Properties

Label 208.10.f.d.129.5
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.5
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-195.153 q^{3} +2044.04i q^{5} +11607.1i q^{7} +18401.8 q^{9} +67982.7i q^{11} +(-80500.9 - 64219.2i) q^{13} -398902. i q^{15} -601985. q^{17} -695208. i q^{19} -2.26516e6i q^{21} +514539. q^{23} -2.22499e6 q^{25} +250023. q^{27} -4.65059e6 q^{29} +7.34256e6i q^{31} -1.32671e7i q^{33} -2.37254e7 q^{35} +6.51698e6i q^{37} +(1.57100e7 + 1.25326e7i) q^{39} -3.94333e6i q^{41} -1.49061e7 q^{43} +3.76142e7i q^{45} -2.16467e7i q^{47} -9.43711e7 q^{49} +1.17479e8 q^{51} +1.51204e7 q^{53} -1.38960e8 q^{55} +1.35672e8i q^{57} +4.81722e7i q^{59} +9.62097e7 q^{61} +2.13592e8i q^{63} +(1.31267e8 - 1.64547e8i) q^{65} +1.42051e8i q^{67} -1.00414e8 q^{69} +9.40346e7i q^{71} -2.75593e8i q^{73} +4.34214e8 q^{75} -7.89082e8 q^{77} -5.49152e8 q^{79} -4.10996e8 q^{81} +3.10281e8i q^{83} -1.23048e9i q^{85} +9.07579e8 q^{87} +6.74619e8i q^{89} +(7.45399e8 - 9.34381e8i) q^{91} -1.43293e9i q^{93} +1.42104e9 q^{95} +6.74712e8i q^{97} +1.25101e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −195.153 −1.39101 −0.695505 0.718521i \(-0.744819\pi\)
−0.695505 + 0.718521i \(0.744819\pi\)
\(4\) 0 0
\(5\) 2044.04i 1.46260i 0.682057 + 0.731299i \(0.261086\pi\)
−0.682057 + 0.731299i \(0.738914\pi\)
\(6\) 0 0
\(7\) 11607.1i 1.82718i 0.406632 + 0.913592i \(0.366703\pi\)
−0.406632 + 0.913592i \(0.633297\pi\)
\(8\) 0 0
\(9\) 18401.8 0.934910
\(10\) 0 0
\(11\) 67982.7i 1.40001i 0.714137 + 0.700006i \(0.246819\pi\)
−0.714137 + 0.700006i \(0.753181\pi\)
\(12\) 0 0
\(13\) −80500.9 64219.2i −0.781728 0.623620i
\(14\) 0 0
\(15\) 398902.i 2.03449i
\(16\) 0 0
\(17\) −601985. −1.74810 −0.874049 0.485838i \(-0.838514\pi\)
−0.874049 + 0.485838i \(0.838514\pi\)
\(18\) 0 0
\(19\) 695208.i 1.22384i −0.790921 0.611919i \(-0.790398\pi\)
0.790921 0.611919i \(-0.209602\pi\)
\(20\) 0 0
\(21\) 2.26516e6i 2.54163i
\(22\) 0 0
\(23\) 514539. 0.383392 0.191696 0.981454i \(-0.438601\pi\)
0.191696 + 0.981454i \(0.438601\pi\)
\(24\) 0 0
\(25\) −2.22499e6 −1.13920
\(26\) 0 0
\(27\) 250023. 0.0905405
\(28\) 0 0
\(29\) −4.65059e6 −1.22100 −0.610502 0.792015i \(-0.709032\pi\)
−0.610502 + 0.792015i \(0.709032\pi\)
\(30\) 0 0
\(31\) 7.34256e6i 1.42797i 0.700160 + 0.713986i \(0.253112\pi\)
−0.700160 + 0.713986i \(0.746888\pi\)
\(32\) 0 0
\(33\) 1.32671e7i 1.94743i
\(34\) 0 0
\(35\) −2.37254e7 −2.67244
\(36\) 0 0
\(37\) 6.51698e6i 0.571661i 0.958280 + 0.285830i \(0.0922694\pi\)
−0.958280 + 0.285830i \(0.907731\pi\)
\(38\) 0 0
\(39\) 1.57100e7 + 1.25326e7i 1.08739 + 0.867462i
\(40\) 0 0
\(41\) 3.94333e6i 0.217939i −0.994045 0.108970i \(-0.965245\pi\)
0.994045 0.108970i \(-0.0347551\pi\)
\(42\) 0 0
\(43\) −1.49061e7 −0.664898 −0.332449 0.943121i \(-0.607875\pi\)
−0.332449 + 0.943121i \(0.607875\pi\)
\(44\) 0 0
\(45\) 3.76142e7i 1.36740i
\(46\) 0 0
\(47\) 2.16467e7i 0.647069i −0.946216 0.323535i \(-0.895129\pi\)
0.946216 0.323535i \(-0.104871\pi\)
\(48\) 0 0
\(49\) −9.43711e7 −2.33860
\(50\) 0 0
\(51\) 1.17479e8 2.43162
\(52\) 0 0
\(53\) 1.51204e7 0.263221 0.131611 0.991301i \(-0.457985\pi\)
0.131611 + 0.991301i \(0.457985\pi\)
\(54\) 0 0
\(55\) −1.38960e8 −2.04765
\(56\) 0 0
\(57\) 1.35672e8i 1.70237i
\(58\) 0 0
\(59\) 4.81722e7i 0.517562i 0.965936 + 0.258781i \(0.0833208\pi\)
−0.965936 + 0.258781i \(0.916679\pi\)
\(60\) 0 0
\(61\) 9.62097e7 0.889682 0.444841 0.895610i \(-0.353260\pi\)
0.444841 + 0.895610i \(0.353260\pi\)
\(62\) 0 0
\(63\) 2.13592e8i 1.70825i
\(64\) 0 0
\(65\) 1.31267e8 1.64547e8i 0.912106 1.14335i
\(66\) 0 0
\(67\) 1.42051e8i 0.861209i 0.902541 + 0.430605i \(0.141700\pi\)
