Properties

Label 208.10.f.d.129.8
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.8
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-161.892 q^{3} -1806.71i q^{5} +1769.55i q^{7} +6526.18 q^{9} -14165.1i q^{11} +(-52309.9 - 88702.7i) q^{13} +292493. i q^{15} +304500. q^{17} +251175. i q^{19} -286476. i q^{21} +1.51769e6 q^{23} -1.31107e6 q^{25} +2.12999e6 q^{27} -2.86696e6 q^{29} +3.38744e6i q^{31} +2.29323e6i q^{33} +3.19706e6 q^{35} +4.18575e6i q^{37} +(8.46857e6 + 1.43603e7i) q^{39} +2.26679e7i q^{41} +4.96081e6 q^{43} -1.17909e7i q^{45} +4.00883e7i q^{47} +3.72223e7 q^{49} -4.92962e7 q^{51} -6.73516e7 q^{53} -2.55923e7 q^{55} -4.06633e7i q^{57} -4.70086e7i q^{59} -4.42124e7 q^{61} +1.15484e7i q^{63} +(-1.60260e8 + 9.45087e7i) q^{65} +3.35490e7i q^{67} -2.45702e8 q^{69} +1.65059e8i q^{71} -1.28991e8i q^{73} +2.12253e8 q^{75} +2.50658e7 q^{77} +5.42215e8 q^{79} -4.73284e8 q^{81} +3.36344e8i q^{83} -5.50142e8i q^{85} +4.64139e8 q^{87} -6.49645e8i q^{89} +(1.56964e8 - 9.25647e7i) q^{91} -5.48401e8i q^{93} +4.53800e8 q^{95} -8.75479e7i q^{97} -9.24441e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −161.892 −1.15393 −0.576967 0.816767i \(-0.695764\pi\)
−0.576967 + 0.816767i \(0.695764\pi\)
\(4\) 0 0
\(5\) 1806.71i 1.29278i −0.763009 0.646388i \(-0.776279\pi\)
0.763009 0.646388i \(-0.223721\pi\)
\(6\) 0 0
\(7\) 1769.55i 0.278561i 0.990253 + 0.139281i \(0.0444790\pi\)
−0.990253 + 0.139281i \(0.955521\pi\)
\(8\) 0 0
\(9\) 6526.18 0.331564
\(10\) 0 0
\(11\) 14165.1i 0.291711i −0.989306 0.145856i \(-0.953406\pi\)
0.989306 0.145856i \(-0.0465935\pi\)
\(12\) 0 0
\(13\) −52309.9 88702.7i −0.507970 0.861374i
\(14\) 0 0
\(15\) 292493.i 1.49178i
\(16\) 0 0
\(17\) 304500. 0.884233 0.442116 0.896958i \(-0.354228\pi\)
0.442116 + 0.896958i \(0.354228\pi\)
\(18\) 0 0
\(19\) 251175.i 0.442165i 0.975255 + 0.221083i \(0.0709591\pi\)
−0.975255 + 0.221083i \(0.929041\pi\)
\(20\) 0 0
\(21\) 286476.i 0.321441i
\(22\) 0 0
\(23\) 1.51769e6 1.13085 0.565427 0.824798i \(-0.308711\pi\)
0.565427 + 0.824798i \(0.308711\pi\)
\(24\) 0 0
\(25\) −1.31107e6 −0.671269
\(26\) 0 0
\(27\) 2.12999e6 0.771331
\(28\) 0 0
\(29\) −2.86696e6 −0.752715 −0.376357 0.926475i \(-0.622824\pi\)
−0.376357 + 0.926475i \(0.622824\pi\)
\(30\) 0 0
\(31\) 3.38744e6i 0.658785i 0.944193 + 0.329393i \(0.106844\pi\)
−0.944193 + 0.329393i \(0.893156\pi\)
\(32\) 0 0
\(33\) 2.29323e6i 0.336616i
\(34\) 0 0
\(35\) 3.19706e6 0.360117
\(36\) 0 0
\(37\) 4.18575e6i 0.367169i 0.983004 + 0.183584i \(0.0587700\pi\)
−0.983004 + 0.183584i \(0.941230\pi\)
\(38\) 0 0
\(39\) 8.46857e6 + 1.43603e7i 0.586165 + 0.993969i
\(40\) 0 0
\(41\) 2.26679e7i 1.25281i 0.779498 + 0.626404i \(0.215474\pi\)
−0.779498 + 0.626404i \(0.784526\pi\)
\(42\) 0 0
\(43\) 4.96081e6 0.221281 0.110641 0.993860i \(-0.464710\pi\)
0.110641 + 0.993860i \(0.464710\pi\)
\(44\) 0 0
\(45\) 1.17909e7i 0.428638i
\(46\) 0 0
\(47\) 4.00883e7i 1.19833i 0.800625 + 0.599165i \(0.204501\pi\)
−0.800625 + 0.599165i \(0.795499\pi\)
\(48\) 0 0
\(49\) 3.72223e7 0.922404
\(50\) 0 0
\(51\) −4.92962e7 −1.02035
\(52\) 0 0
\(53\) −6.73516e7 −1.17248 −0.586242 0.810136i \(-0.699393\pi\)
−0.586242 + 0.810136i \(0.699393\pi\)
\(54\) 0 0
\(55\) −2.55923e7 −0.377117
\(56\) 0 0
\(57\) 4.06633e7i 0.510230i
\(58\) 0 0
\(59\) 4.70086e7i 0.505061i −0.967589 0.252530i \(-0.918737\pi\)
0.967589 0.252530i \(-0.0812627\pi\)
\(60\) 0 0
\(61\) −4.42124e7 −0.408846 −0.204423 0.978883i \(-0.565532\pi\)
−0.204423 + 0.978883i \(0.565532\pi\)
\(62\) 0 0
\(63\) 1.15484e7i 0.0923609i
\(64\) 0 0
\(65\) −1.60260e8 + 9.45087e7i −1.11356 + 0.656692i
\(66\) 0 0
\(67\) 3.35490e7i 0.203396i 0.994815 + 0.101698i \(0.0324276\pi\)
−0.994815 + 0.101698i \(0.967572\pi\)
\(68\) 0 0
\(69\) −2.45702e8 −1.30493
\(70\) 0 0
\(71\) 1.65059e8i 0.770861i 0.922737 + 0.385430i \(0.125947\pi\)
−0.922737 + 0.385430i \(0.874053\pi\)
\(72\) 0 0
\(73\) 1.28991e8i 0.531627i −0.964024 0.265814i \(-0.914359\pi\)
0.964024 0.265814i \(-0.0856406\pi\)
\(74\) 0 0
\(75\) 2.12253e8 0.774600
\(76\) 0 0
\(77\) 2.50658e7 0.0812595
\(78\) 0 0
\(79\) 5.42215e8 1.56621 0.783105 0.621890i \(-0.213635\pi\)
0.783105 + 0.621890i \(0.213635\pi\)
\(80\) 0 0
\(81\) −4.73284e8 −1.22163
\(82\) 0 0
\(83\) 3.36344e8i 0.777914i 0.921256 + 0.388957i \(0.127165\pi\)
−0.921256 + 0.388957i \(0.872835\pi\)
\(84\) 0 0
\(85\) 5.50142e8i 1.14311i
\(86\) 0 0
\(87\) 4.64139e8 0.868584
\(88\) 0 0
