Defining parameters
Level: | \( N \) | \(=\) | \( 208 = 2^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 208.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(280\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(208, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 258 | 64 | 194 |
Cusp forms | 246 | 62 | 184 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(208, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
208.10.f.a | $10$ | $107.127$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(-162\) | \(0\) | \(0\) | \(q+(-2^{4}+\beta _{1})q^{3}+(-5\beta _{3}+\beta _{5})q^{5}+\cdots\) |
208.10.f.b | $10$ | $107.127$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q-\beta _{2}q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(2\beta _{1}+\beta _{5}+\cdots)q^{7}+\cdots\) |
208.10.f.c | $10$ | $107.127$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(162\) | \(0\) | \(0\) | \(q+(2^{4}+\beta _{1})q^{3}+\beta _{2}q^{5}-\beta _{5}q^{7}+(5411+\cdots)q^{9}+\cdots\) |
208.10.f.d | $32$ | $107.127$ | None | \(0\) | \(162\) | \(0\) | \(0\) |
Decomposition of \(S_{10}^{\mathrm{old}}(208, [\chi])\) into lower level spaces
\( S_{10}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)