.231674i −0.791365 0.611344i \(-0.790629\pi\)
0.925122 + 0.379670i \(0.123963\pi\)
\(710\) 0 0
\(711\) −3.12311 + 5.40938i −0.117126 + 0.202868i
\(712\) 0 0
\(713\) 8.00000 + 13.8564i 0.299602 + 0.518927i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 6.97301 + 12.0776i 0.260412 + 0.451047i
\(718\) 0 0
\(719\) −8.00000 + 13.8564i −0.298350 + 0.516757i −0.975759 0.218850i \(-0.929769\pi\)
0.677409 + 0.735607i \(0.263103\pi\)
\(720\) 0 0
\(721\) −0.684658 + 1.18586i −0.0254980 + 0.0441639i
\(722\) 0 0
\(723\) 42.3542 1.57517
\(724\) 0 0
\(725\) −6.56155 11.3649i −0.243690 0.422083i
\(726\) 0 0
\(727\) −39.2311 −1.45500 −0.727500 0.686108i \(-0.759318\pi\)
−0.727500 + 0.686108i \(0.759318\pi\)
\(728\) 0 0
\(729\) 29.9848 1.11055
\(730\) 0 0
\(731\) 17.0270 + 29.4916i 0.629766 + 1.09079i
\(732\) 0 0
\(733\) 4.30019 0.158831 0.0794155 0.996842i \(-0.474695\pi\)
0.0794155 + 0.996842i \(0.474695\pi\)
\(734\) 0 0
\(735\) −8.30019 + 14.3763i −0.306157 + 0.530279i
\(736\) 0 0
\(737\) −23.3693 + 40.4768i −0.860820 + 1.49098i
\(738\) 0 0
\(739\) 7.93087 + 13.7367i 0.291742 + 0.505312i 0.974222 0.225593i \(-0.0724319\pi\)
−0.682480 + 0.730904i \(0.739099\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.97301 + 6.88146i 0.145756 + 0.252456i 0.929655 0.368432i \(-0.120105\pi\)
−0.783899 + 0.620888i \(0.786772\pi\)
\(744\) 0 0
\(745\) 5.56155 9.63289i 0.203760 0.352922i
\(746\) 0 0
\(747\) 2.31534 4.01029i 0.0847139 0.146729i
\(748\) 0 0
\(749\) 1.75379 0.0640820
\(750\) 0 0
\(751\) −1.75379 3.03765i −0.0639967 0.110845i 0.832252 0.554398i \(-0.187051\pi\)
−0.896248 + 0.443552i \(0.853718\pi\)
\(752\) 0 0
\(753\) −38.2462 −1.39377
\(754\) 0 0
\(755\) 18.0540 0.657051
\(756\) 0 0
\(757\) −11.0000 19.0526i −0.399802 0.692477i 0.593899 0.804539i \(-0.297588\pi\)
−0.993701 + 0.112062i \(0.964254\pi\)
\(758\) 0 0
\(759\) −24.9848 −0.906892
\(760\) 0 0
\(761\) 22.4384 38.8645i 0.813393 1.40884i −0.0970830 0.995276i \(-0.530951\pi\)
0.910476 0.413562i \(-0.135715\pi\)
\(762\) 0 0
\(763\) −0.726801 + 1.25886i −0.0263120 + 0.0455737i
\(764\) 0 0
\(765\) −1.56155 2.70469i −0.0564581 0.0977882i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −14.2462 24.6752i −0.513732 0.889809i −0.999873 0.0159290i \(-0.994929\pi\)
0.486142 0.873880i \(-0.338404\pi\)
\(770\) 0 0
\(771\) 0.726801 1.25886i 0.0261751 0.0453366i
\(772\) 0 0
\(773\) 7.02699 12.1711i 0.252743 0.437764i −0.711537 0.702649i \(-0.752001\pi\)
0.964280 + 0.264885i \(0.0853339\pi\)
\(774\) 0 0