\(89\) 6.49645e8i 1.09754i −0.835973 0.548771i \(-0.815096\pi\)
0.835973 0.548771i \(-0.184904\pi\)
\(90\) 0 0
\(91\) 1.56964e8 9.25647e7i 0.239946 0.141501i
\(92\) 0 0
\(93\) 5.48401e8i 0.760195i
\(94\) 0 0
\(95\) 4.53800e8 0.571621
\(96\) 0 0
\(97\) 8.75479e7i 0.100409i −0.998739 0.0502045i \(-0.984013\pi\)
0.998739 0.0502045i \(-0.0159873\pi\)
\(98\) 0 0
\(99\) 9.24441e7i 0.0967210i
\(100\) 0 0
\(101\) 1.36802e9 1.30812 0.654060 0.756443i \(-0.273065\pi\)
0.654060 + 0.756443i \(0.273065\pi\)
\(102\) 0 0
\(103\) 6.76715e8 0.592432 0.296216 0.955121i \(-0.404275\pi\)
0.296216 + 0.955121i \(0.404275\pi\)
\(104\) 0 0
\(105\) −5.17579e8 −0.415552
\(106\) 0 0
\(107\) 1.28422e9 0.947136 0.473568 0.880757i \(-0.342966\pi\)
0.473568 + 0.880757i \(0.342966\pi\)
\(108\) 0 0
\(109\) 1.63489e8i 0.110935i −0.998460 0.0554676i \(-0.982335\pi\)
0.998460 0.0554676i \(-0.0176649\pi\)
\(110\) 0 0
\(111\) 6.77642e8i 0.423688i
\(112\) 0 0
\(113\) 1.61471e9 0.931626 0.465813 0.884883i \(-0.345762\pi\)
0.465813 + 0.884883i \(0.345762\pi\)
\(114\) 0 0
\(115\) 2.74202e9i 1.46194i
\(116\) 0 0
\(117\) −3.41383e8 5.78890e8i −0.168425 0.285601i
\(118\) 0 0
\(119\) 5.38826e8i 0.246313i
\(120\) 0 0
\(121\) 2.15730e9 0.914905
\(122\) 0 0
\(123\) 3.66977e9i 1.44566i
\(124\) 0 0
\(125\) 1.16000e9i 0.424975i
\(126\) 0 0
\(127\) 2.84744e9 0.971267 0.485633 0.874163i \(-0.338589\pi\)
0.485633 + 0.874163i \(0.338589\pi\)
\(128\) 0 0
\(129\) −8.03117e8 −0.255344
\(130\) 0 0
\(131\) −4.71570e9 −1.39902 −0.699512 0.714621i \(-0.746599\pi\)
−0.699512 + 0.714621i \(0.746599\pi\)
\(132\) 0 0
\(133\) −4.44465e8 −0.123170
\(134\) 0 0
\(135\) 3.84827e9i 0.997158i
\(136\) 0 0
\(137\) 4.29974e9i 1.04280i −0.853313 0.521399i \(-0.825411\pi\)
0.853313 0.521399i \(-0.174589\pi\)
\(138\) 0 0
\(139\) −3.26473e9 −0.741790 −0.370895 0.928675i \(-0.620949\pi\)
−0.370895 + 0.928675i \(0.620949\pi\)
\(140\) 0 0
\(141\) 6.48999e9i 1.38280i
\(142\) 0 0
\(143\) −1.25649e9 + 7.40976e8i −0.251273 + 0.148181i
\(144\) 0 0
\(145\) 5.17976e9i 0.973092i
\(146\) 0 0
\(147\) −6.02601e9 −1.06439
\(148\) 0 0
\(149\) 3.06111e9i 0.508793i −0.967100 0.254397i \(-0.918123\pi\)
0.967100 0.254397i \(-0.0818769\pi\)
\(150\) 0 0
\(151\) 4.22959e9i 0.662067i 0.943619 + 0.331033i \(0.107397\pi\)
−0.943619 + 0.331033i \(0.892603\pi\)
\(152\) 0 0
\(153\) 1.98722e9 0.293180
\(154\) 0 0
\(155\) 6.12012e9 0.851662
\(156\) 0 0
\(157\) 6.94901e9 0.912798 0.456399 0.889775i \(-0.349139\pi\)
0.456399 + 0.889775i \(0.349139\pi\)
\(158\) 0 0
\(159\) 1.09037e10 1.35297
\(160\) 0 0
\(161\) 2.68562e9i 0.315012i
\(162\) 0 0
\(163\) 1.17678e10i 1.30572i −0.757477 0.652862i \(-0.773568\pi\)
0.757477 0.652862i \(-0.226432\pi\)
\(164\) 0 0
\(165\) 4.14319e9 0.435169
\(166\) 0 0
\(167\) 9.00553e9i 0.895953i −0.894045 0.447976i \(-0.852145\pi\)
0.894045 0.447976i \(-0.147855\pi\)
\(168\) 0 0
\(169\) −5.13186e9 + 9.28006e9i −0.483932 + 0.875106i
\(170\) 0 0
\(171\) 1.63921e9i 0.146606i
\(172\) 0 0
\(173\) 1.58019e10 1.34122 0.670612 0.741808i \(-0.266031\pi\)
0.670612 + 0.741808i \(0.266031\pi\)
\(174\) 0 0
\(175\) 2.32000e9i 0.186990i
\(176\) 0 0
\(177\) 7.61034e9i 0.582807i
\(178\) 0 0
\(179\) −2.31701e10 −1.68690 −0.843449 0.537209i \(-0.819479\pi\)
−0.843449 + 0.537209i \(0.819479\pi\)
\(180\) 0 0
\(181\) 8.68481e9 0.601460 0.300730 0.953709i \(-0.402770\pi\)
0.300730 + 0.953709i \(0.402770\pi\)
\(182\) 0 0
\(183\) 7.15766e9 0.471782
\(184\) 0 0
\(185\) 7.56243e9 0.474667
\(186\) 0 0
\(187\) 4.31327e9i 0.257941i
\(188\) 0 0
\(189\) 3.76912e9i 0.214863i
\(190\) 0 0
\(191\) −1.49221e10 −0.811299 −0.405649 0.914029i \(-0.632955\pi\)
−0.405649 + 0.914029i \(0.632955\pi\)
\(192\) 0 0
\(193\) 1.29190e10i 0.670227i −0.942178 0.335114i \(-0.891225\pi\)
0.942178 0.335114i \(-0.108775\pi\)
\(194\) 0 0
\(195\) 2.59449e10 1.53002e10i 1.28498 0.757779i
\(196\) 0 0
\(197\) 1.44295e10i 0.682580i −0.939958 0.341290i \(-0.889136\pi\)
0.939958 0.341290i \(-0.110864\pi\)
\(198\) 0 0
\(199\) −1.82419e10 −0.824576 −0.412288 0.911054i \(-0.635270\pi\)
−0.412288 + 0.911054i \(0.635270\pi\)
\(200\) 0 0
\(201\) 5.43133e9i 0.234706i
\(202\) 0 0
\(203\) 5.07322e9i 0.209677i
\(204\) 0 0
\(205\) 4.09544e10 1.61960
\(206\) 0 0
\(207\) 9.90469e9 0.374951
\(208\) 0 0
\(209\) 3.55792e9 0.128985
\(210\) 0 0
\(211\) 2.99022e10 1.03856 0.519281 0.854603i \(-0.326200\pi\)
0.519281 + 0.854603i \(0.326200\pi\)
\(212\) 0 0
