Properties

Label 208.10.f.d.129.9
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.9
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-132.434 q^{3} -362.362i q^{5} -3483.24i q^{7} -2144.23 q^{9} -12306.6i q^{11} +(100932. - 20425.6i) q^{13} +47989.0i q^{15} -482437. q^{17} -791929. i q^{19} +461299. i q^{21} +263044. q^{23} +1.82182e6 q^{25} +2.89067e6 q^{27} -22202.9 q^{29} -6.64793e6i q^{31} +1.62981e6i q^{33} -1.26219e6 q^{35} +1.71134e7i q^{37} +(-1.33668e7 + 2.70504e6i) q^{39} -1.77323e7i q^{41} +2.51637e7 q^{43} +776987. i q^{45} -1.23894e6i q^{47} +2.82207e7 q^{49} +6.38910e7 q^{51} +1.02344e7 q^{53} -4.45943e6 q^{55} +1.04878e8i q^{57} +4.48760e7i q^{59} +4.65679e7 q^{61} +7.46886e6i q^{63} +(-7.40144e6 - 3.65739e7i) q^{65} -8.12489e7i q^{67} -3.48360e7 q^{69} -4.17437e8i q^{71} +4.28566e8i q^{73} -2.41271e8 q^{75} -4.28667e7 q^{77} +4.90206e8 q^{79} -3.40618e8 q^{81} -6.62047e8i q^{83} +1.74817e8i q^{85} +2.94041e6 q^{87} +3.17115e8i q^{89} +(-7.11470e7 - 3.51570e8i) q^{91} +8.80412e8i q^{93} -2.86964e8 q^{95} +1.06090e8i q^{97} +2.63881e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −132.434 −0.943961 −0.471980 0.881609i \(-0.656461\pi\)
−0.471980 + 0.881609i \(0.656461\pi\)
\(4\) 0 0
\(5\) 362.362i 0.259285i −0.991561 0.129642i \(-0.958617\pi\)
0.991561 0.129642i \(-0.0413829\pi\)
\(6\) 0 0
\(7\) 3483.24i 0.548330i −0.961683 0.274165i \(-0.911599\pi\)
0.961683 0.274165i \(-0.0884014\pi\)
\(8\) 0 0
\(9\) −2144.23 −0.108938
\(10\) 0 0
\(11\) 12306.6i 0.253437i −0.991939 0.126718i \(-0.959556\pi\)
0.991939 0.126718i \(-0.0404445\pi\)
\(12\) 0 0
\(13\) 100932. 20425.6i 0.980132 0.198348i
\(14\) 0 0
\(15\) 47989.0i 0.244755i
\(16\) 0 0
\(17\) −482437. −1.40094 −0.700471 0.713681i \(-0.747027\pi\)
−0.700471 + 0.713681i \(0.747027\pi\)
\(18\) 0 0
\(19\) 791929.i 1.39410i −0.717021 0.697051i \(-0.754495\pi\)
0.717021 0.697051i \(-0.245505\pi\)
\(20\) 0 0
\(21\) 461299.i 0.517602i
\(22\) 0 0
\(23\) 263044. 0.195999 0.0979993 0.995186i \(-0.468756\pi\)
0.0979993 + 0.995186i \(0.468756\pi\)
\(24\) 0 0
\(25\) 1.82182e6 0.932771
\(26\) 0 0
\(27\) 2.89067e6 1.04679
\(28\) 0 0
\(29\) −22202.9 −0.00582932 −0.00291466 0.999996i \(-0.500928\pi\)
−0.00291466 + 0.999996i \(0.500928\pi\)
\(30\) 0 0
\(31\) 6.64793e6i 1.29288i −0.762964 0.646441i \(-0.776257\pi\)
0.762964 0.646441i \(-0.223743\pi\)
\(32\) 0 0
\(33\) 1.62981e6i 0.239235i
\(34\) 0 0
\(35\) −1.26219e6 −0.142174
\(36\) 0 0
\(37\) 1.71134e7i 1.50117i 0.660776 + 0.750583i \(0.270227\pi\)
−0.660776 + 0.750583i \(0.729773\pi\)
\(38\) 0 0
\(39\) −1.33668e7 + 2.70504e6i −0.925206 + 0.187233i
\(40\) 0 0
\(41\) 1.77323e7i 0.980025i −0.871715 0.490013i \(-0.836992\pi\)
0.871715 0.490013i \(-0.163008\pi\)
\(42\) 0 0
\(43\) 2.51637e7 1.12245 0.561224 0.827664i \(-0.310331\pi\)
0.561224 + 0.827664i \(0.310331\pi\)
\(44\) 0 0
\(45\) 776987.i 0.0282460i
\(46\) 0 0
\(47\) 1.23894e6i 0.0370348i −0.999829 0.0185174i \(-0.994105\pi\)
0.999829 0.0185174i \(-0.00589462\pi\)
\(48\) 0 0
\(49\) 2.82207e7 0.699335
\(50\) 0 0
\(51\) 6.38910e7 1.32243
\(52\) 0 0
\(53\) 1.02344e7 0.178164 0.0890821 0.996024i \(-0.471607\pi\)
0.0890821 + 0.996024i \(0.471607\pi\)
\(54\) 0 0
\(55\) −4.45943e6 −0.0657124
\(56\) 0 0
\(57\) 1.04878e8i 1.31598i
\(58\) 0 0
\(59\) 4.48760e7i 0.482147i 0.970507 + 0.241074i \(0.0774995\pi\)
−0.970507 + 0.241074i \(0.922500\pi\)
\(60\) 0 0
\(61\) 4.65679e7 0.430629 0.215314 0.976545i \(-0.430922\pi\)
0.215314 + 0.976545i \(0.430922\pi\)
\(62\) 0 0
\(63\) 7.46886e6i 0.0597341i
\(64\) 0 0
\(65\) −7.40144e6 3.65739e7i −0.0514287 0.254133i
\(66\) 0 0
\(67\) 8.12489e7i 0.492585i −0.969196 0.246292i \(-0.920788\pi\)
0.969196 0.246292i \(-0.0792123\pi\)
\(68\) 0 0
\(69\) −3.48360e7 −0.185015
\(70\) 0 0
\(71\) 4.17437e8i 1.94952i −0.223249 0.974761i \(-0.571666\pi\)
0.223249 0.974761i \(-0.428334\pi\)
\(72\) 0 0
\(73\) 4.28566e8i 1.76630i 0.469090 + 0.883150i \(0.344582\pi\)
−0.469090 + 0.883150i \(0.655418\pi\)
\(74\) 0 0
\(75\) −2.41271e8 −0.880499
\(76\) 0 0
\(77\) −4.28667e7 −0.138967
\(78\) 0 0
\(79\) 4.90206e8 1.41598 0.707989 0.706223i \(-0.249602\pi\)
0.707989 + 0.706223i \(0.249602\pi\)
\(80\) 0 0
\(81\) −3.40618e8 −0.879194
\(82\) 0 0
\(83\) 6.62047e8i 1.53122i −0.643305 0.765610i \(-0.722437\pi\)
0.643305 0.765610i \(-0.277563\pi\)
\(84\) 0 0
\(85\) 1.74817e8i 0.363243i
\(86\) 0 0
\(87\) 2.94041e6 0.00550265
\(88\) 0 0