\(775\) 13.1231 0.471396
\(776\) 0 0
\(777\) −3.27320 5.66935i −0.117425 0.203387i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −34.2462 −1.22543
\(782\) 0 0
\(783\) −14.2462 24.6752i −0.509118 0.881818i
\(784\) 0 0
\(785\) −19.1231 −0.682533
\(786\) 0 0
\(787\) 1.68466 2.91791i 0.0600516 0.104012i −0.834437 0.551104i \(-0.814207\pi\)
0.894488 + 0.447091i \(0.147540\pi\)
\(788\) 0 0
\(789\) 3.50758 6.07530i 0.124873 0.216286i
\(790\) 0 0
\(791\) 2.19224 + 3.79706i 0.0779469 + 0.135008i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 14.9309 + 25.8610i 0.529543 + 0.917196i
\(796\) 0 0
\(797\) 6.12311 10.6055i 0.216892 0.375667i −0.736965 0.675931i \(-0.763742\pi\)
0.953856 + 0.300264i \(0.0970749\pi\)
\(798\) 0 0
\(799\) −13.4654 + 23.3228i −0.476373 + 0.825102i
\(800\) 0 0
\(801\) −1.75379 −0.0619671
\(802\) 0 0
\(803\) 24.0000 + 41.5692i 0.846942 + 1.46695i
\(804\) 0 0
\(805\) 2.13826 0.0753638
\(806\) 0 0
\(807\) 16.9848 0.597895
\(808\) 0 0
\(809\) −21.3423 36.9660i −0.750356 1.29966i −0.947650 0.319311i \(-0.896549\pi\)
0.197294 0.980344i \(-0.436785\pi\)
\(810\) 0 0
\(811\) −23.3693 −0.820608 −0.410304 0.911949i \(-0.634577\pi\)
−0.410304 + 0.911949i \(0.634577\pi\)
\(812\) 0 0
\(813\) 11.4654 19.8587i 0.402110 0.696476i
\(814\) 0 0
\(815\) 15.8078 27.3799i 0.553722 0.959074i
\(816\) 0 0
\(817\) 9.56155 + 16.5611i 0.334516 + 0.579399i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21.2732 + 36.8463i 0.742440 + 1.28594i 0.951381 + 0.308015i \(0.0996648\pi\)
−0.208942 + 0.977928i \(0.567002\pi\)
\(822\) 0 0
\(823\) −25.1771 + 43.6080i −0.877618 + 1.52008i −0.0236702 + 0.999720i \(0.507535\pi\)
−0.853948 + 0.520359i \(0.825798\pi\)
\(824\) 0 0
\(825\) −10.2462 + 17.7470i −0.356727 + 0.617870i
\(826\) 0 0
\(827\) 22.0000 0.765015 0.382507 0.923952i \(-0.375061\pi\)
0.382507 + 0.923952i \(0.375061\pi\)
\(828\) 0 0
\(829\) −3.43845 5.95557i −0.119422 0.206845i 0.800117 0.599844i \(-0.204771\pi\)
−0.919539 + 0.392999i \(0.871438\pi\)
\(830\) 0 0
\(831\) −11.5076 −0.399193
\(832\) 0 0
\(833\) −24.2462 −0.840081
\(834\) 0 0
\(835\) 5.36932 + 9.29993i 0.185813 + 0.321837i
\(836\) 0 0
\(837\) 28.4924 0.984842
\(838\) 0 0
\(839\) 21.9309 37.9854i 0.757138 1.31140i −0.187167 0.982328i \(-0.559931\pi\)
0.944305 0.329073i \(-0.106736\pi\)
\(840\) 0 0
\(841\) 1.37689 2.38485i 0.0474791 0.0822362i
\(842\) 0 0
\(843\) 7.31534 + 12.6705i 0.251954 + 0.436397i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.34233 + 5.78908i 0.114844 + 0.198915i