\(213\) 2.67218e10i 0.889523i
\(214\) 0 0
\(215\) 8.96273e9i 0.286067i
\(216\) 0 0
\(217\) −5.99423e9 −0.183512
\(218\) 0 0
\(219\) 2.08827e10i 0.613463i
\(220\) 0 0
\(221\) −1.59283e10 2.70100e10i −0.449164 0.761655i
\(222\) 0 0
\(223\) 1.11106e10i 0.300860i −0.988621 0.150430i \(-0.951934\pi\)
0.988621 0.150430i \(-0.0480658\pi\)
\(224\) 0 0
\(225\) −8.55629e9 −0.222569
\(226\) 0 0
\(227\) 5.88854e9i 0.147195i −0.997288 0.0735973i \(-0.976552\pi\)
0.997288 0.0735973i \(-0.0234479\pi\)
\(228\) 0 0
\(229\) 4.86793e10i 1.16973i −0.811132 0.584863i \(-0.801148\pi\)
0.811132 0.584863i \(-0.198852\pi\)
\(230\) 0 0
\(231\) −4.05797e9 −0.0937681
\(232\) 0 0
\(233\) −7.35622e10 −1.63513 −0.817566 0.575834i \(-0.804677\pi\)
−0.817566 + 0.575834i \(0.804677\pi\)
\(234\) 0 0
\(235\) 7.24278e10 1.54917
\(236\) 0 0
\(237\) −8.77806e10 −1.80730
\(238\) 0 0
\(239\) 7.73385e10i 1.53322i −0.642111 0.766611i \(-0.721941\pi\)
0.642111 0.766611i \(-0.278059\pi\)
\(240\) 0 0
\(241\) 4.64659e10i 0.887274i 0.896207 + 0.443637i \(0.146312\pi\)
−0.896207 + 0.443637i \(0.853688\pi\)
\(242\) 0 0
\(243\) 3.46966e10 0.638349
\(244\) 0 0
\(245\) 6.72499e10i 1.19246i
\(246\) 0 0
\(247\) 2.22799e10 1.31389e10i 0.380870 0.224607i
\(248\) 0 0
\(249\) 5.44515e10i 0.897662i
\(250\) 0 0
\(251\) 1.15393e10 0.183506 0.0917528 0.995782i \(-0.470753\pi\)
0.0917528 + 0.995782i \(0.470753\pi\)
\(252\) 0 0
\(253\) 2.14982e10i 0.329883i
\(254\) 0 0
\(255\) 8.90639e10i 1.31908i
\(256\) 0 0
\(257\) 1.17405e9 0.0167875 0.00839375 0.999965i \(-0.497328\pi\)
0.00839375 + 0.999965i \(0.497328\pi\)
\(258\) 0 0
\(259\) −7.40688e9 −0.102279
\(260\) 0 0
\(261\) −1.87103e10 −0.249573
\(262\) 0 0
\(263\) 4.19093e9 0.0540143 0.0270072 0.999635i \(-0.491402\pi\)
0.0270072 + 0.999635i \(0.491402\pi\)
\(264\) 0 0
\(265\) 1.21685e11i 1.51576i
\(266\) 0 0
\(267\) 1.05173e11i 1.26649i
\(268\) 0 0
\(269\) 5.17080e10 0.602106 0.301053 0.953607i \(-0.402662\pi\)
0.301053 + 0.953607i \(0.402662\pi\)
\(270\) 0 0
\(271\) 1.23417e11i 1.39000i 0.719010 + 0.695000i \(0.244596\pi\)
−0.719010 + 0.695000i \(0.755404\pi\)
\(272\) 0 0
\(273\) −2.54112e10 + 1.49855e10i −0.276881 + 0.163283i
\(274\) 0 0
\(275\) 1.85715e10i 0.195817i
\(276\) 0 0
\(277\) 1.31860e11 1.34572 0.672860 0.739770i \(-0.265066\pi\)
0.672860 + 0.739770i \(0.265066\pi\)
\(278\) 0 0
\(279\) 2.21070e10i 0.218430i
\(280\) 0 0
\(281\) 9.33673e10i 0.893339i 0.894699 + 0.446669i \(0.147390\pi\)
−0.894699 + 0.446669i \(0.852610\pi\)
\(282\) 0 0
\(283\) −1.23637e9 −0.0114580 −0.00572900 0.999984i \(-0.501824\pi\)
−0.00572900 + 0.999984i \(0.501824\pi\)
\(284\) 0 0
\(285\) −7.34668e10 −0.659613
\(286\) 0 0
\(287\) −4.01120e10 −0.348984
\(288\) 0 0
\(289\) −2.58679e10 −0.218133
\(290\) 0 0
\(291\) 1.41733e10i 0.115865i
\(292\) 0 0
\(293\) 1.78680e11i 1.41636i 0.706034 + 0.708178i \(0.250483\pi\)
−0.706034 + 0.708178i \(0.749517\pi\)
\(294\) 0 0
\(295\) −8.49309e10 −0.652930
\(296\) 0 0
\(297\) 3.01716e10i 0.225006i
\(298\) 0 0
\(299\) −7.93900e10 1.34623e11i −0.574441 0.974089i
\(300\) 0 0
\(301\) 8.77838e9i 0.0616403i
\(302\) 0 0
\(303\) −2.21473e11 −1.50948
\(304\) 0 0
\(305\) 7.98790e10i 0.528547i
\(306\) 0 0
\(307\) 2.21356e11i 1.42223i 0.703077 + 0.711114i \(0.251809\pi\)
−0.703077 + 0.711114i \(0.748191\pi\)
\(308\) 0 0
\(309\) −1.09555e11 −0.683628
\(310\) 0 0
\(311\) 7.46241e9 0.0452332 0.0226166 0.999744i \(-0.492800\pi\)
0.0226166 + 0.999744i \(0.492800\pi\)
\(312\) 0 0
\(313\) 6.44761e10 0.379708 0.189854 0.981812i \(-0.439199\pi\)
0.189854 + 0.981812i \(0.439199\pi\)
\(314\) 0 0
\(315\) 2.08646e10 0.119402
\(316\) 0 0
\(317\) 2.84348e11i 1.58155i 0.612104 + 0.790777i \(0.290323\pi\)
−0.612104 + 0.790777i \(0.709677\pi\)
\(318\) 0 0
\(319\) 4.06108e10i 0.219575i
\(320\) 0 0
\(321\) −2.07906e11 −1.09293
\(322\) 0 0
\(323\) 7.64826e10i 0.390977i
\(324\) 0 0
\(325\) 6.85820e10 + 1.16296e11i 0.340985 + 0.578214i
\(326\) 0 0
\(327\) 2.64676e10i 0.128012i
\(328\) 0 0
\(329\) −7.09380e10 −0.333809
\(330\) 0 0
\(331\) 1.27498e11i 0.583816i −0.956446 0.291908i \(-0.905710\pi\)
0.956446 0.291908i \(-0.0942901\pi\)
\(332\) 0 0
\(333\) 2.73170e10i 0.121740i
\(334\) 0 0
\(335\) 6.06133e10 0.262946
\(336\) 0 0
\(337\) 6.95680e10 0.293816 0.146908 0.989150i \(-0.453068\pi\)
0.146908 + 0.989150i \(0.453068\pi\)
\(338\) 0 0
\(339\) −2.61409e11 −1.07503
\(340\) 0 0
\(341\) 4.79835e10 0.192175
\(342\) 0 0
\(343\) 1.37274e11i 0.535507i