\(89\) 3.17115e8i 0.535749i 0.963454 + 0.267875i \(0.0863213\pi\)
−0.963454 + 0.267875i \(0.913679\pi\)
\(90\) 0 0
\(91\) −7.11470e7 3.51570e8i −0.108760 0.537435i
\(92\) 0 0
\(93\) 8.80412e8i 1.22043i
\(94\) 0 0
\(95\) −2.86964e8 −0.361470
\(96\) 0 0
\(97\) 1.06090e8i 0.121676i 0.998148 + 0.0608378i \(0.0193772\pi\)
−0.998148 + 0.0608378i \(0.980623\pi\)
\(98\) 0 0
\(99\) 2.63881e7i 0.0276090i
\(100\) 0 0
\(101\) −1.98728e9 −1.90026 −0.950130 0.311854i \(-0.899050\pi\)
−0.950130 + 0.311854i \(0.899050\pi\)
\(102\) 0 0
\(103\) −1.35702e9 −1.18801 −0.594004 0.804462i \(-0.702454\pi\)
−0.594004 + 0.804462i \(0.702454\pi\)
\(104\) 0 0
\(105\) 1.67157e8 0.134206
\(106\) 0 0
\(107\) −1.41925e9 −1.04672 −0.523361 0.852111i \(-0.675322\pi\)
−0.523361 + 0.852111i \(0.675322\pi\)
\(108\) 0 0
\(109\) 1.84329e9i 1.25076i −0.780321 0.625379i \(-0.784944\pi\)
0.780321 0.625379i \(-0.215056\pi\)
\(110\) 0 0
\(111\) 2.26640e9i 1.41704i
\(112\) 0 0
\(113\) −2.02691e9 −1.16945 −0.584725 0.811231i \(-0.698798\pi\)
−0.584725 + 0.811231i \(0.698798\pi\)
\(114\) 0 0
\(115\) 9.53170e7i 0.0508195i
\(116\) 0 0
\(117\) −2.16422e8 + 4.37971e7i −0.106774 + 0.0216077i
\(118\) 0 0
\(119\) 1.68044e9i 0.768178i
\(120\) 0 0
\(121\) 2.20650e9 0.935770
\(122\) 0 0
\(123\) 2.34836e9i 0.925105i
\(124\) 0 0
\(125\) 1.36789e9i 0.501138i
\(126\) 0 0
\(127\) −3.24504e9 −1.10689 −0.553443 0.832887i \(-0.686686\pi\)
−0.553443 + 0.832887i \(0.686686\pi\)
\(128\) 0 0
\(129\) −3.33253e9 −1.05955
\(130\) 0 0
\(131\) 1.34206e8 0.0398155 0.0199078 0.999802i \(-0.493663\pi\)
0.0199078 + 0.999802i \(0.493663\pi\)
\(132\) 0 0
\(133\) −2.75847e9 −0.764428
\(134\) 0 0
\(135\) 1.04747e9i 0.271418i
\(136\) 0 0
\(137\) 1.49747e9i 0.363175i −0.983375 0.181588i \(-0.941876\pi\)
0.983375 0.181588i \(-0.0581236\pi\)
\(138\) 0 0
\(139\) −1.38616e9 −0.314955 −0.157477 0.987523i \(-0.550336\pi\)
−0.157477 + 0.987523i \(0.550336\pi\)
\(140\) 0 0
\(141\) 1.64078e8i 0.0349594i
\(142\) 0 0
\(143\) −2.51369e8 1.24213e9i −0.0502688 0.248402i
\(144\) 0 0
\(145\) 8.04547e6i 0.00151145i
\(146\) 0 0
\(147\) −3.73738e9 −0.660144
\(148\) 0 0
\(149\) 4.28758e9i 0.712647i −0.934363 0.356323i \(-0.884030\pi\)
0.934363 0.356323i \(-0.115970\pi\)
\(150\) 0 0
\(151\) 2.17856e9i 0.341014i 0.985356 + 0.170507i \(0.0545406\pi\)
−0.985356 + 0.170507i \(0.945459\pi\)
\(152\) 0 0
\(153\) 1.03446e9 0.152616
\(154\) 0 0
\(155\) −2.40895e9 −0.335225
\(156\) 0 0
\(157\) −7.65180e9 −1.00511 −0.502557 0.864544i \(-0.667607\pi\)
−0.502557 + 0.864544i \(0.667607\pi\)
\(158\) 0 0
\(159\) −1.35538e9 −0.168180
\(160\) 0 0
\(161\) 9.16244e8i 0.107472i
\(162\) 0 0
\(163\) 5.36532e9i 0.595322i 0.954672 + 0.297661i \(0.0962064\pi\)
−0.954672 + 0.297661i \(0.903794\pi\)
\(164\) 0 0
\(165\) 5.90580e8 0.0620299
\(166\) 0 0
\(167\) 1.27058e10i 1.26409i 0.774930 + 0.632047i \(0.217785\pi\)
−0.774930 + 0.632047i \(0.782215\pi\)
\(168\) 0 0
\(169\) 9.77009e9 4.12319e9i 0.921316 0.388815i
\(170\) 0 0
\(171\) 1.69808e9i 0.151871i
\(172\) 0 0
\(173\) −4.65892e9 −0.395438 −0.197719 0.980259i \(-0.563353\pi\)
−0.197719 + 0.980259i \(0.563353\pi\)
\(174\) 0 0
\(175\) 6.34583e9i 0.511466i
\(176\) 0 0
\(177\) 5.94310e9i 0.455128i
\(178\) 0 0
\(179\) −9.51770e9 −0.692936 −0.346468 0.938062i \(-0.612619\pi\)
−0.346468 + 0.938062i \(0.612619\pi\)
\(180\) 0 0
\(181\) −1.93702e10 −1.34147 −0.670735 0.741697i \(-0.734021\pi\)
−0.670735 + 0.741697i \(0.734021\pi\)
\(182\) 0 0
\(183\) −6.16718e9 −0.406496
\(184\) 0 0
\(185\) 6.20124e9 0.389230
\(186\) 0 0
\(187\) 5.93714e9i 0.355051i
\(188\) 0 0
\(189\) 1.00689e10i 0.573988i
\(190\) 0 0
\(191\) −2.72271e9 −0.148030 −0.0740152 0.997257i \(-0.523581\pi\)
−0.0740152 + 0.997257i \(0.523581\pi\)
\(192\) 0 0
\(193\) 2.81939e10i 1.46267i −0.682016 0.731337i \(-0.738896\pi\)
0.682016 0.731337i \(-0.261104\pi\)
\(194\) 0 0
\(195\) 9.80202e8 + 4.84363e9i 0.0485467 + 0.239892i
\(196\) 0 0
\(197\) 1.88074e10i 0.889672i −0.895612 0.444836i \(-0.853262\pi\)
0.895612 0.444836i \(-0.146738\pi\)
\(198\) 0 0
\(199\) −1.68577e10 −0.762009 −0.381004 0.924573i \(-0.624422\pi\)
−0.381004 + 0.924573i \(0.624422\pi\)
\(200\) 0 0
\(201\) 1.07601e10i 0.464980i
\(202\) 0 0
\(203\) 7.73378e7i 0.00319639i
\(204\) 0 0
\(205\) −6.42550e9 −0.254106
\(206\) 0 0
\(207\) −5.64027e8 −0.0213517
\(208\) 0 0
\(209\) −9.74593e9 −0.353317
\(210\) 0 0
\(211\) −2.44393e10 −0.848826 −0.424413 0.905469i \(-0.639519\pi\)
−0.424413 + 0.905469i \(0.639519\pi\)