\(848\) 0 0
\(849\) 9.36932 16.2281i 0.321554 0.556948i
\(850\) 0 0
\(851\) 14.9309 25.8610i 0.511824 0.886505i
\(852\) 0 0
\(853\) −4.68466 −0.160400 −0.0801998 0.996779i \(-0.525556\pi\)
−0.0801998 + 0.996779i \(0.525556\pi\)
\(854\) 0 0
\(855\) −0.876894 1.51883i −0.0299892 0.0519427i
\(856\) 0 0
\(857\) 50.4924 1.72479 0.862394 0.506237i \(-0.168964\pi\)
0.862394 + 0.506237i \(0.168964\pi\)
\(858\) 0 0
\(859\) −10.2462 −0.349596 −0.174798 0.984604i \(-0.555927\pi\)
−0.174798 + 0.984604i \(0.555927\pi\)
\(860\) 0 0
\(861\) −2.73863 4.74345i −0.0933324 0.161656i
\(862\) 0 0
\(863\) 48.0540 1.63578 0.817888 0.575377i \(-0.195145\pi\)
0.817888 + 0.575377i \(0.195145\pi\)
\(864\) 0 0
\(865\) −3.31534 + 5.74234i −0.112725 + 0.195245i
\(866\) 0 0
\(867\) 3.36932 5.83583i 0.114428 0.198195i
\(868\) 0 0
\(869\) −28.4924 49.3503i −0.966539 1.67410i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 1.75379 + 3.03765i 0.0593568 + 0.102809i
\(874\) 0 0
\(875\) 2.58854 4.48348i 0.0875086 0.151569i
\(876\) 0 0
\(877\) 3.71165 6.42876i 0.125333 0.217084i −0.796530 0.604599i \(-0.793333\pi\)
0.921863 + 0.387515i \(0.126667\pi\)
\(878\) 0 0
\(879\) 19.8078 0.668099
\(880\) 0 0
\(881\) −21.3963 37.0595i −0.720860 1.24857i −0.960656 0.277742i \(-0.910414\pi\)
0.239796 0.970823i \(-0.422920\pi\)
\(882\) 0 0
\(883\) 31.8078 1.07042 0.535208 0.844720i \(-0.320233\pi\)
0.535208 + 0.844720i \(0.320233\pi\)
\(884\) 0 0
\(885\) 24.3845 0.819675
\(886\) 0 0
\(887\) 2.63068 + 4.55648i 0.0883297 + 0.152992i 0.906805 0.421550i \(-0.138514\pi\)
−0.818476 + 0.574541i \(0.805180\pi\)
\(888\) 0 0
\(889\) −2.13826 −0.0717150
\(890\) 0 0
\(891\) −17.9309 + 31.0572i −0.600707 + 1.04045i
\(892\) 0 0
\(893\) −7.56155 + 13.0970i −0.253038 + 0.438274i
\(894\) 0 0
\(895\) −13.7116 23.7493i −0.458330 0.793850i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.1231 22.7299i −0.437680 0.758084i
\(900\) 0 0
\(901\) −21.8078 + 37.7722i −0.726522 + 1.25837i
\(902\) 0 0
\(903\) −3.27320 + 5.66935i −0.108925 + 0.188664i
\(904\) 0 0
\(905\) −12.8769 −0.428042
\(906\) 0 0
\(907\) −11.2192 19.4323i −0.372528 0.645238i 0.617426 0.786629i \(-0.288176\pi\)
−0.989954 + 0.141392i \(0.954842\pi\)
\(908\) 0 0
\(909\) −6.38447 −0.211760
\(910\) 0 0
\(911\) 25.7538 0.853261 0.426631 0.904426i \(-0.359700\pi\)
0.426631 + 0.904426i \(0.359700\pi\)
\(912\) 0 0
\(913\) 21.1231 + 36.5863i 0.699073 + 1.21083i
\(914\) 0 0
\(915\) −7.01515 −0.231914
\(916\) 0 0
\(917\) −0.726801 + 1.25886i −0.0240011 + 0.0415711i