−0.902541 + 0.430605i \(0.858300\pi\)
\(68\) 0 0
\(69\) −1.00414e8 −0.533302
\(70\) 0 0
\(71\) 9.40346e7i 0.439162i 0.975594 + 0.219581i \(0.0704691\pi\)
−0.975594 + 0.219581i \(0.929531\pi\)
\(72\) 0 0
\(73\) 2.75593e8i 1.13583i −0.823086 0.567917i \(-0.807749\pi\)
0.823086 0.567917i \(-0.192251\pi\)
\(74\) 0 0
\(75\) 4.34214e8 1.58463
\(76\) 0 0
\(77\) −7.89082e8 −2.55808
\(78\) 0 0
\(79\) −5.49152e8 −1.58625 −0.793124 0.609060i \(-0.791547\pi\)
−0.793124 + 0.609060i \(0.791547\pi\)
\(80\) 0 0
\(81\) −4.10996e8 −1.06085
\(82\) 0 0
\(83\) 3.10281e8i 0.717636i 0.933408 + 0.358818i \(0.116820\pi\)
−0.933408 + 0.358818i \(0.883180\pi\)
\(84\) 0 0
\(85\) 1.23048e9i 2.55677i
\(86\) 0 0
\(87\) 9.07579e8 1.69843
\(88\) 0 0
\(89\) 6.74619e8i 1.13973i 0.821737 + 0.569867i \(0.193005\pi\)
−0.821737 + 0.569867i \(0.806995\pi\)
\(90\) 0 0
\(91\) 7.45399e8 9.34381e8i 1.13947 1.42836i
\(92\) 0 0
\(93\) 1.43293e9i 1.98632i
\(94\) 0 0
\(95\) 1.42104e9 1.78998
\(96\) 0 0
\(97\) 6.74712e8i 0.773830i 0.922115 + 0.386915i \(0.126459\pi\)
−0.922115 + 0.386915i \(0.873541\pi\)
\(98\) 0 0
\(99\) 1.25101e9i 1.30888i
\(100\) 0 0
\(101\) 4.74573e8 0.453792 0.226896 0.973919i \(-0.427142\pi\)
0.226896 + 0.973919i \(0.427142\pi\)
\(102\) 0 0
\(103\) −1.05069e9 −0.919830 −0.459915 0.887963i \(-0.652120\pi\)
−0.459915 + 0.887963i \(0.652120\pi\)
\(104\) 0 0
\(105\) 4.63009e9 3.71739
\(106\) 0 0
\(107\) 1.07039e9 0.789430 0.394715 0.918804i \(-0.370843\pi\)
0.394715 + 0.918804i \(0.370843\pi\)
\(108\) 0 0
\(109\) 1.87142e9i 1.26985i −0.772574 0.634925i \(-0.781031\pi\)
0.772574 0.634925i \(-0.218969\pi\)
\(110\) 0 0
\(111\) 1.27181e9i 0.795186i
\(112\) 0 0
\(113\) −8.69209e8 −0.501500 −0.250750 0.968052i \(-0.580677\pi\)
−0.250750 + 0.968052i \(0.580677\pi\)
\(114\) 0 0
\(115\) 1.05174e9i 0.560748i
\(116\) 0 0
\(117\) −1.48136e9 1.18175e9i −0.730845 0.583029i
\(118\) 0 0
\(119\) 6.98730e9i 3.19410i
\(120\) 0 0
\(121\) −2.26370e9 −0.960031
\(122\) 0 0
\(123\) 7.69554e8i 0.303156i
\(124\) 0 0
\(125\) 5.55706e8i 0.203587i
\(126\) 0 0
\(127\) −2.19867e9 −0.749968 −0.374984 0.927031i \(-0.622352\pi\)
−0.374984 + 0.927031i \(0.622352\pi\)
\(128\) 0 0
\(129\) 2.90897e9 0.924880
\(130\) 0 0
\(131\) 3.63577e9 1.07864 0.539319 0.842101i \(-0.318682\pi\)
0.539319 + 0.842101i \(0.318682\pi\)
\(132\) 0 0
\(133\) 8.06935e9 2.23618
\(134\) 0 0
\(135\) 5.11058e8i 0.132424i
\(136\) 0 0
\(137\) 4.33206e9i 1.05064i 0.850906 + 0.525318i \(0.176054\pi\)
−0.850906 + 0.525318i \(0.823946\pi\)
\(138\) 0 0
\(139\) −4.88274e9 −1.10942 −0.554712 0.832043i \(-0.687171\pi\)
−0.554712 + 0.832043i \(0.687171\pi\)
\(140\) 0 0
\(141\) 4.22442e9i 0.900080i
\(142\) 0 0
\(143\) 4.36580e9 5.47267e9i 0.873075 1.09443i
\(144\) 0 0
\(145\) 9.50601e9i 1.78584i
\(146\) 0 0
\(147\) 1.84168e10 3.25302
\(148\) 0 0
\(149\) 1.69092e9i 0.281052i 0.990077 + 0.140526i \(0.0448793\pi\)
−0.990077 + 0.140526i \(0.955121\pi\)
\(150\) 0 0
\(151\) 3.83276e9i 0.599951i 0.953947 + 0.299975i \(0.0969785\pi\)
−0.953947 + 0.299975i \(0.903021\pi\)
\(152\) 0 0
\(153\) −1.10776e10 −1.63431
\(154\) 0 0
\(155\) −1.50085e10 −2.08855
\(156\) 0 0
\(157\) 6.45848e9 0.848363 0.424182 0.905577i \(-0.360562\pi\)
0.424182 + 0.905577i \(0.360562\pi\)
\(158\) 0 0
\(159\) −2.95079e9 −0.366144
\(160\) 0 0
\(161\) 5.97230e9i 0.700527i
\(162\) 0 0
\(163\) 8.73717e9i 0.969452i 0.874666 + 0.484726i \(0.161081\pi\)
−0.874666 + 0.484726i \(0.838919\pi\)
\(164\) 0 0
\(165\) 2.71185e10 2.84831
\(166\) 0 0
\(167\) 8.80744e9i 0.876245i 0.898915 + 0.438123i \(0.144356\pi\)
−0.898915 + 0.438123i \(0.855644\pi\)
\(168\) 0 0
\(169\) 2.35628e9 + 1.03394e10i 0.222197 + 0.975002i
\(170\) 0 0