\(212\) 0 0
\(213\) 5.52829e10i 1.84027i
\(214\) 0 0
\(215\) 9.11835e9i 0.291034i
\(216\) 0 0
\(217\) −2.31563e10 −0.708926
\(218\) 0 0
\(219\) 5.67567e10i 1.66732i
\(220\) 0 0
\(221\) −4.86934e10 + 9.85404e9i −1.37311 + 0.277875i
\(222\) 0 0
\(223\) 1.52796e10i 0.413753i 0.978367 + 0.206876i \(0.0663298\pi\)
−0.978367 + 0.206876i \(0.933670\pi\)
\(224\) 0 0
\(225\) −3.90640e9 −0.101614
\(226\) 0 0
\(227\) 9.89806e9i 0.247419i −0.992318 0.123710i \(-0.960521\pi\)
0.992318 0.123710i \(-0.0394792\pi\)
\(228\) 0 0
\(229\) 1.61656e10i 0.388447i −0.980957 0.194224i \(-0.937781\pi\)
0.980957 0.194224i \(-0.0622188\pi\)
\(230\) 0 0
\(231\) 5.67701e9 0.131179
\(232\) 0 0
\(233\) 5.56739e10 1.23751 0.618757 0.785583i \(-0.287637\pi\)
0.618757 + 0.785583i \(0.287637\pi\)
\(234\) 0 0
\(235\) −4.48945e8 −0.00960257
\(236\) 0 0
\(237\) −6.49199e10 −1.33663
\(238\) 0 0
\(239\) 2.46828e10i 0.489332i −0.969607 0.244666i \(-0.921322\pi\)
0.969607 0.244666i \(-0.0786783\pi\)
\(240\) 0 0
\(241\) 9.43996e10i 1.80258i 0.433221 + 0.901288i \(0.357377\pi\)
−0.433221 + 0.901288i \(0.642623\pi\)
\(242\) 0 0
\(243\) −1.17876e10 −0.216869
\(244\) 0 0
\(245\) 1.02261e10i 0.181327i
\(246\) 0 0
\(247\) −1.61756e10 7.99310e10i −0.276518 1.36640i
\(248\) 0 0
\(249\) 8.76776e10i 1.44541i
\(250\) 0 0
\(251\) −4.32735e10 −0.688161 −0.344081 0.938940i \(-0.611809\pi\)
−0.344081 + 0.938940i \(0.611809\pi\)
\(252\) 0 0
\(253\) 3.23717e9i 0.0496733i
\(254\) 0 0
\(255\) 2.31517e10i 0.342887i
\(256\) 0 0
\(257\) 3.53120e10 0.504921 0.252461 0.967607i \(-0.418760\pi\)
0.252461 + 0.967607i \(0.418760\pi\)
\(258\) 0 0
\(259\) 5.96100e10 0.823134
\(260\) 0 0
\(261\) 4.76081e7 0.000635036
\(262\) 0 0
\(263\) 9.13037e10 1.17676 0.588380 0.808585i \(-0.299766\pi\)
0.588380 + 0.808585i \(0.299766\pi\)
\(264\) 0 0
\(265\) 3.70855e9i 0.0461953i
\(266\) 0 0
\(267\) 4.19968e10i 0.505726i
\(268\) 0 0
\(269\) 2.84278e10 0.331023 0.165512 0.986208i \(-0.447072\pi\)
0.165512 + 0.986208i \(0.447072\pi\)
\(270\) 0 0
\(271\) 1.26666e11i 1.42658i 0.700868 + 0.713291i \(0.252796\pi\)
−0.700868 + 0.713291i \(0.747204\pi\)
\(272\) 0 0
\(273\) 9.42229e9 + 4.65599e10i 0.102665 + 0.507318i
\(274\) 0 0
\(275\) 2.24203e10i 0.236399i
\(276\) 0 0
\(277\) 3.70737e8 0.00378362 0.00189181 0.999998i \(-0.499398\pi\)
0.00189181 + 0.999998i \(0.499398\pi\)
\(278\) 0 0
\(279\) 1.42547e10i 0.140844i
\(280\) 0 0
\(281\) 1.18871e11i 1.13736i −0.822560 0.568678i \(-0.807455\pi\)
0.822560 0.568678i \(-0.192545\pi\)
\(282\) 0 0
\(283\) 1.15032e11 1.06606 0.533029 0.846097i \(-0.321053\pi\)
0.533029 + 0.846097i \(0.321053\pi\)
\(284\) 0 0
\(285\) 3.80039e10 0.341213
\(286\) 0 0
\(287\) −6.17657e10 −0.537377
\(288\) 0 0
\(289\) 1.14157e11 0.962638
\(290\) 0 0
\(291\) 1.40500e10i 0.114857i
\(292\) 0 0
\(293\) 1.61534e10i 0.128044i −0.997948 0.0640219i \(-0.979607\pi\)
0.997948 0.0640219i \(-0.0203927\pi\)
\(294\) 0 0
\(295\) 1.62613e10 0.125013
\(296\) 0 0
\(297\) 3.55742e10i 0.265296i
\(298\) 0 0
\(299\) 2.65496e10 5.37282e9i 0.192104 0.0388760i
\(300\) 0 0
\(301\) 8.76510e10i 0.615471i
\(302\) 0 0
\(303\) 2.63184e11 1.79377
\(304\) 0 0
\(305\) 1.68744e10i 0.111655i
\(306\) 0 0
\(307\) 8.26154e10i 0.530809i 0.964137 + 0.265405i \(0.0855055\pi\)
−0.964137 + 0.265405i \(0.914494\pi\)
\(308\) 0 0
\(309\) 1.79716e11 1.12143
\(310\) 0 0
\(311\) 7.43197e10 0.450487 0.225244 0.974302i \(-0.427682\pi\)
0.225244 + 0.974302i \(0.427682\pi\)
\(312\) 0 0
\(313\) 1.36875e11 0.806075 0.403038 0.915183i \(-0.367954\pi\)
0.403038 + 0.915183i \(0.367954\pi\)
\(314\) 0 0
\(315\) 2.70643e9 0.0154881
\(316\) 0 0
\(317\) 2.08252e11i 1.15831i 0.815219 + 0.579153i \(0.196616\pi\)
−0.815219 + 0.579153i \(0.803384\pi\)
\(318\) 0 0
\(319\) 2.73241e8i 0.00147737i
\(320\) 0 0
\(321\) 1.87957e11 0.988064
\(322\) 0 0
\(323\) 3.82055e11i 1.95306i
\(324\) 0 0
\(325\) 1.83880e11 3.72117e10i 0.914239 0.185014i
\(326\) 0 0
\(327\) 2.44114e11i 1.18067i
\(328\) 0 0
\(329\) −4.31553e9 −0.0203073
\(330\) 0 0
\(331\) 1.83671e11i 0.841034i −0.907285 0.420517i \(-0.861849\pi\)
0.907285 0.420517i \(-0.138151\pi\)
\(332\) 0 0
\(333\) 3.66951e10i 0.163534i
\(334\) 0 0
\(335\) −2.94415e10 −0.127720
\(336\) 0 0
\(337\) −2.86391e10 −0.120955 −0.0604776 0.998170i \(-0.519262\pi\)
−0.0604776 + 0.998170i \(0.519262\pi\)
\(338\) 0 0
\(339\) 2.68432e11 1.10392
\(340\) 0 0
\(341\) −8.18132e10 −0.327664
\(342\) 0 0
\(343\) 2.38860e11i 0.931796i
\(344\) 0 0