\(344\) 0 0
\(345\) 4.43912e11i 1.68698i
\(346\) 0 0
\(347\) −1.97799e11 −0.732388 −0.366194 0.930538i \(-0.619339\pi\)
−0.366194 + 0.930538i \(0.619339\pi\)
\(348\) 0 0
\(349\) 2.49812e11i 0.901361i −0.892685 0.450681i \(-0.851181\pi\)
0.892685 0.450681i \(-0.148819\pi\)
\(350\) 0 0
\(351\) −1.11420e11 1.88936e11i −0.391813 0.664405i
\(352\) 0 0
\(353\) 3.74342e11i 1.28316i −0.767055 0.641582i \(-0.778278\pi\)
0.767055 0.641582i \(-0.221722\pi\)
\(354\) 0 0
\(355\) 2.98213e11 0.996550
\(356\) 0 0
\(357\) 8.72319e10i 0.284229i
\(358\) 0 0
\(359\) 4.56957e11i 1.45195i 0.687723 + 0.725973i \(0.258610\pi\)
−0.687723 + 0.725973i \(0.741390\pi\)
\(360\) 0 0
\(361\) 2.59599e11 0.804490
\(362\) 0 0
\(363\) −3.49250e11 −1.05574
\(364\) 0 0
\(365\) −2.33050e11 −0.687275
\(366\) 0 0
\(367\) −5.03992e11 −1.45019 −0.725097 0.688647i \(-0.758205\pi\)
−0.725097 + 0.688647i \(0.758205\pi\)
\(368\) 0 0
\(369\) 1.47935e11i 0.415387i
\(370\) 0 0
\(371\) 1.19182e11i 0.326608i
\(372\) 0 0
\(373\) −9.89063e10 −0.264566 −0.132283 0.991212i \(-0.542231\pi\)
−0.132283 + 0.991212i \(0.542231\pi\)
\(374\) 0 0
\(375\) 1.87796e11i 0.490394i
\(376\) 0 0
\(377\) 1.49970e11 + 2.54307e11i 0.382357 + 0.648369i
\(378\) 0 0
\(379\) 3.53892e11i 0.881037i −0.897744 0.440519i \(-0.854795\pi\)
0.897744 0.440519i \(-0.145205\pi\)
\(380\) 0 0
\(381\) −4.60980e11 −1.12078
\(382\) 0 0
\(383\) 3.25704e11i 0.773443i −0.922197 0.386722i \(-0.873607\pi\)
0.922197 0.386722i \(-0.126393\pi\)
\(384\) 0 0
\(385\) 4.52867e10i 0.105050i
\(386\) 0 0
\(387\) 3.23751e10 0.0733689
\(388\) 0 0
\(389\) 6.84019e11 1.51459 0.757295 0.653073i \(-0.226521\pi\)
0.757295 + 0.653073i \(0.226521\pi\)
\(390\) 0 0
\(391\) 4.62135e11 0.999939
\(392\) 0 0
\(393\) 7.63436e11 1.61438
\(394\) 0 0
\(395\) 9.79625e11i 2.02476i
\(396\) 0 0
\(397\) 1.23574e11i 0.249672i 0.992177 + 0.124836i \(0.0398405\pi\)
−0.992177 + 0.124836i \(0.960160\pi\)
\(398\) 0 0
\(399\) 7.19556e10 0.142130
\(400\) 0 0
\(401\) 1.00477e12i 1.94052i −0.242068 0.970259i \(-0.577826\pi\)
0.242068 0.970259i \(-0.422174\pi\)
\(402\) 0 0
\(403\) 3.00475e11 1.77197e11i 0.567461 0.334644i
\(404\) 0 0
\(405\) 8.55087e11i 1.57929i
\(406\) 0 0
\(407\) 5.92917e10 0.107107
\(408\) 0 0
\(409\) 4.94666e11i 0.874093i −0.899439 0.437046i \(-0.856025\pi\)
0.899439 0.437046i \(-0.143975\pi\)
\(410\) 0 0
\(411\) 6.96096e11i 1.20332i
\(412\) 0 0
\(413\) 8.31839e10 0.140690
\(414\) 0 0
\(415\) 6.07675e11 1.00567
\(416\) 0 0
\(417\) 5.28536e11 0.855977
\(418\) 0 0
\(419\) −1.92154e11 −0.304570 −0.152285 0.988337i \(-0.548663\pi\)
−0.152285 + 0.988337i \(0.548663\pi\)
\(420\) 0 0
\(421\) 7.60538e11i 1.17992i 0.807433 + 0.589959i \(0.200856\pi\)
−0.807433 + 0.589959i \(0.799144\pi\)
\(422\) 0 0
\(423\) 2.61623e11i 0.397324i
\(424\) 0 0
\(425\) −3.99221e11 −0.593558
\(426\) 0 0
\(427\) 7.82360e10i 0.113889i
\(428\) 0 0
\(429\) 2.03416e11 1.19958e11i 0.289952 0.170991i
\(430\) 0 0
\(431\) 1.21274e12i 1.69286i 0.532499 + 0.846431i \(0.321253\pi\)
−0.532499 + 0.846431i \(0.678747\pi\)
\(432\) 0 0
\(433\) −1.23847e12 −1.69313 −0.846567 0.532282i \(-0.821335\pi\)
−0.846567 + 0.532282i \(0.821335\pi\)
\(434\) 0 0
\(435\) 8.38564e11i 1.12288i
\(436\) 0 0
\(437\) 3.81205e11i 0.500025i
\(438\) 0 0
\(439\) 1.06357e12 1.36671 0.683355 0.730086i \(-0.260520\pi\)
0.683355 + 0.730086i \(0.260520\pi\)
\(440\) 0 0
\(441\) 2.42919e11 0.305836
\(442\) 0 0
\(443\) 1.01457e11 0.125160 0.0625800 0.998040i \(-0.480067\pi\)
0.0625800 + 0.998040i \(0.480067\pi\)
\(444\) 0 0
\(445\) −1.17372e12 −1.41888
\(446\) 0 0
\(447\) 4.95571e11i 0.587114i
\(448\) 0 0
\(449\) 1.00840e12i 1.17091i −0.810704 0.585456i \(-0.800915\pi\)
0.810704 0.585456i \(-0.199085\pi\)
\(450\) 0 0
\(451\) 3.21094e11 0.365458
\(452\) 0 0
\(453\) 6.84738e11i 0.763981i
\(454\) 0 0
\(455\) −1.67238e11 2.83588e11i −0.182929 0.310196i
\(456\) 0 0
\(457\) 1.19455e12i 1.28109i −0.767919 0.640547i \(-0.778708\pi\)
0.767919 0.640547i \(-0.221292\pi\)
\(458\) 0 0
\(459\) 6.48581e11 0.682036
\(460\) 0 0
\(461\) 1.75517e12i 1.80995i −0.425468 0.904974i \(-0.639890\pi\)
0.425468 0.904974i \(-0.360110\pi\)
\(462\) 0 0
\(463\) 1.22344e12i 1.23728i 0.785675 + 0.618639i \(0.212316\pi\)
−0.785675 + 0.618639i \(0.787684\pi\)
\(464\) 0 0
\(465\) −9.90801e11 −0.982762
\(466\) 0 0
\(467\) 2.48116e11 0.241396 0.120698 0.992689i \(-0.461487\pi\)
0.120698 + 0.992689i \(0.461487\pi\)
\(468\) 0 0