\(171\) 1.27931e10i 1.14418i
\(172\) 0 0
\(173\) −1.55139e10 −1.31678 −0.658390 0.752677i \(-0.728762\pi\)
−0.658390 + 0.752677i \(0.728762\pi\)
\(174\) 0 0
\(175\) 2.58257e10i 2.08152i
\(176\) 0 0
\(177\) 9.40097e9i 0.719935i
\(178\) 0 0
\(179\) 1.27802e10 0.930463 0.465231 0.885189i \(-0.345971\pi\)
0.465231 + 0.885189i \(0.345971\pi\)
\(180\) 0 0
\(181\) 2.24749e10 1.55648 0.778242 0.627965i \(-0.216112\pi\)
0.778242 + 0.627965i \(0.216112\pi\)
\(182\) 0 0
\(183\) −1.87756e10 −1.23756
\(184\) 0 0
\(185\) −1.33210e10 −0.836110
\(186\) 0 0
\(187\) 4.09246e10i 2.44736i
\(188\) 0 0
\(189\) 2.90204e9i 0.165434i
\(190\) 0 0
\(191\) −1.53268e10 −0.833298 −0.416649 0.909068i \(-0.636796\pi\)
−0.416649 + 0.909068i \(0.636796\pi\)
\(192\) 0 0
\(193\) 1.67399e10i 0.868449i 0.900805 + 0.434224i \(0.142977\pi\)
−0.900805 + 0.434224i \(0.857023\pi\)
\(194\) 0 0
\(195\) −2.56172e10 + 3.21120e10i −1.26875 + 1.59042i
\(196\) 0 0
\(197\) 2.63345e10i 1.24574i −0.782326 0.622870i \(-0.785967\pi\)
0.782326 0.622870i \(-0.214033\pi\)
\(198\) 0 0
\(199\) 2.22579e10 1.00611 0.503056 0.864254i \(-0.332209\pi\)
0.503056 + 0.864254i \(0.332209\pi\)
\(200\) 0 0
\(201\) 2.77218e10i 1.19795i
\(202\) 0 0
\(203\) 5.39799e10i 2.23100i
\(204\) 0 0
\(205\) 8.06034e9 0.318758
\(206\) 0 0
\(207\) 9.46846e9 0.358437
\(208\) 0 0
\(209\) 4.72622e10 1.71339
\(210\) 0 0
\(211\) 3.62511e10 1.25907 0.629536 0.776971i \(-0.283245\pi\)
0.629536 + 0.776971i \(0.283245\pi\)
\(212\) 0 0
\(213\) 1.83512e10i 0.610879i
\(214\) 0 0
\(215\) 3.04686e10i 0.972479i
\(216\) 0 0
\(217\) −8.52258e10 −2.60917
\(218\) 0 0
\(219\) 5.37828e10i 1.57996i
\(220\) 0 0
\(221\) 4.84603e10 + 3.86590e10i 1.36654 + 1.09015i
\(222\) 0 0
\(223\) 7.54110e9i 0.204203i 0.994774 + 0.102102i \(0.0325567\pi\)
−0.994774 + 0.102102i \(0.967443\pi\)
\(224\) 0 0
\(225\) −4.09439e10 −1.06505
\(226\) 0 0
\(227\) 4.71271e10i 1.17803i 0.808124 + 0.589013i \(0.200483\pi\)
−0.808124 + 0.589013i \(0.799517\pi\)
\(228\) 0 0
\(229\) 2.35079e10i 0.564877i −0.959285 0.282438i \(-0.908857\pi\)
0.959285 0.282438i \(-0.0911432\pi\)
\(230\) 0 0
\(231\) 1.53992e11 3.55831
\(232\) 0 0
\(233\) 2.92724e10 0.650664 0.325332 0.945600i \(-0.394524\pi\)
0.325332 + 0.945600i \(0.394524\pi\)
\(234\) 0 0
\(235\) 4.42468e10 0.946403
\(236\) 0 0
\(237\) 1.07169e11 2.20649
\(238\) 0 0
\(239\) 1.26138e10i 0.250067i −0.992153 0.125033i \(-0.960096\pi\)
0.992153 0.125033i \(-0.0399038\pi\)
\(240\) 0 0
\(241\) 1.81575e10i 0.346720i 0.984858 + 0.173360i \(0.0554625\pi\)
−0.984858 + 0.173360i \(0.944538\pi\)
\(242\) 0 0
\(243\) 7.52861e10 1.38512
\(244\) 0 0
\(245\) 1.92899e11i 3.42044i
\(246\) 0 0
\(247\) −4.46457e10 + 5.59649e10i −0.763210 + 0.956708i
\(248\) 0 0
\(249\) 6.05524e10i 0.998239i
\(250\) 0 0
\(251\) −3.15257e10 −0.501341 −0.250671 0.968072i \(-0.580651\pi\)
−0.250671 + 0.968072i \(0.580651\pi\)
\(252\) 0 0
\(253\) 3.49797e10i 0.536753i
\(254\) 0 0
\(255\) 2.40133e11i 3.55649i
\(256\) 0 0
\(257\) −2.90207e10 −0.414962 −0.207481 0.978239i \(-0.566527\pi\)
−0.207481 + 0.978239i \(0.566527\pi\)
\(258\) 0 0
\(259\) −7.56432e10 −1.04453
\(260\) 0 0
\(261\) −8.55794e10 −1.14153
\(262\) 0 0
\(263\) −6.88736e10 −0.887671 −0.443835 0.896108i \(-0.646382\pi\)
−0.443835 + 0.896108i \(0.646382\pi\)
\(264\) 0 0
\(265\) 3.09067e10i 0.384987i
\(266\) 0 0
\(267\) 1.31654e11i 1.58538i
\(268\) 0 0
\(269\) −2.75452e10 −0.320746 −0.160373 0.987056i \(-0.551270\pi\)
−0.160373 + 0.987056i \(0.551270\pi\)
\(270\) 0 0
\(271\) 5.81652e10i 0.655091i −0.944835 0.327545i \(-0.893779\pi\)
0.944835 0.327545i \(-0.106221\pi\)
\(272\) 0 0
\(273\) −1.45467e11 + 1.82348e11i −1.58501 + 1.98686i