\(345\) 1.26232e10i 0.0479716i
\(346\) 0 0
\(347\) −1.39827e11 −0.517736 −0.258868 0.965913i \(-0.583349\pi\)
−0.258868 + 0.965913i \(0.583349\pi\)
\(348\) 0 0
\(349\) 8.05612e10i 0.290678i −0.989382 0.145339i \(-0.953573\pi\)
0.989382 0.145339i \(-0.0464272\pi\)
\(350\) 0 0
\(351\) 2.91761e11 5.90435e10i 1.02600 0.207630i
\(352\) 0 0
\(353\) 6.38499e10i 0.218864i −0.993994 0.109432i \(-0.965097\pi\)
0.993994 0.109432i \(-0.0349031\pi\)
\(354\) 0 0
\(355\) −1.51263e11 −0.505482
\(356\) 0 0
\(357\) 2.22548e11i 0.725130i
\(358\) 0 0
\(359\) 4.31792e11i 1.37199i 0.727608 + 0.685993i \(0.240632\pi\)
−0.727608 + 0.685993i \(0.759368\pi\)
\(360\) 0 0
\(361\) −3.04463e11 −0.943522
\(362\) 0 0
\(363\) −2.92215e11 −0.883330
\(364\) 0 0
\(365\) 1.55296e11 0.457975
\(366\) 0 0
\(367\) 6.40722e10 0.184362 0.0921812 0.995742i \(-0.470616\pi\)
0.0921812 + 0.995742i \(0.470616\pi\)
\(368\) 0 0
\(369\) 3.80221e10i 0.106762i
\(370\) 0 0
\(371\) 3.56488e10i 0.0976928i
\(372\) 0 0
\(373\) −1.38528e11 −0.370552 −0.185276 0.982687i \(-0.559318\pi\)
−0.185276 + 0.982687i \(0.559318\pi\)
\(374\) 0 0
\(375\) 1.81156e11i 0.473055i
\(376\) 0 0
\(377\) −2.24098e9 + 4.53506e8i −0.00571350 + 0.00115624i
\(378\) 0 0
\(379\) 4.89603e11i 1.21890i 0.792825 + 0.609449i \(0.208609\pi\)
−0.792825 + 0.609449i \(0.791391\pi\)
\(380\) 0 0
\(381\) 4.29753e11 1.04486
\(382\) 0 0
\(383\) 2.68583e10i 0.0637798i −0.999491 0.0318899i \(-0.989847\pi\)
0.999491 0.0318899i \(-0.0101526\pi\)
\(384\) 0 0
\(385\) 1.55332e10i 0.0360320i
\(386\) 0 0
\(387\) −5.39567e10 −0.122277
\(388\) 0 0
\(389\) −4.95046e10 −0.109616 −0.0548078 0.998497i \(-0.517455\pi\)
−0.0548078 + 0.998497i \(0.517455\pi\)
\(390\) 0 0
\(391\) −1.26902e11 −0.274583
\(392\) 0 0
\(393\) −1.77735e10 −0.0375843
\(394\) 0 0
\(395\) 1.77632e11i 0.367142i
\(396\) 0 0
\(397\) 1.10067e11i 0.222381i −0.993799 0.111191i \(-0.964534\pi\)
0.993799 0.111191i \(-0.0354664\pi\)
\(398\) 0 0
\(399\) 3.65316e11 0.721590
\(400\) 0 0
\(401\) 8.15205e11i 1.57441i −0.616693 0.787204i \(-0.711528\pi\)
0.616693 0.787204i \(-0.288472\pi\)
\(402\) 0 0
\(403\) −1.35788e11 6.70990e11i −0.256441 1.26719i
\(404\) 0 0
\(405\) 1.23427e11i 0.227962i
\(406\) 0 0
\(407\) 2.10607e11 0.380451
\(408\) 0 0
\(409\) 3.35495e11i 0.592831i −0.955059 0.296415i \(-0.904209\pi\)
0.955059 0.296415i \(-0.0957913\pi\)
\(410\) 0 0
\(411\) 1.98316e11i 0.342823i
\(412\) 0 0
\(413\) 1.56314e11 0.264376
\(414\) 0 0
\(415\) −2.39901e11 −0.397022
\(416\) 0 0
\(417\) 1.83575e11 0.297305
\(418\) 0 0
\(419\) −1.15955e12 −1.83792 −0.918962 0.394346i \(-0.870971\pi\)
−0.918962 + 0.394346i \(0.870971\pi\)
\(420\) 0 0
\(421\) 1.03177e12i 1.60072i 0.599522 + 0.800359i \(0.295358\pi\)
−0.599522 + 0.800359i \(0.704642\pi\)
\(422\) 0 0
\(423\) 2.65658e9i 0.00403451i
\(424\) 0 0
\(425\) −8.78912e11 −1.30676
\(426\) 0 0
\(427\) 1.62207e11i 0.236126i
\(428\) 0 0
\(429\) 3.32898e10 + 1.64500e11i 0.0474518 + 0.234481i
\(430\) 0 0
\(431\) 1.37520e12i 1.91963i −0.280640 0.959813i \(-0.590547\pi\)
0.280640 0.959813i \(-0.409453\pi\)
\(432\) 0 0
\(433\) −1.22958e12 −1.68097 −0.840487 0.541831i \(-0.817731\pi\)
−0.840487 + 0.541831i \(0.817731\pi\)
\(434\) 0 0
\(435\) 1.06549e9i 0.00142675i
\(436\) 0 0
\(437\) 2.08312e11i 0.273242i
\(438\) 0 0
\(439\) 5.10701e11 0.656261 0.328131 0.944632i \(-0.393581\pi\)
0.328131 + 0.944632i \(0.393581\pi\)
\(440\) 0 0
\(441\) −6.05116e10 −0.0761843
\(442\) 0 0
\(443\) 7.52842e11 0.928725 0.464362 0.885645i \(-0.346283\pi\)
0.464362 + 0.885645i \(0.346283\pi\)
\(444\) 0 0
\(445\) 1.14910e11 0.138912
\(446\) 0 0
\(447\) 5.67822e11i 0.672711i
\(448\) 0 0
\(449\) 1.54365e12i 1.79242i 0.443625 + 0.896212i \(0.353692\pi\)
−0.443625 + 0.896212i \(0.646308\pi\)
\(450\) 0 0
\(451\) −2.18224e11 −0.248375
\(452\) 0 0
\(453\) 2.88515e11i 0.321904i
\(454\) 0 0
\(455\) −1.27396e11 + 2.57810e10i −0.139349 + 0.0281999i
\(456\) 0 0
\(457\) 4.78491e11i 0.513158i 0.966523 + 0.256579i \(0.0825954\pi\)
−0.966523 + 0.256579i \(0.917405\pi\)
\(458\) 0 0
\(459\) −1.39456e12 −1.46650
\(460\) 0 0
\(461\) 1.49102e12i 1.53755i 0.639517 + 0.768777i \(0.279134\pi\)
−0.639517 + 0.768777i \(0.720866\pi\)
\(462\) 0 0
\(463\) 1.01692e12i 1.02843i −0.857662 0.514214i \(-0.828084\pi\)
0.857662 0.514214i \(-0.171916\pi\)
\(464\) 0 0
\(465\) 3.19028e11 0.316439
\(466\) 0 0
\(467\) 9.10262e11 0.885605 0.442803 0.896619i \(-0.353984\pi\)
0.442803 + 0.896619i \(0.353984\pi\)