\(469\) −5.93665e10 −0.0566583
\(470\) 0 0
\(471\) −1.12499e12 −1.05331
\(472\) 0 0
\(473\) 7.02704e10i 0.0645502i
\(474\) 0 0
\(475\) 3.29308e11i 0.296812i
\(476\) 0 0
\(477\) −4.39549e11 −0.388754
\(478\) 0 0
\(479\) 1.07902e11i 0.0936524i −0.998903 0.0468262i \(-0.985089\pi\)
0.998903 0.0468262i \(-0.0149107\pi\)
\(480\) 0 0
\(481\) 3.71288e11 2.18956e11i 0.316270 0.186511i
\(482\) 0 0
\(483\) 4.34781e11i 0.363503i
\(484\) 0 0
\(485\) −1.58174e11 −0.129806
\(486\) 0 0
\(487\) 6.30039e11i 0.507560i −0.967262 0.253780i \(-0.918326\pi\)
0.967262 0.253780i \(-0.0816739\pi\)
\(488\) 0 0
\(489\) 1.90512e12i 1.50672i
\(490\) 0 0
\(491\) 1.94699e12 1.51181 0.755906 0.654680i \(-0.227197\pi\)
0.755906 + 0.654680i \(0.227197\pi\)
\(492\) 0 0
\(493\) −8.72988e11 −0.665575
\(494\) 0 0
\(495\) −1.67020e11 −0.125039
\(496\) 0 0
\(497\) −2.92079e11 −0.214732
\(498\) 0 0
\(499\) 1.56005e11i 0.112638i 0.998413 + 0.0563191i \(0.0179364\pi\)
−0.998413 + 0.0563191i \(0.982064\pi\)
\(500\) 0 0
\(501\) 1.45793e12i 1.03387i
\(502\) 0 0
\(503\) −3.45707e11 −0.240797 −0.120399 0.992726i \(-0.538417\pi\)
−0.120399 + 0.992726i \(0.538417\pi\)
\(504\) 0 0
\(505\) 2.47162e12i 1.69110i
\(506\) 0 0
\(507\) 8.30809e11 1.50237e12i 0.558426 1.00981i
\(508\) 0 0
\(509\) 4.73483e11i 0.312662i 0.987705 + 0.156331i \(0.0499666\pi\)
−0.987705 + 0.156331i \(0.950033\pi\)
\(510\) 0 0
\(511\) 2.28256e11 0.148091
\(512\) 0 0
\(513\) 5.35000e11i 0.341056i
\(514\) 0 0
\(515\) 1.22263e12i 0.765882i
\(516\) 0 0
\(517\) 5.67855e11 0.349567
\(518\) 0 0
\(519\) −2.55821e12 −1.54768
\(520\) 0 0
\(521\) 1.57930e12 0.939063 0.469532 0.882916i \(-0.344423\pi\)
0.469532 + 0.882916i \(0.344423\pi\)
\(522\) 0 0
\(523\) 7.93825e11 0.463946 0.231973 0.972722i \(-0.425482\pi\)
0.231973 + 0.972722i \(0.425482\pi\)
\(524\) 0 0
\(525\) 3.75591e11i 0.215774i
\(526\) 0 0
\(527\) 1.03147e12i 0.582520i
\(528\) 0 0
\(529\) 5.02220e11 0.278832
\(530\) 0 0
\(531\) 3.06787e11i 0.167460i
\(532\) 0 0
\(533\) 2.01071e12 1.18576e12i 1.07914 0.636390i
\(534\) 0 0
\(535\) 2.32021e12i 1.22443i
\(536\) 0 0
\(537\) 3.75106e12 1.94657
\(538\) 0 0
\(539\) 5.27259e11i 0.269076i
\(540\) 0 0
\(541\) 2.25361e12i 1.13107i −0.824723 0.565537i \(-0.808669\pi\)
0.824723 0.565537i \(-0.191331\pi\)
\(542\) 0 0
\(543\) −1.40601e12 −0.694045
\(544\) 0 0
\(545\) −2.95377e11 −0.143414
\(546\) 0 0
\(547\) 3.39066e11 0.161935 0.0809676 0.996717i \(-0.474199\pi\)
0.0809676 + 0.996717i \(0.474199\pi\)
\(548\) 0 0
\(549\) −2.88538e11 −0.135559
\(550\) 0 0
\(551\) 7.20108e11i 0.332825i
\(552\) 0 0
\(553\) 9.59475e11i 0.436285i
\(554\) 0 0
\(555\) −1.22430e12 −0.547734
\(556\) 0 0
\(557\) 2.61638e12i 1.15173i 0.817543 + 0.575867i \(0.195336\pi\)
−0.817543 + 0.575867i \(0.804664\pi\)
\(558\) 0 0
\(559\) −2.59499e11 4.40037e11i −0.112404 0.190606i
\(560\) 0 0
\(561\) 6.98287e11i 0.297647i
\(562\) 0 0
\(563\) −8.01952e9 −0.00336404 −0.00168202 0.999999i \(-0.500535\pi\)
−0.00168202 + 0.999999i \(0.500535\pi\)
\(564\) 0 0
\(565\) 2.91731e12i 1.20438i
\(566\) 0 0
\(567\) 8.37498e11i 0.340299i
\(568\) 0 0
\(569\) 4.68631e12 1.87424 0.937122 0.349002i \(-0.113479\pi\)
0.937122 + 0.349002i \(0.113479\pi\)
\(570\) 0 0
\(571\) 3.72776e12 1.46752 0.733762 0.679407i \(-0.237763\pi\)
0.733762 + 0.679407i \(0.237763\pi\)
\(572\) 0 0
\(573\) 2.41578e12 0.936185
\(574\) 0 0
\(575\) −1.98980e12 −0.759108
\(576\) 0 0
\(577\) 2.38246e12i 0.894818i −0.894329 0.447409i \(-0.852347\pi\)
0.894329 0.447409i \(-0.147653\pi\)
\(578\) 0 0
\(579\) 2.09149e12i 0.773398i
\(580\) 0 0
\(581\) −5.95176e11 −0.216697
\(582\) 0 0
\(583\) 9.54044e11i 0.342027i
\(584\) 0 0
\(585\) −1.04589e12 + 6.16781e11i −0.369218 + 0.217736i
\(586\) 0 0
\(587\) 3.77574e12i 1.31259i −0.754503 0.656297i \(-0.772122\pi\)
0.754503 0.656297i \(-0.227878\pi\)
\(588\) 0 0
\(589\) −8.50840e11 −0.291292
\(590\) 0 0
\(591\) 2.33603e12i 0.787652i
\(592\) 0 0
\(593\) 2.93920e12i 0.976073i 0.872823 + 0.488037i \(0.162287\pi\)
−0.872823 + 0.488037i \(0.837713\pi\)
\(594\) 0 0
\(595\) 9.73502e11 0.318427
\(596\) 0 0
\(597\) 2.95322e12 0.951507
\(598\) 0 0
\(599\) 4.70444e12 1.49309 0.746547 0.665333i \(-0.231711\pi\)
0.746547 + 0.665333i \(0.231711\pi\)
\(600\) 0 0
\(601\) −5.14763e12 −1.60943 −0.804716 0.593660i \(-0.797682\pi\)
−0.804716 + 0.593660i \(0.797682\pi\)
\(602\) 0 0
\(603\) 2.18947e11i 0.0674390i
\(604\) 0 0
\(605\) 3.89761e12i 1.18277i