\(274\) 0 0
\(275\) 1.51261e11i 1.59489i
\(276\) 0 0
\(277\) −8.12480e10 −0.829190 −0.414595 0.910006i \(-0.636077\pi\)
−0.414595 + 0.910006i \(0.636077\pi\)
\(278\) 0 0
\(279\) 1.35117e11i 1.33503i
\(280\) 0 0
\(281\) 1.13980e11i 1.09056i 0.838254 + 0.545280i \(0.183577\pi\)
−0.838254 + 0.545280i \(0.816423\pi\)
\(282\) 0 0
\(283\) −1.13569e11 −1.05250 −0.526248 0.850331i \(-0.676402\pi\)
−0.526248 + 0.850331i \(0.676402\pi\)
\(284\) 0 0
\(285\) −2.77320e11 −2.48989
\(286\) 0 0
\(287\) 4.57706e10 0.398215
\(288\) 0 0
\(289\) 2.43798e11 2.05585
\(290\) 0 0
\(291\) 1.31672e11i 1.07641i
\(292\) 0 0
\(293\) 7.70666e10i 0.610888i −0.952210 0.305444i \(-0.901195\pi\)
0.952210 0.305444i \(-0.0988049\pi\)
\(294\) 0 0
\(295\) −9.84661e10 −0.756986
\(296\) 0 0
\(297\) 1.69972e10i 0.126758i
\(298\) 0 0
\(299\) −4.14208e10 3.30433e10i −0.299708 0.239091i
\(300\) 0 0
\(301\) 1.73016e11i 1.21489i
\(302\) 0 0
\(303\) −9.26146e10 −0.631230
\(304\) 0 0
\(305\) 1.96657e11i 1.30125i
\(306\) 0 0
\(307\) 1.69749e11i 1.09065i 0.838225 + 0.545325i \(0.183594\pi\)
−0.838225 + 0.545325i \(0.816406\pi\)
\(308\) 0 0
\(309\) 2.05046e11 1.27949
\(310\) 0 0
\(311\) −2.68747e10 −0.162900 −0.0814502 0.996677i \(-0.525955\pi\)
−0.0814502 + 0.996677i \(0.525955\pi\)
\(312\) 0 0
\(313\) −3.11862e11 −1.83659 −0.918295 0.395896i \(-0.870434\pi\)
−0.918295 + 0.395896i \(0.870434\pi\)
\(314\) 0 0
\(315\) −4.36591e11 −2.49849
\(316\) 0 0
\(317\) 1.50743e11i 0.838437i 0.907885 + 0.419218i \(0.137696\pi\)
−0.907885 + 0.419218i \(0.862304\pi\)
\(318\) 0 0
\(319\) 3.16160e11i 1.70942i
\(320\) 0 0
\(321\) −2.08890e11 −1.09811
\(322\) 0 0
\(323\) 4.18505e11i 2.13939i
\(324\) 0 0
\(325\) 1.79114e11 + 1.42887e11i 0.890541 + 0.710425i
\(326\) 0 0
\(327\) 3.65214e11i 1.76637i
\(328\) 0 0
\(329\) 2.51255e11 1.18232
\(330\) 0 0
\(331\) 3.22419e11i 1.47637i 0.674600 + 0.738183i \(0.264316\pi\)
−0.674600 + 0.738183i \(0.735684\pi\)
\(332\) 0 0
\(333\) 1.19924e11i 0.534452i
\(334\) 0 0
\(335\) −2.90359e11 −1.25960
\(336\) 0 0
\(337\) 1.42221e11 0.600662 0.300331 0.953835i \(-0.402903\pi\)
0.300331 + 0.953835i \(0.402903\pi\)
\(338\) 0 0
\(339\) 1.69629e11 0.697592
\(340\) 0 0
\(341\) −4.99167e11 −1.99918
\(342\) 0 0
\(343\) 6.26986e11i 2.44587i
\(344\) 0 0
\(345\) 2.05251e11i 0.780007i
\(346\) 0 0
\(347\) 3.18456e11 1.17914 0.589571 0.807716i \(-0.299297\pi\)
0.589571 + 0.807716i \(0.299297\pi\)
\(348\) 0 0
\(349\) 1.82982e11i 0.660229i −0.943941 0.330114i \(-0.892913\pi\)
0.943941 0.330114i \(-0.107087\pi\)
\(350\) 0 0
\(351\) −2.01271e10 1.60563e10i −0.0707781 0.0564629i
\(352\) 0 0
\(353\) 3.06629e11i 1.05106i 0.850775 + 0.525529i \(0.176133\pi\)
−0.850775 + 0.525529i \(0.823867\pi\)
\(354\) 0 0
\(355\) −1.92211e11 −0.642318
\(356\) 0 0
\(357\) 1.36360e12i 4.44302i
\(358\) 0 0
\(359\) 3.13878e11i 0.997324i 0.866797 + 0.498662i \(0.166175\pi\)
−0.866797 + 0.498662i \(0.833825\pi\)
\(360\) 0 0
\(361\) −1.60627e11 −0.497779
\(362\) 0 0
\(363\) 4.41769e11 1.33541
\(364\) 0 0
\(365\) 5.63324e11 1.66127
\(366\) 0 0
\(367\) 3.91992e11 1.12792 0.563962 0.825801i \(-0.309277\pi\)
0.563962 + 0.825801i \(0.309277\pi\)
\(368\) 0 0
\(369\) 7.25645e10i 0.203754i
\(370\) 0 0
\(371\) 1.75504e11i 0.480954i
\(372\) 0 0
\(373\) −2.97656e11 −0.796205 −0.398102 0.917341i \(-0.630331\pi\)
−0.398102 + 0.917341i \(0.630331\pi\)
\(374\) 0 0
\(375\) 1.08448e11i 0.283192i
\(376\) 0 0
\(377\) 3.74377e11 + 2.98657e11i 0.954493 + 0.761443i
\(378\) 0 0
\(379\) 4.59920e11i 1.14500i −0.819904 0.572501i \(-0.805973\pi\)
0.819904 0.572501i \(-0.194027\pi\)
\(380\) 0 0
\(381\) 4.29077e11 1.04321
\(382\) 0 0
\(383\) 7.05491e10i 0.167532i −0.996485 0.0837659i \(-0.973305\pi\)