\(468\) 0 0
\(469\) −2.83009e11 −0.270099
\(470\) 0 0
\(471\) 1.01336e12 0.948787
\(472\) 0 0
\(473\) 3.09679e11i 0.284470i
\(474\) 0 0
\(475\) 1.44275e12i 1.30038i
\(476\) 0 0
\(477\) −2.19449e10 −0.0194089
\(478\) 0 0
\(479\) 2.26651e11i 0.196720i 0.995151 + 0.0983600i \(0.0313597\pi\)
−0.995151 + 0.0983600i \(0.968640\pi\)
\(480\) 0 0
\(481\) 3.49551e11 + 1.72729e12i 0.297754 + 1.47134i
\(482\) 0 0
\(483\) 1.21342e11i 0.101449i
\(484\) 0 0
\(485\) 3.84431e10 0.0315486
\(486\) 0 0
\(487\) 2.44539e11i 0.197001i −0.995137 0.0985005i \(-0.968595\pi\)
0.995137 0.0985005i \(-0.0314046\pi\)
\(488\) 0 0
\(489\) 7.10551e11i 0.561960i
\(490\) 0 0
\(491\) −5.96940e11 −0.463515 −0.231758 0.972774i \(-0.574448\pi\)
−0.231758 + 0.972774i \(0.574448\pi\)
\(492\) 0 0
\(493\) 1.07115e10 0.00816654
\(494\) 0 0
\(495\) 9.56205e9 0.00715859
\(496\) 0 0
\(497\) −1.45403e12 −1.06898
\(498\) 0 0
\(499\) 1.20878e12i 0.872763i −0.899762 0.436382i \(-0.856260\pi\)
0.899762 0.436382i \(-0.143740\pi\)
\(500\) 0 0
\(501\) 1.68269e12i 1.19325i
\(502\) 0 0
\(503\) −2.40420e12 −1.67461 −0.837306 0.546734i \(-0.815871\pi\)
−0.837306 + 0.546734i \(0.815871\pi\)
\(504\) 0 0
\(505\) 7.20114e11i 0.492709i
\(506\) 0 0
\(507\) −1.29389e12 + 5.46051e11i −0.869686 + 0.367026i
\(508\) 0 0
\(509\) 9.84554e11i 0.650144i −0.945689 0.325072i \(-0.894611\pi\)
0.945689 0.325072i \(-0.105389\pi\)
\(510\) 0 0
\(511\) 1.49280e12 0.968515
\(512\) 0 0
\(513\) 2.28920e12i 1.45934i
\(514\) 0 0
\(515\) 4.91733e11i 0.308033i
\(516\) 0 0
\(517\) −1.52471e10 −0.00938600
\(518\) 0 0
\(519\) 6.17000e11 0.373278
\(520\) 0 0
\(521\) −1.14661e12 −0.681785 −0.340892 0.940102i \(-0.610729\pi\)
−0.340892 + 0.940102i \(0.610729\pi\)
\(522\) 0 0
\(523\) −2.78844e12 −1.62969 −0.814843 0.579682i \(-0.803177\pi\)
−0.814843 + 0.579682i \(0.803177\pi\)
\(524\) 0 0
\(525\) 8.40403e11i 0.482804i
\(526\) 0 0
\(527\) 3.20721e12i 1.81125i
\(528\) 0 0
\(529\) −1.73196e12 −0.961585
\(530\) 0 0
\(531\) 9.62244e10i 0.0525243i
\(532\) 0 0
\(533\) −3.62192e11 1.78976e12i −0.194386 0.960554i
\(534\) 0 0
\(535\) 5.14281e11i 0.271399i
\(536\) 0 0
\(537\) 1.26047e12 0.654105
\(538\) 0 0
\(539\) 3.47300e11i 0.177237i
\(540\) 0 0
\(541\) 1.86097e12i 0.934013i 0.884254 + 0.467006i \(0.154667\pi\)
−0.884254 + 0.467006i \(0.845333\pi\)
\(542\) 0 0
\(543\) 2.56528e12 1.26629
\(544\) 0 0
\(545\) −6.67936e11 −0.324303
\(546\) 0 0
\(547\) −1.52470e12 −0.728183 −0.364091 0.931363i \(-0.618620\pi\)
−0.364091 + 0.931363i \(0.618620\pi\)
\(548\) 0 0
\(549\) −9.98524e10 −0.0469119
\(550\) 0 0
\(551\) 1.75831e10i 0.00812667i
\(552\) 0 0
\(553\) 1.70750e12i 0.776423i
\(554\) 0 0
\(555\) −8.21255e11 −0.367417
\(556\) 0 0
\(557\) 3.57603e12i 1.57418i −0.616841 0.787088i \(-0.711588\pi\)
0.616841 0.787088i \(-0.288412\pi\)
\(558\) 0 0
\(559\) 2.53982e12 5.13982e11i 1.10015 0.222636i
\(560\) 0 0
\(561\) 7.86279e11i 0.335154i
\(562\) 0 0
\(563\) −3.95357e12 −1.65845 −0.829223 0.558918i \(-0.811217\pi\)
−0.829223 + 0.558918i \(0.811217\pi\)
\(564\) 0 0
\(565\) 7.34475e11i 0.303221i
\(566\) 0 0
\(567\) 1.18645e12i 0.482088i
\(568\) 0 0
\(569\) 2.79161e12 1.11648 0.558238 0.829681i \(-0.311478\pi\)
0.558238 + 0.829681i \(0.311478\pi\)
\(570\) 0 0
\(571\) −3.50152e12 −1.37846 −0.689230 0.724543i \(-0.742051\pi\)
−0.689230 + 0.724543i \(0.742051\pi\)
\(572\) 0 0
\(573\) 3.60579e11 0.139735
\(574\) 0 0
\(575\) 4.79219e11 0.182822
\(576\) 0 0
\(577\) 2.14125e12i 0.804223i −0.915591 0.402111i \(-0.868276\pi\)
0.915591 0.402111i \(-0.131724\pi\)
\(578\) 0 0
\(579\) 3.73384e12i 1.38071i
\(580\) 0 0
\(581\) −2.30607e12 −0.839613
\(582\) 0 0
\(583\) 1.25950e11i 0.0451534i
\(584\) 0 0
\(585\) 1.58704e10 + 7.84230e10i 0.00560256 + 0.0276848i
\(586\) 0 0
\(587\) 3.27804e12i 1.13958i −0.821792 0.569788i \(-0.807025\pi\)
0.821792 0.569788i \(-0.192975\pi\)
\(588\) 0 0
\(589\) −5.26469e12 −1.80241
\(590\) 0 0
\(591\) 2.49073e12i 0.839815i
\(592\) 0 0
\(593\) 3.11914e12i 1.03583i 0.855431 + 0.517916i \(0.173292\pi\)
−0.855431 + 0.517916i \(0.826708\pi\)
\(594\) 0 0
\(595\) 6.08927e11 0.199177
\(596\) 0 0
\(597\) 2.23254e12 0.719306
\(598\) 0 0
\(599\) −5.26541e10 −0.0167114 −0.00835568 0.999965i \(-0.502660\pi\)
−0.00835568 + 0.999965i \(0.502660\pi\)
\(600\) 0 0
\(601\) −9.96737e11 −0.311634 −0.155817 0.987786i \(-0.549801\pi\)
−0.155817 + 0.987786i \(0.549801\pi\)
\(602\) 0 0
\(603\) 1.74216e11i 0.0536613i
\(604\) 0 0