\(606\) 0 0
\(607\) −5.14938e12 −1.53959 −0.769797 0.638289i \(-0.779642\pi\)
−0.769797 + 0.638289i \(0.779642\pi\)
\(608\) 0 0
\(609\) 8.21316e11i 0.241954i
\(610\) 0 0
\(611\) 3.55594e12 2.09701e12i 1.03221 0.608717i
\(612\) 0 0
\(613\) 2.93793e12i 0.840366i 0.907439 + 0.420183i \(0.138034\pi\)
−0.907439 + 0.420183i \(0.861966\pi\)
\(614\) 0 0
\(615\) −6.63021e12 −1.86891
\(616\) 0 0
\(617\) 3.45557e12i 0.959923i 0.877290 + 0.479962i \(0.159349\pi\)
−0.877290 + 0.479962i \(0.840651\pi\)
\(618\) 0 0
\(619\) 5.81299e12i 1.59145i −0.605661 0.795723i \(-0.707091\pi\)
0.605661 0.795723i \(-0.292909\pi\)
\(620\) 0 0
\(621\) 3.23266e12 0.872263
\(622\) 0 0
\(623\) 1.14958e12 0.305733
\(624\) 0 0
\(625\) −4.65647e12 −1.22067
\(626\) 0 0
\(627\) −5.76001e11 −0.148840
\(628\) 0 0
\(629\) 1.27456e12i 0.324663i
\(630\) 0 0
\(631\) 7.62901e12i 1.91574i 0.287205 + 0.957869i \(0.407274\pi\)
−0.287205 + 0.957869i \(0.592726\pi\)
\(632\) 0 0
\(633\) −4.84095e12 −1.19843
\(634\) 0 0
\(635\) 5.14450e12i 1.25563i
\(636\) 0 0
\(637\) −1.94709e12 3.30172e12i −0.468554 0.794535i
\(638\) 0 0
\(639\) 1.07720e12i 0.255590i
\(640\) 0 0
\(641\) −3.10612e12 −0.726704 −0.363352 0.931652i \(-0.618368\pi\)
−0.363352 + 0.931652i \(0.618368\pi\)
\(642\) 0 0
\(643\) 5.55594e10i 0.0128176i 0.999979 + 0.00640882i \(0.00204000\pi\)
−0.999979 + 0.00640882i \(0.997960\pi\)
\(644\) 0 0
\(645\) 1.45100e12i 0.330102i
\(646\) 0 0
\(647\) −6.35892e12 −1.42664 −0.713319 0.700839i \(-0.752809\pi\)
−0.713319 + 0.700839i \(0.752809\pi\)
\(648\) 0 0
\(649\) −6.65883e11 −0.147332
\(650\) 0 0
\(651\) 9.70421e11 0.211761
\(652\) 0 0
\(653\) 2.16803e12 0.466611 0.233306 0.972403i \(-0.425046\pi\)
0.233306 + 0.972403i \(0.425046\pi\)
\(654\) 0 0
\(655\) 8.51989e12i 1.80862i
\(656\) 0 0
\(657\) 8.41820e11i 0.176269i
\(658\) 0 0
\(659\) −6.43123e12 −1.32834 −0.664171 0.747581i \(-0.731215\pi\)
−0.664171 + 0.747581i \(0.731215\pi\)
\(660\) 0 0
\(661\) 2.23637e12i 0.455656i 0.973701 + 0.227828i \(0.0731624\pi\)
−0.973701 + 0.227828i \(0.926838\pi\)
\(662\) 0 0
\(663\) 2.57868e12 + 4.37271e12i 0.518306 + 0.878900i
\(664\) 0 0
\(665\) 8.03020e11i 0.159231i
\(666\) 0 0
\(667\) −4.35115e12 −0.851211
\(668\) 0 0
\(669\) 1.79872e12i 0.347173i
\(670\) 0 0
\(671\) 6.26275e11i 0.119265i
\(672\) 0 0
\(673\) 2.78081e12 0.522521 0.261261 0.965268i \(-0.415862\pi\)
0.261261 + 0.965268i \(0.415862\pi\)
\(674\) 0 0
\(675\) −2.79257e12 −0.517771
\(676\) 0 0
\(677\) 4.06401e12 0.743543 0.371771 0.928324i \(-0.378751\pi\)
0.371771 + 0.928324i \(0.378751\pi\)
\(678\) 0 0
\(679\) 1.54920e11 0.0279701
\(680\) 0 0
\(681\) 9.53311e11i 0.169853i
\(682\) 0 0
\(683\) 1.46452e12i 0.257515i 0.991676 + 0.128758i \(0.0410989\pi\)
−0.991676 + 0.128758i \(0.958901\pi\)
\(684\) 0 0
\(685\) −7.76838e12 −1.34810
\(686\) 0 0
\(687\) 7.88081e12i 1.34979i
\(688\) 0 0
\(689\) 3.52315e12 + 5.97427e12i 0.595587 + 1.00995i
\(690\) 0 0
\(691\) 3.12626e12i 0.521643i 0.965387 + 0.260822i \(0.0839935\pi\)
−0.965387 + 0.260822i \(0.916007\pi\)
\(692\) 0 0
\(693\) 1.63584e11 0.0269427
\(694\) 0 0
\(695\) 5.89842e12i 0.958968i
\(696\) 0 0
\(697\) 6.90238e12i 1.10777i
\(698\) 0 0
\(699\) 1.19092e13 1.88684
\(700\) 0 0
\(701\) −8.95207e12 −1.40021 −0.700104 0.714041i \(-0.746863\pi\)
−0.700104 + 0.714041i \(0.746863\pi\)
\(702\) 0 0
\(703\) −1.05135e12 −0.162349
\(704\) 0 0
\(705\) −1.17255e13 −1.78764
\(706\) 0 0
\(707\) 2.42078e12i 0.364391i
\(708\) 0 0
\(709\) 9.58929e12i 1.42521i −0.701566 0.712604i \(-0.747516\pi\)
0.701566 0.712604i \(-0.252484\pi\)
\(710\) 0 0
\(711\) 3.53859e12 0.519299
\(712\) 0 0
\(713\) 5.14107e12i 0.744991i
\(714\) 0 0
\(715\) 1.33873e12 + 2.27010e12i 0.191564 + 0.324839i
\(716\) 0 0
\(717\) 1.25205e13i 1.76924i
\(718\) 0 0
\(719\) −7.52612e12 −1.05025 −0.525123 0.851026i \(-0.675981\pi\)
−0.525123 + 0.851026i \(0.675981\pi\)
\(720\) 0 0
\(721\) 1.19748e12i 0.165029i
\(722\) 0 0
\(723\) 7.52248e12i 1.02386i
\(724\) 0 0
\(725\) 3.75879e12 0.505274
\(726\) 0 0
\(727\) 1.26694e13 1.68210 0.841052 0.540955i \(-0.181937\pi\)
0.841052 + 0.540955i \(0.181937\pi\)
\(728\) 0 0
\(729\) 3.69854e12 0.485017
\(730\) 0 0
\(731\) 1.51056e12 0.195664
\(732\) 0 0
\(733\) 8.42072e12i 1.07741i −0.842494 0.538706i \(-0.818913\pi\)
0.842494 0.538706i \(-0.181087\pi\)
\(734\) 0 0
\(735\) 1.08873e13i 1.37602i
\(736\) 0 0
\(737\) 4.75226e11 0.0593330
\(738\) 0 0
\(739\) 3.11977e12i 0.384789i 0.981318 + 0.192395i \(0.0616254\pi\)