0.996485 0.0837659i \(-0.0266948\pi\)
\(384\) 0 0
\(385\) 1.61292e12i 3.74144i
\(386\) 0 0
\(387\) −2.74299e11 −0.621620
\(388\) 0 0
\(389\) 3.67385e11 0.813483 0.406742 0.913543i \(-0.366665\pi\)
0.406742 + 0.913543i \(0.366665\pi\)
\(390\) 0 0
\(391\) −3.09745e11 −0.670206
\(392\) 0 0
\(393\) −7.09533e11 −1.50040
\(394\) 0 0
\(395\) 1.12249e12i 2.32004i
\(396\) 0 0
\(397\) 5.05825e11i 1.02198i 0.859586 + 0.510991i \(0.170722\pi\)
−0.859586 + 0.510991i \(0.829278\pi\)
\(398\) 0 0
\(399\) −1.57476e12 −3.11055
\(400\) 0 0
\(401\) 3.63956e11i 0.702909i −0.936205 0.351454i \(-0.885687\pi\)
0.936205 0.351454i \(-0.114313\pi\)
\(402\) 0 0
\(403\) 4.71533e11 5.91082e11i 0.890512 1.11629i
\(404\) 0 0
\(405\) 8.40094e11i 1.55160i
\(406\) 0 0
\(407\) −4.43042e11 −0.800332
\(408\) 0 0
\(409\) 5.23141e11i 0.924409i −0.886773 0.462204i \(-0.847059\pi\)
0.886773 0.462204i \(-0.152941\pi\)
\(410\) 0 0
\(411\) 8.45416e11i 1.46144i
\(412\) 0 0
\(413\) −5.59140e11 −0.945682
\(414\) 0 0
\(415\) −6.34228e11 −1.04961
\(416\) 0 0
\(417\) 9.52884e11 1.54322
\(418\) 0 0
\(419\) 1.21423e12 1.92458 0.962292 0.272018i \(-0.0876911\pi\)
0.962292 + 0.272018i \(0.0876911\pi\)
\(420\) 0 0
\(421\) 6.82454e11i 1.05878i −0.848380 0.529388i \(-0.822422\pi\)
0.848380 0.529388i \(-0.177578\pi\)
\(422\) 0 0
\(423\) 3.98339e11i 0.604952i
\(424\) 0 0
\(425\) 1.33941e12 1.99142
\(426\) 0 0
\(427\) 1.11672e12i 1.62561i
\(428\) 0 0
\(429\) −8.52000e11 + 1.06801e12i −1.21446 + 1.52236i
\(430\) 0 0
\(431\) 4.54494e11i 0.634425i 0.948355 + 0.317212i \(0.102747\pi\)
−0.948355 + 0.317212i \(0.897253\pi\)
\(432\) 0 0
\(433\) −4.74468e10 −0.0648651 −0.0324326 0.999474i \(-0.510325\pi\)
−0.0324326 + 0.999474i \(0.510325\pi\)
\(434\) 0 0
\(435\) 1.85513e12i 2.48412i
\(436\) 0 0
\(437\) 3.57712e11i 0.469209i
\(438\) 0 0
\(439\) 1.52136e12 1.95498 0.977491 0.210978i \(-0.0676649\pi\)
0.977491 + 0.210978i \(0.0676649\pi\)
\(440\) 0 0
\(441\) −1.73660e12 −2.18638
\(442\) 0 0
\(443\) 1.37527e12 1.69656 0.848281 0.529546i \(-0.177638\pi\)
0.848281 + 0.529546i \(0.177638\pi\)
\(444\) 0 0
\(445\) −1.37895e12 −1.66697
\(446\) 0 0
\(447\) 3.29990e11i 0.390946i
\(448\) 0 0
\(449\) 1.28293e12i 1.48969i 0.667240 + 0.744843i \(0.267476\pi\)
−0.667240 + 0.744843i \(0.732524\pi\)
\(450\) 0 0
\(451\) 2.68078e11 0.305117
\(452\) 0 0
\(453\) 7.47977e11i 0.834538i
\(454\) 0 0
\(455\) 1.90992e12 + 1.52363e12i 2.08912 + 1.66659i
\(456\) 0 0
\(457\) 4.86475e11i 0.521720i 0.965377 + 0.260860i \(0.0840061\pi\)
−0.965377 + 0.260860i \(0.915994\pi\)
\(458\) 0 0
\(459\) −1.50510e11 −0.158274
\(460\) 0 0
\(461\) 2.39829e11i 0.247314i 0.992325 + 0.123657i \(0.0394622\pi\)
−0.992325 + 0.123657i \(0.960538\pi\)
\(462\) 0 0
\(463\) 4.21468e11i 0.426236i −0.977026 0.213118i \(-0.931638\pi\)
0.977026 0.213118i \(-0.0683619\pi\)
\(464\) 0 0
\(465\) 2.92896e12 2.90520
\(466\) 0 0
\(467\) 5.16039e11 0.502061 0.251031 0.967979i \(-0.419231\pi\)
0.251031 + 0.967979i \(0.419231\pi\)
\(468\) 0 0
\(469\) −1.64880e12 −1.57359
\(470\) 0 0
\(471\) −1.26039e12 −1.18008
\(472\) 0 0
\(473\) 1.01335e12i 0.930864i
\(474\) 0 0
\(475\) 1.54683e12i 1.39419i
\(476\) 0 0
\(477\) 2.78243e11 0.246088
\(478\) 0 0
\(479\) 1.02884e12i 0.892975i 0.894790 + 0.446488i \(0.147325\pi\)
−0.894790 + 0.446488i \(0.852675\pi\)
\(480\) 0 0
\(481\) 4.18515e11 5.24622e11i 0.356499 0.446883i
\(482\) 0 0
\(483\) 1.16551e12i 0.974441i
\(484\) 0 0
\(485\) −1.37914e12 −1.13180
\(486\) 0 0
\(487\) 1.26918e12i 1.02245i 0.859447 + 0.511224i \(0.170808\pi\)
−0.859447 + 0.511224i \(0.829192\pi\)
\(488\) 0 0
\(489\) 1.70509e12i 1.34852i
\(490\) 0 0