\(605\) 7.99549e11i 0.242631i
\(606\) 0 0
\(607\) 2.30513e11 0.0689201 0.0344600 0.999406i \(-0.489029\pi\)
0.0344600 + 0.999406i \(0.489029\pi\)
\(608\) 0 0
\(609\) 1.02422e10i 0.00301727i
\(610\) 0 0
\(611\) −2.53061e10 1.25049e11i −0.00734580 0.0362990i
\(612\) 0 0
\(613\) 5.30859e12i 1.51847i 0.650815 + 0.759236i \(0.274427\pi\)
−0.650815 + 0.759236i \(0.725573\pi\)
\(614\) 0 0
\(615\) 8.50954e11 0.239866
\(616\) 0 0
\(617\) 3.16666e11i 0.0879666i −0.999032 0.0439833i \(-0.985995\pi\)
0.999032 0.0439833i \(-0.0140048\pi\)
\(618\) 0 0
\(619\) 1.71107e12i 0.468447i −0.972183 0.234223i \(-0.924745\pi\)
0.972183 0.234223i \(-0.0752547\pi\)
\(620\) 0 0
\(621\) 7.60373e11 0.205170
\(622\) 0 0
\(623\) 1.10459e12 0.293767
\(624\) 0 0
\(625\) 3.06257e12 0.802834
\(626\) 0 0
\(627\) 1.29069e12 0.333518
\(628\) 0 0
\(629\) 8.25614e12i 2.10305i
\(630\) 0 0
\(631\) 1.30123e12i 0.326756i −0.986564 0.163378i \(-0.947761\pi\)
0.986564 0.163378i \(-0.0522390\pi\)
\(632\) 0 0
\(633\) 3.23660e12 0.801258
\(634\) 0 0
\(635\) 1.17588e12i 0.286999i
\(636\) 0 0
\(637\) 2.84837e12 5.76423e11i 0.685440 0.138712i
\(638\) 0 0
\(639\) 8.95081e11i 0.212378i
\(640\) 0 0
\(641\) 3.70360e12 0.866488 0.433244 0.901277i \(-0.357369\pi\)
0.433244 + 0.901277i \(0.357369\pi\)
\(642\) 0 0
\(643\) 2.90261e12i 0.669637i 0.942283 + 0.334818i \(0.108675\pi\)
−0.942283 + 0.334818i \(0.891325\pi\)
\(644\) 0 0
\(645\) 1.20758e12i 0.274724i
\(646\) 0 0
\(647\) 4.35864e12 0.977871 0.488936 0.872320i \(-0.337385\pi\)
0.488936 + 0.872320i \(0.337385\pi\)
\(648\) 0 0
\(649\) 5.52269e11 0.122194
\(650\) 0 0
\(651\) 3.06668e12 0.669198
\(652\) 0 0
\(653\) −4.15712e12 −0.894713 −0.447356 0.894356i \(-0.647634\pi\)
−0.447356 + 0.894356i \(0.647634\pi\)
\(654\) 0 0
\(655\) 4.86312e10i 0.0103236i
\(656\) 0 0
\(657\) 9.18944e11i 0.192418i
\(658\) 0 0
\(659\) −2.27309e12 −0.469496 −0.234748 0.972056i \(-0.575426\pi\)
−0.234748 + 0.972056i \(0.575426\pi\)
\(660\) 0 0
\(661\) 8.65901e12i 1.76426i 0.471010 + 0.882128i \(0.343889\pi\)
−0.471010 + 0.882128i \(0.656111\pi\)
\(662\) 0 0
\(663\) 6.44866e12 1.30501e12i 1.29616 0.262303i
\(664\) 0 0
\(665\) 9.99565e11i 0.198205i
\(666\) 0 0
\(667\) −5.84033e9 −0.00114254
\(668\) 0 0
\(669\) 2.02354e12i 0.390566i
\(670\) 0 0
\(671\) 5.73092e11i 0.109137i
\(672\) 0 0
\(673\) 6.13539e12 1.15286 0.576428 0.817148i \(-0.304446\pi\)
0.576428 + 0.817148i \(0.304446\pi\)
\(674\) 0 0
\(675\) 5.26627e12 0.976420
\(676\) 0 0
\(677\) 8.71612e12 1.59468 0.797341 0.603529i \(-0.206239\pi\)
0.797341 + 0.603529i \(0.206239\pi\)
\(678\) 0 0
\(679\) 3.69538e11 0.0667183
\(680\) 0 0
\(681\) 1.31084e12i 0.233554i
\(682\) 0 0
\(683\) 3.87456e12i 0.681286i 0.940193 + 0.340643i \(0.110645\pi\)
−0.940193 + 0.340643i \(0.889355\pi\)
\(684\) 0 0
\(685\) −5.42626e11 −0.0941658
\(686\) 0 0
\(687\) 2.14088e12i 0.366679i
\(688\) 0 0
\(689\) 1.03298e12 2.09043e11i 0.174624 0.0353386i
\(690\) 0 0
\(691\) 1.03381e13i 1.72500i −0.506058 0.862499i \(-0.668898\pi\)
0.506058 0.862499i \(-0.331102\pi\)
\(692\) 0 0
\(693\) 9.19161e10 0.0151388
\(694\) 0 0
\(695\) 5.02293e11i 0.0816630i
\(696\) 0 0
\(697\) 8.55470e12i 1.37296i
\(698\) 0 0
\(699\) −7.37312e12 −1.16816
\(700\) 0 0
\(701\) −3.17236e12 −0.496194 −0.248097 0.968735i \(-0.579805\pi\)
−0.248097 + 0.968735i \(0.579805\pi\)
\(702\) 0 0
\(703\) 1.35526e13 2.09278
\(704\) 0 0
\(705\) 5.94556e10 0.00906445
\(706\) 0 0
\(707\) 6.92217e12i 1.04197i
\(708\) 0 0
\(709\) 6.29018e12i 0.934878i −0.884025 0.467439i \(-0.845177\pi\)
0.884025 0.467439i \(-0.154823\pi\)
\(710\) 0 0
\(711\) −1.05112e12 −0.154254
\(712\) 0 0
\(713\) 1.74870e12i 0.253403i
\(714\) 0 0
\(715\) −4.50100e11 + 9.10863e10i −0.0644068 + 0.0130339i
\(716\) 0 0
\(717\) 3.26884e12i 0.461910i
\(718\) 0 0
\(719\) 9.32507e12 1.30128 0.650642 0.759385i \(-0.274500\pi\)
0.650642 + 0.759385i \(0.274500\pi\)
\(720\) 0 0
\(721\) 4.72683e12i 0.651420i
\(722\) 0 0
\(723\) 1.25017e13i 1.70156i
\(724\) 0 0
\(725\) −4.04496e10 −0.00543742
\(726\) 0 0
\(727\) 8.69921e12 1.15498 0.577491 0.816397i \(-0.304032\pi\)
0.577491 + 0.816397i \(0.304032\pi\)
\(728\) 0 0
\(729\) 8.26546e12 1.08391
\(730\) 0 0
\(731\) −1.21399e13 −1.57248
\(732\) 0 0
\(733\) 8.52563e12i 1.09083i 0.838165 + 0.545417i \(0.183629\pi\)
−0.838165 + 0.545417i \(0.816371\pi\)
\(734\) 0 0
\(735\) 1.35428e12i 0.171165i
\(736\) 0 0
\(737\) −9.99895e11 −0.124839
\(738\) 0 0
\(739\) 1.02828e13i 1.26827i −0.773222 0.634136i \(-0.781356\pi\)
