Properties

Label 208.10.f
Level $208$
Weight $10$
Character orbit 208.f
Rep. character $\chi_{208}(129,\cdot)$
Character field $\Q$
Dimension $62$
Newform subspaces $4$
Sturm bound $280$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(280\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(208, [\chi])\).

Total New Old
Modular forms 258 64 194
Cusp forms 246 62 184
Eisenstein series 12 2 10

Trace form

\( 62 q + 164 q^{3} + 393658 q^{9} + 43078 q^{13} - 102000 q^{17} + 1679048 q^{23} - 23517134 q^{25} + 10615940 q^{27} + 1063436 q^{29} + 14101252 q^{35} + 1038736 q^{39} - 57696700 q^{43} - 301841610 q^{49}+ \cdots - 391914776 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(208, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
208.10.f.a 208.f 13.b $10$ $107.127$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 26.10.b.a \(0\) \(-162\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2^{4}+\beta _{1})q^{3}+(-5\beta _{3}+\beta _{5})q^{5}+\cdots\)
208.10.f.b 208.f 13.b $10$ $107.127$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 13.10.b.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(-\beta _{1}+\beta _{5})q^{5}+(2\beta _{1}+\beta _{5}+\cdots)q^{7}+\cdots\)
208.10.f.c 208.f 13.b $10$ $107.127$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 52.10.d.a \(0\) \(162\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2^{4}+\beta _{1})q^{3}+\beta _{2}q^{5}-\beta _{5}q^{7}+(5411+\cdots)q^{9}+\cdots\)
208.10.f.d 208.f 13.b $32$ $107.127$ None 104.10.f.a \(0\) \(162\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{10}^{\mathrm{old}}(208, [\chi])\) into lower level spaces

\( S_{10}^{\mathrm{old}}(208, [\chi]) \simeq \) \(S_{10}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)