\(491\) 4.17282e11 0.324013 0.162006 0.986790i \(-0.448203\pi\)
0.162006 + 0.986790i \(0.448203\pi\)
\(492\) 0 0
\(493\) 2.79959e12 2.13444
\(494\) 0 0
\(495\) −2.55711e12 −1.91437
\(496\) 0 0
\(497\) −1.09147e12 −0.802431
\(498\) 0 0
\(499\) 1.90982e11i 0.137892i −0.997620 0.0689460i \(-0.978036\pi\)
0.997620 0.0689460i \(-0.0219636\pi\)
\(500\) 0 0
\(501\) 1.71880e12i 1.21887i
\(502\) 0 0
\(503\) −1.05092e12 −0.732007 −0.366004 0.930613i \(-0.619274\pi\)
−0.366004 + 0.930613i \(0.619274\pi\)
\(504\) 0 0
\(505\) 9.70049e11i 0.663716i
\(506\) 0 0
\(507\) −4.59837e11 2.01777e12i −0.309078 1.35624i
\(508\) 0 0
\(509\) 1.89691e12i 1.25261i −0.779577 0.626306i \(-0.784566\pi\)
0.779577 0.626306i \(-0.215434\pi\)
\(510\) 0 0
\(511\) 3.19883e12 2.07538
\(512\) 0 0
\(513\) 1.73818e11i 0.110807i
\(514\) 0 0
\(515\) 2.14766e12i 1.34534i
\(516\) 0 0
\(517\) 1.47160e12 0.905904
\(518\) 0 0
\(519\) 3.02759e12 1.83166
\(520\) 0 0
\(521\) 1.54410e12 0.918131 0.459065 0.888403i \(-0.348184\pi\)
0.459065 + 0.888403i \(0.348184\pi\)
\(522\) 0 0
\(523\) −1.17561e12 −0.687078 −0.343539 0.939138i \(-0.611626\pi\)
−0.343539 + 0.939138i \(0.611626\pi\)
\(524\) 0 0
\(525\) 5.03997e12i 2.89542i
\(526\) 0 0
\(527\) 4.42011e12i 2.49624i
\(528\) 0 0
\(529\) −1.53640e12 −0.853011
\(530\) 0 0
\(531\) 8.86457e11i 0.483874i
\(532\) 0 0
\(533\) −2.53237e11 + 3.17441e11i −0.135911 + 0.170369i
\(534\) 0 0
\(535\) 2.18792e12i 1.15462i
\(536\) 0 0
\(537\) −2.49410e12 −1.29428
\(538\) 0 0
\(539\) 6.41560e12i 3.27407i
\(540\) 0 0
\(541\) 1.04469e12i 0.524324i 0.965024 + 0.262162i \(0.0844355\pi\)
−0.965024 + 0.262162i \(0.915564\pi\)
\(542\) 0 0
\(543\) −4.38606e12 −2.16509
\(544\) 0 0
\(545\) 3.82527e12 1.85728
\(546\) 0 0
\(547\) −4.68950e11 −0.223967 −0.111983 0.993710i \(-0.535720\pi\)
−0.111983 + 0.993710i \(0.535720\pi\)
\(548\) 0 0
\(549\) 1.77044e12 0.831772
\(550\) 0 0
\(551\) 3.23313e12i 1.49431i
\(552\) 0 0
\(553\) 6.37407e12i 2.89837i
\(554\) 0 0
\(555\) 2.59964e12 1.16304
\(556\) 0 0
\(557\) 2.07740e12i 0.914475i −0.889345 0.457238i \(-0.848839\pi\)
0.889345 0.457238i \(-0.151161\pi\)
\(558\) 0 0
\(559\) 1.19995e12 + 9.57255e11i 0.519769 + 0.414643i
\(560\) 0 0
\(561\) 7.98657e12i 3.40430i
\(562\) 0 0
\(563\) −4.37887e12 −1.83685 −0.918427 0.395590i \(-0.870540\pi\)
−0.918427 + 0.395590i \(0.870540\pi\)
\(564\) 0 0
\(565\) 1.77670e12i 0.733494i
\(566\) 0 0
\(567\) 4.77047e12i 1.93837i
\(568\) 0 0
\(569\) 8.35971e11 0.334338 0.167169 0.985928i \(-0.446537\pi\)
0.167169 + 0.985928i \(0.446537\pi\)
\(570\) 0 0
\(571\) 1.78534e12 0.702845 0.351422 0.936217i \(-0.385698\pi\)
0.351422 + 0.936217i \(0.385698\pi\)
\(572\) 0 0
\(573\) 2.99107e12 1.15913
\(574\) 0 0
\(575\) −1.14484e12 −0.436758
\(576\) 0 0
\(577\) 2.36766e12i 0.889258i 0.895715 + 0.444629i \(0.146664\pi\)
−0.895715 + 0.444629i \(0.853336\pi\)
\(578\) 0 0
\(579\) 3.26684e12i 1.20802i
\(580\) 0 0
\(581\) −3.60146e12 −1.31125
\(582\) 0 0
\(583\) 1.02792e12i 0.368513i
\(584\) 0 0
\(585\) 2.41555e12 3.02797e12i 0.852737 1.06893i
\(586\) 0 0
\(587\) 2.04346e12i 0.710387i −0.934793 0.355193i \(-0.884415\pi\)
0.934793 0.355193i \(-0.115585\pi\)
\(588\) 0 0
\(589\) 5.10461e12 1.74761
\(590\) 0 0
\(591\) 5.13927e12i 1.73284i
\(592\) 0 0
\(593\) 1.34412e12i 0.446368i −0.974776 0.223184i \(-0.928355\pi\)
0.974776 0.223184i \(-0.0716450\pi\)
\(594\) 0 0
\(595\) 1.42823e13 4.67168
\(596\) 0 0
\(597\) −4.34371e12 −1.39951
\(598\) 0 0
\(599\) 1.32024e12 0.419017 0.209509 0.977807i \(-0.432814\pi\)
0.209509 + 0.977807i \(0.432814\pi\)
\(600\) 0 0
\(601\) 1.75457e12 0.548573 0.274286 0.961648i \(-0.411558\pi\)
0.274286 + 0.961648i \(0.411558\pi\)
\(602\) 0 0
\(603\) 2.61401e12i 0.805153i