0.773222 0.634136i \(-0.218644\pi\)
\(740\) 0 0
\(741\) 2.14220e12 + 1.05856e13i 0.261022 + 1.28983i
\(742\) 0 0
\(743\) 7.34049e12i 0.883640i −0.897104 0.441820i \(-0.854333\pi\)
0.897104 0.441820i \(-0.145667\pi\)
\(744\) 0 0
\(745\) −1.55366e12 −0.184779
\(746\) 0 0
\(747\) 1.41958e12i 0.166808i
\(748\) 0 0
\(749\) 4.94357e12i 0.573948i
\(750\) 0 0
\(751\) 1.32705e13 1.52232 0.761160 0.648564i \(-0.224630\pi\)
0.761160 + 0.648564i \(0.224630\pi\)
\(752\) 0 0
\(753\) 5.73088e12 0.649597
\(754\) 0 0
\(755\) 7.89426e11 0.0884199
\(756\) 0 0
\(757\) −3.74741e12 −0.414763 −0.207381 0.978260i \(-0.566494\pi\)
−0.207381 + 0.978260i \(0.566494\pi\)
\(758\) 0 0
\(759\) 4.28711e11i 0.0468897i
\(760\) 0 0
\(761\) 1.27676e13i 1.38000i −0.723811 0.689999i \(-0.757611\pi\)
0.723811 0.689999i \(-0.242389\pi\)
\(762\) 0 0
\(763\) −6.42060e12 −0.685828
\(764\) 0 0
\(765\) 3.74847e11i 0.0395711i
\(766\) 0 0
\(767\) 9.16616e11 + 4.52943e12i 0.0956331 + 0.472568i
\(768\) 0 0
\(769\) 1.20179e13i 1.23926i 0.784895 + 0.619628i \(0.212717\pi\)
−0.784895 + 0.619628i \(0.787283\pi\)
\(770\) 0 0
\(771\) −4.67651e12 −0.476626
\(772\) 0 0
\(773\) 6.82459e12i 0.687494i −0.939062 0.343747i \(-0.888304\pi\)
0.939062 0.343747i \(-0.111696\pi\)
\(774\) 0 0
\(775\) 1.21113e13i 1.20596i
\(776\) 0 0
\(777\) −7.89440e12 −0.777006
\(778\) 0 0
\(779\) −1.40427e13 −1.36626
\(780\) 0 0
\(781\) −5.13722e12 −0.494081
\(782\) 0 0
\(783\) −6.41811e10 −0.00610210
\(784\) 0 0
\(785\) 2.77272e12i 0.260611i
\(786\) 0 0
\(787\) 1.27629e13i 1.18595i 0.805223 + 0.592973i \(0.202046\pi\)
−0.805223 + 0.592973i \(0.797954\pi\)
\(788\) 0 0
\(789\) −1.20917e13 −1.11081
\(790\) 0 0
\(791\) 7.06021e12i 0.641244i
\(792\) 0 0
\(793\) 4.70020e12 9.51176e11i 0.422073 0.0854145i
\(794\) 0 0
\(795\) 4.91138e11i 0.0436065i
\(796\) 0 0
\(797\) 5.47156e12 0.480340 0.240170 0.970731i \(-0.422797\pi\)
0.240170 + 0.970731i \(0.422797\pi\)
\(798\) 0 0
\(799\) 5.97711e11i 0.0518837i
\(800\) 0 0
\(801\) 6.79968e11i 0.0583636i
\(802\) 0 0
\(803\) 5.27418e12 0.447646
\(804\) 0 0
\(805\) −3.32012e11 −0.0278658
\(806\) 0 0
\(807\) −3.76481e12 −0.312473
\(808\) 0 0
\(809\) −9.52451e12 −0.781762 −0.390881 0.920441i \(-0.627830\pi\)
−0.390881 + 0.920441i \(0.627830\pi\)
\(810\) 0 0
\(811\) 5.00075e12i 0.405921i −0.979187 0.202961i \(-0.934944\pi\)
0.979187 0.202961i \(-0.0650563\pi\)
\(812\) 0 0
\(813\) 1.67748e13i 1.34664i
\(814\) 0 0
\(815\) 1.94419e12 0.154358
\(816\) 0 0
\(817\) 1.99278e13i 1.56481i
\(818\) 0 0
\(819\) 1.52556e11 + 7.53848e11i 0.0118482 + 0.0585472i
\(820\) 0 0
\(821\) 5.17065e12i 0.397192i 0.980081 + 0.198596i \(0.0636382\pi\)
−0.980081 + 0.198596i \(0.936362\pi\)
\(822\) 0 0
\(823\) −2.38231e13 −1.81009 −0.905043 0.425321i \(-0.860161\pi\)
−0.905043 + 0.425321i \(0.860161\pi\)
\(824\) 0 0
\(825\) 2.96922e12i 0.223151i
\(826\) 0 0
\(827\) 4.12706e11i 0.0306808i −0.999882 0.0153404i \(-0.995117\pi\)
0.999882 0.0153404i \(-0.00488319\pi\)
\(828\) 0 0
\(829\) 2.06559e13 1.51897 0.759485 0.650524i \(-0.225451\pi\)
0.759485 + 0.650524i \(0.225451\pi\)
\(830\) 0 0
\(831\) −4.90983e10 −0.00357159
\(832\) 0 0
\(833\) −1.36147e13 −0.979727
\(834\) 0 0
\(835\) 4.60411e12 0.327760
\(836\) 0 0
\(837\) 1.92170e13i 1.35338i
\(838\) 0 0
\(839\) 2.43146e13i 1.69410i 0.531514 + 0.847049i \(0.321623\pi\)
−0.531514 + 0.847049i \(0.678377\pi\)
\(840\) 0 0
\(841\) −1.45067e13 −0.999966
\(842\) 0 0
\(843\) 1.57425e13i 1.07362i
\(844\) 0 0
\(845\) −1.49409e12 3.54031e12i −0.100814 0.238883i
\(846\) 0 0
\(847\) 7.68575e12i 0.513110i
\(848\) 0 0
\(849\) −1.52342e13 −1.00632
\(850\) 0 0
\(851\) 4.50158e12i 0.294227i
\(852\) 0 0
\(853\) 7.91524e12i 0.511910i −0.966689 0.255955i \(-0.917610\pi\)
0.966689 0.255955i \(-0.0823898\pi\)
\(854\) 0 0
\(855\) 6.15318e11 0.0393779
\(856\) 0 0
\(857\) 2.95462e12 0.187106 0.0935529 0.995614i \(-0.470178\pi\)
0.0935529 + 0.995614i \(0.470178\pi\)
\(858\) 0 0
\(859\) −1.66946e13 −1.04618 −0.523091 0.852277i \(-0.675221\pi\)
−0.523091 + 0.852277i \(0.675221\pi\)
\(860\) 0 0
\(861\) 8.17988e12 0.507263
\(862\) 0 0
\(863\) 1.66497e13i 1.02178i 0.859646 + 0.510891i \(0.170684\pi\)
−0.859646 + 0.510891i \(0.829316\pi\)
\(864\) 0 0
\(865\) 1.68822e12i 0.102531i
\(866\) 0 0
\(867\) −1.51183e13 −0.908693
\(868\) 0 0
\(869\) 6.03276e12i 0.358861i
\(870\) 0 0
\(871\) −1.65955e12 8.20062e12i −0.0977034 0.482798i
\(872\) 0 0
\(873\) 2.27482e11i 0.0132551i