\(918\) 0 0
\(919\) −0.876894 + 1.51883i −0.0289261 + 0.0501014i −0.880126 0.474740i \(-0.842542\pi\)
0.851200 + 0.524841i \(0.175875\pi\)
\(920\) 0 0
\(921\) 14.0540 + 24.3422i 0.463094 + 0.802103i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −12.2462 21.2111i −0.402653 0.697415i
\(926\) 0 0
\(927\) −0.876894 + 1.51883i −0.0288010 + 0.0498848i
\(928\) 0 0
\(929\) 9.36932 16.2281i 0.307397 0.532428i −0.670395 0.742005i \(-0.733875\pi\)
0.977792 + 0.209577i \(0.0672086\pi\)
\(930\) 0 0
\(931\) −13.6155 −0.446231
\(932\) 0 0
\(933\) 14.9309 + 25.8610i 0.488815 + 0.846652i
\(934\) 0 0
\(935\) 28.4924 0.931802
\(936\) 0 0
\(937\) 19.7538 0.645328 0.322664 0.946514i \(-0.395422\pi\)
0.322664 + 0.946514i \(0.395422\pi\)
\(938\) 0 0
\(939\) −3.46543 6.00231i −0.113090 0.195878i
\(940\) 0 0
\(941\) 42.5464 1.38697 0.693486 0.720470i \(-0.256074\pi\)
0.693486 + 0.720470i \(0.256074\pi\)
\(942\) 0 0
\(943\) 12.4924 21.6375i 0.406809 0.704614i
\(944\) 0 0
\(945\) 1.90388 3.29762i 0.0619333 0.107272i
\(946\) 0 0
\(947\) −7.68466 13.3102i −0.249718 0.432524i 0.713730 0.700421i \(-0.247005\pi\)
−0.963447 + 0.267897i \(0.913671\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −11.8078 20.4516i −0.382893 0.663190i
\(952\) 0 0
\(953\) 10.0270 17.3673i 0.324806 0.562580i −0.656667 0.754181i \(-0.728034\pi\)
0.981473 + 0.191600i \(0.0613677\pi\)
\(954\) 0 0
\(955\) −17.3693 + 30.0845i −0.562058 + 0.973513i
\(956\) 0 0
\(957\) 40.9848 1.32485
\(958\) 0 0
\(959\) 0.684658 + 1.18586i 0.0221088 + 0.0382935i
\(960\) 0 0
\(961\) −4.75379 −0.153348
\(962\) 0 0
\(963\) 2.24621 0.0723831
\(964\) 0 0
\(965\) −18.4384 31.9363i −0.593555 1.02807i
\(966\) 0 0
\(967\) −15.5616 −0.500426 −0.250213 0.968191i \(-0.580501\pi\)
−0.250213 + 0.968191i \(0.580501\pi\)
\(968\) 0 0
\(969\) −5.56155 + 9.63289i −0.178663 + 0.309453i
\(970\) 0 0
\(971\) 28.5885 49.5168i 0.917450 1.58907i 0.114176 0.993461i \(-0.463577\pi\)
0.803274 0.595609i \(-0.203089\pi\)
\(972\) 0 0
\(973\) −1.71165 2.96466i −0.0548729 0.0950426i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.6155 + 40.9033i 0.755528 + 1.30861i 0.945112 + 0.326748i \(0.105953\pi\)
−0.189584 + 0.981865i \(0.560714\pi\)
\(978\) 0 0
\(979\) 8.00000 13.8564i 0.255681 0.442853i
\(980\) 0 0
\(981\) −0.930870 + 1.61231i −0.0297204 + 0.0514772i
\(982\) 0 0
\(983\) −10.1922 −0.325082 −0.162541 0.986702i \(-0.551969\pi\)
−0.162541 + 0.986702i \(0.551969\pi\)
\(984\) 0 0
\(985\) 7.46543 + 12.9305i 0.237869 + 0.412000i
\(986\) 0 0