\(604\) 0 0
\(605\) 4.62711e12i 1.40414i
\(606\) 0 0
\(607\) −3.85812e12 −1.15352 −0.576762 0.816912i \(-0.695684\pi\)
−0.576762 + 0.816912i \(0.695684\pi\)
\(608\) 0 0
\(609\) 1.05344e13i 3.10334i
\(610\) 0 0
\(611\) −1.39013e12 + 1.74258e12i −0.403525 + 0.505832i
\(612\) 0 0
\(613\) 1.91721e12i 0.548399i −0.961673 0.274200i \(-0.911587\pi\)
0.961673 0.274200i \(-0.0884129\pi\)
\(614\) 0 0
\(615\) −1.57300e12 −0.443395
\(616\) 0 0
\(617\) 1.66156e12i 0.461566i −0.973005 0.230783i \(-0.925871\pi\)
0.973005 0.230783i \(-0.0741288\pi\)
\(618\) 0 0
\(619\) 2.72781e12i 0.746804i −0.927670 0.373402i \(-0.878191\pi\)
0.927670 0.373402i \(-0.121809\pi\)
\(620\) 0 0
\(621\) 1.28647e11 0.0347125
\(622\) 0 0
\(623\) −7.83037e12 −2.08251
\(624\) 0 0
\(625\) −3.20980e12 −0.841429
\(626\) 0 0
\(627\) −9.22337e12 −2.38334
\(628\) 0 0
\(629\) 3.92312e12i 0.999319i
\(630\) 0 0
\(631\) 6.38718e12i 1.60390i 0.597391 + 0.801950i \(0.296204\pi\)
−0.597391 + 0.801950i \(0.703796\pi\)
\(632\) 0 0
\(633\) −7.07453e12 −1.75138
\(634\) 0 0
\(635\) 4.49417e12i 1.09690i
\(636\) 0 0
\(637\) 7.59695e12 + 6.06044e12i 1.82815 + 1.45840i
\(638\) 0 0
\(639\) 1.73041e12i 0.410577i
\(640\) 0 0
\(641\) −1.20312e12 −0.281479 −0.140740 0.990047i \(-0.544948\pi\)
−0.140740 + 0.990047i \(0.544948\pi\)
\(642\) 0 0
\(643\) 1.34420e12i 0.310110i −0.987906 0.155055i \(-0.950445\pi\)
0.987906 0.155055i \(-0.0495554\pi\)
\(644\) 0 0
\(645\) 5.94606e12i 1.35273i
\(646\) 0 0
\(647\) 4.23542e12 0.950226 0.475113 0.879925i \(-0.342407\pi\)
0.475113 + 0.879925i \(0.342407\pi\)
\(648\) 0 0
\(649\) −3.27488e12 −0.724593
\(650\) 0 0
\(651\) 1.66321e13 3.62938
\(652\) 0 0
\(653\) 1.97296e11 0.0424628 0.0212314 0.999775i \(-0.493241\pi\)
0.0212314 + 0.999775i \(0.493241\pi\)
\(654\) 0 0
\(655\) 7.43168e12i 1.57762i
\(656\) 0 0
\(657\) 5.07141e12i 1.06190i
\(658\) 0 0
\(659\) −7.35592e12 −1.51933 −0.759666 0.650313i \(-0.774638\pi\)
−0.759666 + 0.650313i \(0.774638\pi\)
\(660\) 0 0
\(661\) 3.96002e11i 0.0806847i −0.999186 0.0403424i \(-0.987155\pi\)
0.999186 0.0403424i \(-0.0128449\pi\)
\(662\) 0 0
\(663\) −9.45720e12 7.54444e12i −1.90087 1.51641i
\(664\) 0 0
\(665\) 1.64941e13i 3.27063i
\(666\) 0 0
\(667\) −2.39291e12 −0.468123
\(668\) 0 0
\(669\) 1.47167e12i 0.284049i
\(670\) 0 0
\(671\) 6.54060e12i 1.24556i
\(672\) 0 0
\(673\) −9.06698e12 −1.70371 −0.851854 0.523780i \(-0.824521\pi\)
−0.851854 + 0.523780i \(0.824521\pi\)
\(674\) 0 0
\(675\) −5.56299e11 −0.103143
\(676\) 0 0
\(677\) 8.65021e12 1.58262 0.791312 0.611413i \(-0.209398\pi\)
0.791312 + 0.611413i \(0.209398\pi\)
\(678\) 0 0
\(679\) −7.83144e12 −1.41393
\(680\) 0 0
\(681\) 9.19702e12i 1.63865i
\(682\) 0 0
\(683\) 4.27465e12i 0.751635i 0.926694 + 0.375818i \(0.122638\pi\)
−0.926694 + 0.375818i \(0.877362\pi\)
\(684\) 0 0
\(685\) −8.85492e12 −1.53666
\(686\) 0 0
\(687\) 4.58764e12i 0.785749i
\(688\) 0 0
\(689\) −1.21720e12 9.71018e11i −0.205767 0.164150i
\(690\) 0 0
\(691\) 1.85871e12i 0.310142i 0.987903 + 0.155071i \(0.0495607\pi\)
−0.987903 + 0.155071i \(0.950439\pi\)
\(692\) 0 0
\(693\) −1.45206e13 −2.39157
\(694\) 0 0
\(695\) 9.98054e12i 1.62264i
\(696\) 0 0
\(697\) 2.37383e12i 0.380979i
\(698\) 0 0
\(699\) −5.71261e12 −0.905080
\(700\) 0 0
\(701\) 7.75993e11 0.121374 0.0606871 0.998157i \(-0.480671\pi\)
0.0606871 + 0.998157i \(0.480671\pi\)
\(702\) 0 0
\(703\) 4.53066e12 0.699620
\(704\) 0 0
\(705\) −8.63490e12 −1.31646
\(706\) 0 0
\(707\) 5.50842e12i 0.829162i
\(708\) 0 0
\(709\) 1.12555e13i 1.67285i 0.548080 + 0.836426i \(0.315359\pi\)
−0.548080 + 0.836426i \(0.684641\pi\)
\(710\) 0 0
\(711\) −1.01054e13 −1.48300
\(712\) 0 0
\(713\) 3.77803e12i 0.547473i