−0.981318 + 0.192395i \(0.938375\pi\)
\(740\) 0 0
\(741\) −3.60695e12 + 2.12709e12i −0.439499 + 0.259182i
\(742\) 0 0
\(743\) 5.94991e12i 0.716244i −0.933675 0.358122i \(-0.883417\pi\)
0.933675 0.358122i \(-0.116583\pi\)
\(744\) 0 0
\(745\) −5.53054e12 −0.657756
\(746\) 0 0
\(747\) 2.19504e12i 0.257929i
\(748\) 0 0
\(749\) 2.27249e12i 0.263835i
\(750\) 0 0
\(751\) 1.27601e13 1.46377 0.731887 0.681426i \(-0.238640\pi\)
0.731887 + 0.681426i \(0.238640\pi\)
\(752\) 0 0
\(753\) −1.86813e12 −0.211753
\(754\) 0 0
\(755\) 7.64163e12 0.855904
\(756\) 0 0
\(757\) −7.55415e12 −0.836092 −0.418046 0.908426i \(-0.637285\pi\)
−0.418046 + 0.908426i \(0.637285\pi\)
\(758\) 0 0
\(759\) 3.48040e12i 0.380663i
\(760\) 0 0
\(761\) 1.08872e13i 1.17675i −0.808589 0.588374i \(-0.799768\pi\)
0.808589 0.588374i \(-0.200232\pi\)
\(762\) 0 0
\(763\) 2.89301e11 0.0309022
\(764\) 0 0
\(765\) 3.59033e12i 0.379016i
\(766\) 0 0
\(767\) −4.16979e12 + 2.45901e12i −0.435046 + 0.256556i
\(768\) 0 0
\(769\) 7.27989e12i 0.750683i 0.926887 + 0.375341i \(0.122475\pi\)
−0.926887 + 0.375341i \(0.877525\pi\)
\(770\) 0 0
\(771\) −1.90069e11 −0.0193717
\(772\) 0 0
\(773\) 1.14133e13i 1.14975i −0.818241 0.574875i \(-0.805051\pi\)
0.818241 0.574875i \(-0.194949\pi\)
\(774\) 0 0
\(775\) 4.44118e12i 0.442222i
\(776\) 0 0
\(777\) 1.19912e12 0.118023
\(778\) 0 0
\(779\) −5.69362e12 −0.553949
\(780\) 0 0
\(781\) 2.33808e12 0.224869
\(782\) 0 0
\(783\) −6.10660e12 −0.580592
\(784\) 0 0
\(785\) 1.25548e13i 1.18004i
\(786\) 0 0
\(787\) 2.63320e12i 0.244679i −0.992488 0.122340i \(-0.960960\pi\)
0.992488 0.122340i \(-0.0390397\pi\)
\(788\) 0 0
\(789\) −6.78479e11 −0.0623290
\(790\) 0 0
\(791\) 2.85730e12i 0.259515i
\(792\) 0 0
\(793\) 2.31275e12 + 3.92176e12i 0.207682 + 0.352170i
\(794\) 0 0
\(795\) 1.96999e13i 1.74909i
\(796\) 0 0
\(797\) 3.13283e11 0.0275026 0.0137513 0.999905i \(-0.495623\pi\)
0.0137513 + 0.999905i \(0.495623\pi\)
\(798\) 0 0
\(799\) 1.22069e13i 1.05960i
\(800\) 0 0
\(801\) 4.23970e12i 0.363906i
\(802\) 0 0
\(803\) −1.82718e12 −0.155082
\(804\) 0 0
\(805\) 4.85213e12 0.407240
\(806\) 0 0
\(807\) −8.37114e12 −0.694790
\(808\) 0 0
\(809\) 7.10201e12 0.582925 0.291463 0.956582i \(-0.405858\pi\)
0.291463 + 0.956582i \(0.405858\pi\)
\(810\) 0 0
\(811\) 1.43206e13i 1.16243i −0.813748 0.581217i \(-0.802577\pi\)
0.813748 0.581217i \(-0.197423\pi\)
\(812\) 0 0
\(813\) 1.99804e13i 1.60397i
\(814\) 0 0
\(815\) −2.12610e13 −1.68801
\(816\) 0 0
\(817\) 1.24603e12i 0.0978428i
\(818\) 0 0
\(819\) 1.02437e12 6.04094e11i 0.0795574 0.0469166i
\(820\) 0 0
\(821\) 1.45899e13i 1.12075i 0.828240 + 0.560373i \(0.189342\pi\)
−0.828240 + 0.560373i \(0.810658\pi\)
\(822\) 0 0
\(823\) 2.10512e13 1.59947 0.799736 0.600351i \(-0.204973\pi\)
0.799736 + 0.600351i \(0.204973\pi\)
\(824\) 0 0
\(825\) 3.00659e12i 0.225960i
\(826\) 0 0
\(827\) 1.86271e13i 1.38474i −0.721541 0.692372i \(-0.756566\pi\)
0.721541 0.692372i \(-0.243434\pi\)
\(828\) 0 0
\(829\) 4.93039e12 0.362565 0.181283 0.983431i \(-0.441975\pi\)
0.181283 + 0.983431i \(0.441975\pi\)
\(830\) 0 0
\(831\) −2.13472e13 −1.55287
\(832\) 0 0
\(833\) 1.13342e13 0.815619
\(834\) 0 0
\(835\) −1.62704e13 −1.15827
\(836\) 0 0
\(837\) 7.21522e12i 0.508142i
\(838\) 0 0
\(839\) 2.14228e13i 1.49261i −0.665603 0.746306i \(-0.731825\pi\)
0.665603 0.746306i \(-0.268175\pi\)
\(840\) 0 0
\(841\) −6.28769e12 −0.433420
\(842\) 0 0
\(843\) 1.51155e13i 1.03085i
\(844\) 0 0
\(845\) 1.67664e13 + 9.27177e12i 1.13132 + 0.625615i
\(846\) 0 0
\(847\) 3.81744e12i 0.254857i
\(848\) 0 0
\(849\) 2.00159e11 0.0132218
\(850\) 0 0
\(851\) 6.35266e12i 0.415214i
\(852\) 0 0
\(853\) 2.03744e13i 1.31769i 0.752278 + 0.658846i \(0.228955\pi\)
−0.752278 + 0.658846i \(0.771045\pi\)
\(854\) 0 0
\(855\) 2.96158e12 0.189529
\(856\) 0 0
\(857\) 2.22501e13 1.40902 0.704512 0.709692i \(-0.251166\pi\)
0.704512 + 0.709692i \(0.251166\pi\)
\(858\) 0 0
\(859\) 1.78122e13 1.11622 0.558108 0.829768i \(-0.311527\pi\)
0.558108 + 0.829768i \(0.311527\pi\)
\(860\) 0 0
\(861\) 6.49383e12 0.402705
\(862\) 0 0
\(863\) 1.59283e12i 0.0977511i −0.998805 0.0488755i \(-0.984436\pi\)
0.998805 0.0488755i \(-0.0155638\pi\)
\(864\) 0 0
\(865\) 2.85494e13i 1.73390i
\(866\) 0 0
\(867\) 4.18782e12 0.251711
\(868\) 0 0
\(869\) 7.68054e12i 0.456881i
\(870\) 0 0
\(871\) 2.97589e12 1.75494e12i 0.175200 0.103319i
\(872\) 0 0
\(873\) 5.71353e11i 0.0332920i