\(987\) −5.17708 −0.164788
\(988\) 0 0
\(989\) −29.8617 −0.949548
\(990\) 0 0
\(991\) 3.80776 + 6.59524i 0.120958 + 0.209505i 0.920146 0.391576i \(-0.128070\pi\)
−0.799188 + 0.601081i \(0.794737\pi\)
\(992\) 0 0
\(993\) 0.384472 0.0122008
\(994\) 0 0
\(995\) 11.1231 19.2658i 0.352626 0.610766i
\(996\) 0 0
\(997\) 0.807764 1.39909i 0.0255821 0.0443096i −0.852951 0.521991i \(-0.825189\pi\)
0.878533 + 0.477682i \(0.158523\pi\)
\(998\) 0 0
\(999\) −26.5885 46.0527i −0.841224 1.45704i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1352.2.i.h.1329.1 4
13.2 odd 12 104.2.f.a.25.4 yes 4
13.3 even 3 1352.2.a.e.1.2 2
13.4 even 6 1352.2.i.g.529.1 4
13.5 odd 4 1352.2.o.e.361.2 8
13.6 odd 12 1352.2.o.e.1161.2 8
13.7 odd 12 1352.2.o.e.1161.1 8
13.8 odd 4 1352.2.o.e.361.1 8
13.9 even 3 inner 1352.2.i.h.529.1 4
13.10 even 6 1352.2.a.d.1.2 2
13.11 odd 12 104.2.f.a.25.3 4
13.12 even 2 1352.2.i.g.1329.1 4
39.2 even 12 936.2.c.d.649.2 4
39.11 even 12 936.2.c.d.649.3 4
52.3 odd 6 2704.2.a.t.1.1 2
52.11 even 12 208.2.f.b.129.1 4
52.15 even 12 208.2.f.b.129.2 4
52.23 odd 6 2704.2.a.s.1.1 2
65.2 even 12 2600.2.f.b.649.2 4
65.24 odd 12 2600.2.k.a.2001.1 4
65.28 even 12 2600.2.f.a.649.3 4
65.37 even 12 2600.2.f.a.649.2 4
65.54 odd 12 2600.2.k.a.2001.2 4
65.63 even 12 2600.2.f.b.649.3 4
104.11 even 12 832.2.f.f.129.4 4
104.37 odd 12 832.2.f.i.129.2 4
104.67 even 12 832.2.f.f.129.3 4
104.93 odd 12 832.2.f.i.129.1 4
156.11 odd 12 1872.2.c.j.1585.3 4
156.119 odd 12 1872.2.c.j.1585.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.f.a.25.3 4 13.11 odd 12
104.2.f.a.25.4 yes 4 13.2 odd 12
208.2.f.b.129.1 4 52.11 even 12
208.2.f.b.129.2 4 52.15 even 12
832.2.f.f.129.3 4 104.67 even 12
832.2.f.f.129.4 4 104.11 even 12
832.2.f.i.129.1 4 104.93 odd 12
832.2.f.i.129.2 4 104.37 odd 12
936.2.c.d.649.2 4 39.2 even 12
936.2.c.d.649.3 4 39.11 even 12
1352.2.a.d.1.2 2 13.10 even 6
1352.2.a.e.1.2 2 13.3 even 3
1352.2.i.g.529.1 4 13.4 even 6
1352.2.i.g.1329.1 4 13.12 even 2
1352.2.i.h.529.1 4 13.9 even 3 inner
1352.2.i.h.1329.1 4 1.1 even 1 trivial
1352.2.o.e.361.1 8 13.8 odd 4
1352.2.o.e.361.2 8 13.5 odd 4
1352.2.o.e.1161.1 8 13.7 odd 12
1352.2.o.e.1161.2 8 13.6 odd 12
1872.2.c.j.1585.2 4 156.119 odd 12
1872.2.c.j.1585.3 4 156.11 odd 12
2600.2.f.a.649.2 4 65.37 even 12
2600.2.f.a.649.3 4 65.28 even 12
2600.2.f.b.649.2 4 65.2 even 12
2600.2.f.b.649.3 4 65.63 even 12
2600.2.k.a.2001.1 4 65.24 odd 12
2600.2.k.a.2001.2 4 65.54 odd 12
2704.2.a.s.1.1 2 52.23 odd 6
2704.2.a.t.1.1 2 52.3 odd 6