\(874\) 0 0
\(875\) −4.76470e12 −0.274789
\(876\) 0 0
\(877\) 1.30129e13i 0.742805i −0.928472 0.371402i \(-0.878877\pi\)
0.928472 0.371402i \(-0.121123\pi\)
\(878\) 0 0
\(879\) 2.13925e12i 0.120868i
\(880\) 0 0
\(881\) 1.18599e13 0.663268 0.331634 0.943408i \(-0.392400\pi\)
0.331634 + 0.943408i \(0.392400\pi\)
\(882\) 0 0
\(883\) 4.75642e12 0.263304 0.131652 0.991296i \(-0.457972\pi\)
0.131652 + 0.991296i \(0.457972\pi\)
\(884\) 0 0
\(885\) −2.15355e12 −0.118008
\(886\) 0 0
\(887\) −2.41436e13 −1.30962 −0.654810 0.755794i \(-0.727251\pi\)
−0.654810 + 0.755794i \(0.727251\pi\)
\(888\) 0 0
\(889\) 1.13032e13i 0.606939i
\(890\) 0 0
\(891\) 4.19184e12i 0.222820i
\(892\) 0 0
\(893\) −9.81153e11 −0.0516304
\(894\) 0 0
\(895\) 3.44885e12i 0.179668i
\(896\) 0 0
\(897\) −3.51607e12 + 7.11544e11i −0.181339 + 0.0366974i
\(898\) 0 0
\(899\) 1.47603e11i 0.00753662i
\(900\) 0 0
\(901\) −4.93745e12 −0.249598
\(902\) 0 0
\(903\) 1.16080e13i 0.580981i
\(904\) 0 0
\(905\) 7.01902e12i 0.347823i
\(906\) 0 0
\(907\) 1.16862e13 0.573375 0.286688 0.958024i \(-0.407446\pi\)
0.286688 + 0.958024i \(0.407446\pi\)
\(908\) 0 0
\(909\) 4.26119e12 0.207011
\(910\) 0 0
\(911\) 2.77398e13 1.33435 0.667176 0.744900i \(-0.267503\pi\)
0.667176 + 0.744900i \(0.267503\pi\)
\(912\) 0 0
\(913\) −8.14753e12 −0.388068
\(914\) 0 0
\(915\) 2.23475e12i 0.105398i
\(916\) 0 0
\(917\) 4.67473e11i 0.0218320i
\(918\) 0 0
\(919\) 1.69347e13 0.783175 0.391588 0.920141i \(-0.371926\pi\)
0.391588 + 0.920141i \(0.371926\pi\)
\(920\) 0 0
\(921\) 1.09411e13i 0.501063i
\(922\) 0 0
\(923\) −8.52638e12 4.21328e13i −0.386685 1.91079i
\(924\) 0 0
\(925\) 3.11775e13i 1.40024i
\(926\) 0 0
\(927\) 2.90977e12 0.129420
\(928\) 0 0
\(929\) 3.81216e13i 1.67919i −0.543212 0.839595i \(-0.682792\pi\)
0.543212 0.839595i \(-0.317208\pi\)
\(930\) 0 0
\(931\) 2.23488e13i 0.974944i
\(932\) 0 0
\(933\) −9.84246e12 −0.425242
\(934\) 0 0
\(935\) 2.15139e12 0.0920592
\(936\) 0 0
\(937\) 1.29409e13 0.548449 0.274225 0.961666i \(-0.411579\pi\)
0.274225 + 0.961666i \(0.411579\pi\)
\(938\) 0 0
\(939\) −1.81269e13 −0.760903
\(940\) 0 0
\(941\) 1.82512e12i 0.0758818i 0.999280 + 0.0379409i \(0.0120799\pi\)
−0.999280 + 0.0379409i \(0.987920\pi\)
\(942\) 0 0
\(943\) 4.66437e12i 0.192084i
\(944\) 0 0
\(945\) −3.64858e12 −0.148826
\(946\) 0 0
\(947\) 3.80070e13i 1.53564i 0.640668 + 0.767818i \(0.278658\pi\)
−0.640668 + 0.767818i \(0.721342\pi\)
\(948\) 0 0
\(949\) 8.75370e12 + 4.32561e13i 0.350343 + 1.73121i
\(950\) 0 0
\(951\) 2.75797e13i 1.09339i
\(952\) 0 0
\(953\) −3.65722e13 −1.43626 −0.718130 0.695909i \(-0.755001\pi\)
−0.718130 + 0.695909i \(0.755001\pi\)
\(954\) 0 0
\(955\) 9.86605e11i 0.0383820i
\(956\) 0 0
\(957\) 3.61864e10i 0.00139458i
\(958\) 0 0
\(959\) −5.21605e12 −0.199140
\(960\) 0 0
\(961\) −1.77554e13 −0.671544
\(962\) 0 0
\(963\) 3.04319e12 0.114028
\(964\) 0 0
\(965\) −1.02164e13 −0.379249
\(966\) 0 0
\(967\) 3.14472e13i 1.15655i −0.815843 0.578273i \(-0.803727\pi\)
0.815843 0.578273i \(-0.196273\pi\)
\(968\) 0 0
\(969\) 5.05971e13i 1.84361i
\(970\) 0 0
\(971\) −3.45091e13 −1.24580 −0.622898 0.782303i \(-0.714045\pi\)
−0.622898 + 0.782303i \(0.714045\pi\)
\(972\) 0 0
\(973\) 4.82834e12i 0.172699i
\(974\) 0 0
\(975\) −2.43520e13 + 4.92809e12i −0.863005 + 0.174646i
\(976\) 0 0
\(977\) 2.68549e13i 0.942970i 0.881874 + 0.471485i \(0.156282\pi\)
−0.881874 + 0.471485i \(0.843718\pi\)
\(978\) 0 0
\(979\) 3.90260e12 0.135779
\(980\) 0 0
\(981\) 3.95243e12i 0.136255i
\(982\) 0 0
\(983\) 1.01518e13i 0.346780i −0.984853 0.173390i \(-0.944528\pi\)
0.984853 0.173390i \(-0.0554721\pi\)
\(984\) 0 0
\(985\) −6.81507e12 −0.230678
\(986\) 0 0
\(987\) 5.71523e11 0.0191693
\(988\) 0 0
\(989\) 6.61915e12 0.219998
\(990\) 0 0
\(991\) 1.99349e13 0.656573 0.328287 0.944578i \(-0.393529\pi\)
0.328287 + 0.944578i \(0.393529\pi\)
\(992\) 0 0
\(993\) 2.43242e13i 0.793903i
\(994\) 0 0
\(995\) 6.10859e12i 0.197577i
\(996\) 0 0
\(997\) 3.87311e13 1.24146 0.620728 0.784026i \(-0.286837\pi\)
0.620728 + 0.784026i \(0.286837\pi\)
\(998\) 0 0
\(999\) 4.94692e13i 1.57141i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.9 32
4.3 odd 2 104.10.f.a.25.24 yes 32
13.12 even 2 inner 208.10.f.d.129.10 32
52.51 odd 2 104.10.f.a.25.23 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.23 32 52.51 odd 2
104.10.f.a.25.24 yes 32 4.3 odd 2
208.10.f.d.129.9 32 1.1 even 1 trivial
208.10.f.d.129.10 32 13.12 even 2 inner