\(874\) 0 0
\(875\) 2.05268e12 0.118382
\(876\) 0 0
\(877\) 2.45278e13i 1.40010i 0.714092 + 0.700052i \(0.246840\pi\)
−0.714092 + 0.700052i \(0.753160\pi\)
\(878\) 0 0
\(879\) 2.89270e13i 1.63438i
\(880\) 0 0
\(881\) 7.05046e12 0.394299 0.197150 0.980373i \(-0.436832\pi\)
0.197150 + 0.980373i \(0.436832\pi\)
\(882\) 0 0
\(883\) 7.94625e12 0.439885 0.219942 0.975513i \(-0.429413\pi\)
0.219942 + 0.975513i \(0.429413\pi\)
\(884\) 0 0
\(885\) 1.37497e13 0.753438
\(886\) 0 0
\(887\) −2.35837e13 −1.27925 −0.639626 0.768686i \(-0.720911\pi\)
−0.639626 + 0.768686i \(0.720911\pi\)
\(888\) 0 0
\(889\) 5.03868e12i 0.270557i
\(890\) 0 0
\(891\) 6.70413e12i 0.356363i
\(892\) 0 0
\(893\) −1.00692e13 −0.529861
\(894\) 0 0
\(895\) 4.18616e13i 2.18078i
\(896\) 0 0
\(897\) 1.28526e13 + 2.17944e13i 0.662867 + 1.12404i
\(898\) 0 0
\(899\) 9.71165e12i 0.495878i
\(900\) 0 0
\(901\) −2.05085e13 −1.03675
\(902\) 0 0
\(903\) 1.42115e12i 0.0711289i
\(904\) 0 0
\(905\) 1.56909e13i 0.777553i
\(906\) 0 0
\(907\) 1.43910e13 0.706087 0.353043 0.935607i \(-0.385147\pi\)
0.353043 + 0.935607i \(0.385147\pi\)
\(908\) 0 0
\(909\) 8.92796e12 0.433725
\(910\) 0 0
\(911\) 1.35452e13 0.651560 0.325780 0.945446i \(-0.394373\pi\)
0.325780 + 0.945446i \(0.394373\pi\)
\(912\) 0 0
\(913\) 4.76435e12 0.226926
\(914\) 0 0
\(915\) 1.29318e13i 0.609908i
\(916\) 0 0
\(917\) 8.34465e12i 0.389714i
\(918\) 0 0
\(919\) −1.25139e13 −0.578728 −0.289364 0.957219i \(-0.593444\pi\)
−0.289364 + 0.957219i \(0.593444\pi\)
\(920\) 0 0
\(921\) 3.58359e13i 1.64116i
\(922\) 0 0
\(923\) 1.46412e13 8.63420e12i 0.664000 0.391575i
\(924\) 0 0
\(925\) 5.48782e12i 0.246469i
\(926\) 0 0
\(927\) 4.41637e12 0.196429
\(928\) 0 0
\(929\) 2.61952e12i 0.115386i −0.998334 0.0576928i \(-0.981626\pi\)
0.998334 0.0576928i \(-0.0183744\pi\)
\(930\) 0 0
\(931\) 9.34931e12i 0.407855i
\(932\) 0 0
\(933\) −1.20811e12 −0.0521962
\(934\) 0 0
\(935\) −7.79283e12 −0.333459
\(936\) 0 0
\(937\) −1.12398e11 −0.00476355 −0.00238178 0.999997i \(-0.500758\pi\)
−0.00238178 + 0.999997i \(0.500758\pi\)
\(938\) 0 0
\(939\) −1.04382e13 −0.438158
\(940\) 0 0
\(941\) 1.88869e12i 0.0785247i −0.999229 0.0392623i \(-0.987499\pi\)
0.999229 0.0392623i \(-0.0125008\pi\)
\(942\) 0 0
\(943\) 3.44028e13i 1.41674i
\(944\) 0 0
\(945\) 6.80970e12 0.277770
\(946\) 0 0
\(947\) 3.94169e13i 1.59260i 0.604901 + 0.796301i \(0.293213\pi\)
−0.604901 + 0.796301i \(0.706787\pi\)
\(948\) 0 0
\(949\) −1.14419e13 + 6.74751e12i −0.457930 + 0.270051i
\(950\) 0 0
\(951\) 4.60339e13i 1.82501i
\(952\) 0 0
\(953\) −1.99699e13 −0.784256 −0.392128 0.919911i \(-0.628261\pi\)
−0.392128 + 0.919911i \(0.628261\pi\)
\(954\) 0 0
\(955\) 2.69600e13i 1.04883i
\(956\) 0 0
\(957\) 6.57459e12i 0.253376i
\(958\) 0 0
\(959\) 7.60859e12 0.290483
\(960\) 0 0
\(961\) 1.49649e13 0.566002
\(962\) 0 0
\(963\) 8.38105e12 0.314037
\(964\) 0 0
\(965\) −2.33409e13 −0.866453
\(966\) 0 0
\(967\) 1.37561e13i 0.505912i −0.967478 0.252956i \(-0.918597\pi\)
0.967478 0.252956i \(-0.0814029\pi\)
\(968\) 0 0
\(969\) 1.23820e13i 0.451162i
\(970\) 0 0
\(971\) 4.83327e13 1.74484 0.872418 0.488760i \(-0.162551\pi\)
0.872418 + 0.488760i \(0.162551\pi\)
\(972\) 0 0
\(973\) 5.77709e12i 0.206634i
\(974\) 0 0
\(975\) −1.11029e13 1.88274e13i −0.393474 0.667221i
\(976\) 0 0
\(977\) 2.58790e13i 0.908703i 0.890823 + 0.454351i \(0.150129\pi\)
−0.890823 + 0.454351i \(0.849871\pi\)
\(978\) 0 0
\(979\) −9.20230e12 −0.320165
\(980\) 0 0
\(981\) 1.06696e12i 0.0367821i
\(982\) 0 0
\(983\) 2.57154e13i 0.878422i −0.898384 0.439211i \(-0.855258\pi\)
0.898384 0.439211i \(-0.144742\pi\)
\(984\) 0 0
\(985\) −2.60699e13 −0.882423
\(986\) 0 0
\(987\) 1.14843e13 0.385193
\(988\) 0 0
\(989\) 7.52895e12 0.250237
\(990\) 0 0
\(991\) 6.55661e12 0.215947 0.107974 0.994154i \(-0.465564\pi\)
0.107974 + 0.994154i \(0.465564\pi\)
\(992\) 0 0
\(993\) 2.06409e13i 0.673685i
\(994\) 0 0
\(995\) 3.29578e13i 1.06599i
\(996\) 0 0
\(997\) −1.47827e13 −0.473834 −0.236917 0.971530i \(-0.576137\pi\)
−0.236917 + 0.971530i \(0.576137\pi\)
\(998\) 0 0
\(999\) 8.91561e12i 0.283209i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.8 32
4.3 odd 2 104.10.f.a.25.25 32
13.12 even 2 inner 208.10.f.d.129.7 32
52.51 odd 2 104.10.f.a.25.26 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.25 32 4.3 odd 2
104.10.f.a.25.26 yes 32 52.51 odd 2
208.10.f.d.129.7 32 13.12 even 2 inner
208.10.f.d.129.8 32 1.1 even 1 trivial