\(714\) 0 0
\(715\) 1.11864e13 + 8.92388e12i 1.60071 + 1.27696i
\(716\) 0 0
\(717\) 2.46163e12i 0.347845i
\(718\) 0 0
\(719\) 3.31877e12 0.463124 0.231562 0.972820i \(-0.425616\pi\)
0.231562 + 0.972820i \(0.425616\pi\)
\(720\) 0 0
\(721\) 1.21955e13i 1.68070i
\(722\) 0 0
\(723\) 3.54350e12i 0.482292i
\(724\) 0 0
\(725\) 1.03475e13 1.39096
\(726\) 0 0
\(727\) −7.03586e12 −0.934141 −0.467070 0.884220i \(-0.654691\pi\)
−0.467070 + 0.884220i \(0.654691\pi\)
\(728\) 0 0
\(729\) −6.60270e12 −0.865860
\(730\) 0 0
\(731\) 8.97323e12 1.16231
\(732\) 0 0
\(733\) 4.64783e12i 0.594679i −0.954772 0.297340i \(-0.903901\pi\)
0.954772 0.297340i \(-0.0960993\pi\)
\(734\) 0 0
\(735\) 3.76448e13i 4.75786i
\(736\) 0 0
\(737\) −9.65704e12 −1.20570
\(738\) 0 0
\(739\) 7.23266e11i 0.0892068i −0.999005 0.0446034i \(-0.985798\pi\)
0.999005 0.0446034i \(-0.0142024\pi\)
\(740\) 0 0
\(741\) 8.71277e12 1.09217e13i 1.06163 1.33079i
\(742\) 0 0
\(743\) 1.36661e13i 1.64511i −0.568689 0.822553i \(-0.692549\pi\)
0.568689 0.822553i \(-0.307451\pi\)
\(744\) 0 0
\(745\) −3.45632e12 −0.411066
\(746\) 0 0
\(747\) 5.70974e12i 0.670925i
\(748\) 0 0
\(749\) 1.24241e13i 1.44243i
\(750\) 0 0
\(751\) −7.46716e12 −0.856596 −0.428298 0.903638i \(-0.640887\pi\)
−0.428298 + 0.903638i \(0.640887\pi\)
\(752\) 0 0
\(753\) 6.15235e12 0.697371
\(754\) 0 0
\(755\) −7.83434e12 −0.877488
\(756\) 0 0
\(757\) −7.27732e12 −0.805453 −0.402726 0.915320i \(-0.631937\pi\)
−0.402726 + 0.915320i \(0.631937\pi\)
\(758\) 0 0
\(759\) 6.82641e12i 0.746629i
\(760\) 0 0
\(761\) 8.06232e12i 0.871424i −0.900086 0.435712i \(-0.856497\pi\)
0.900086 0.435712i \(-0.143503\pi\)
\(762\) 0 0
\(763\) 2.17218e13 2.32025
\(764\) 0 0
\(765\) 2.26432e13i 2.39035i
\(766\) 0 0
\(767\) 3.09358e12 3.87791e12i 0.322762 0.404593i
\(768\) 0 0
\(769\) 1.05335e13i 1.08618i −0.839673 0.543092i \(-0.817254\pi\)
0.839673 0.543092i \(-0.182746\pi\)
\(770\) 0 0
\(771\) 5.66348e12 0.577217
\(772\) 0 0
\(773\) 8.85431e12i 0.891963i −0.895042 0.445982i \(-0.852855\pi\)
0.895042 0.445982i \(-0.147145\pi\)
\(774\) 0 0
\(775\) 1.63371e13i 1.62674i
\(776\) 0 0
\(777\) 1.47620e13 1.45295
\(778\) 0 0
\(779\) −2.74144e12 −0.266722
\(780\) 0 0
\(781\) −6.39273e12 −0.614832
\(782\) 0 0
\(783\) −1.16276e12 −0.110550
\(784\) 0 0
\(785\) 1.32014e13i 1.24082i
\(786\) 0 0
\(787\) 4.28652e12i 0.398308i 0.979968 + 0.199154i \(0.0638194\pi\)
−0.979968 + 0.199154i \(0.936181\pi\)
\(788\) 0 0
\(789\) 1.34409e13 1.23476
\(790\) 0 0
\(791\) 1.00890e13i 0.916334i
\(792\) 0 0
\(793\) −7.74497e12 6.17851e12i −0.695489 0.554823i
\(794\) 0 0
\(795\) 6.03155e12i 0.535521i
\(796\) 0 0
\(797\) −4.26252e12 −0.374200 −0.187100 0.982341i \(-0.559909\pi\)
−0.187100 + 0.982341i \(0.559909\pi\)
\(798\) 0 0
\(799\) 1.30310e13i 1.13114i
\(800\) 0 0
\(801\) 1.24142e13i 1.06555i
\(802\) 0 0
\(803\) 1.87355e13 1.59018
\(804\) 0 0
\(805\) −1.22076e13 −1.02459
\(806\) 0 0
\(807\) 5.37555e12 0.446161
\(808\) 0 0
\(809\) 2.81433e11 0.0230997 0.0115498 0.999933i \(-0.496323\pi\)
0.0115498 + 0.999933i \(0.496323\pi\)
\(810\) 0 0
\(811\) 5.82312e12i 0.472674i 0.971671 + 0.236337i \(0.0759469\pi\)
−0.971671 + 0.236337i \(0.924053\pi\)
\(812\) 0 0
\(813\) 1.13511e13i 0.911238i
\(814\) 0 0
\(815\) −1.78592e13 −1.41792
\(816\) 0 0
\(817\) 1.03628e13i 0.813727i
\(818\) 0 0
\(819\) 1.37167e13 1.71943e13i 1.06530 1.33539i
\(820\) 0 0
\(821\) 9.70362e12i 0.745400i 0.927952 + 0.372700i \(0.121568\pi\)
−0.927952 + 0.372700i \(0.878432\pi\)
\(822\) 0 0
\(823\) −2.07448e13 −1.57620 −0.788098 0.615550i \(-0.788934\pi\)
−0.788098 + 0.615550i \(0.788934\pi\)
\(824\) 0 0
\(825\) 2.95191e13i 2.21850i
\(826\) 0 0
\(827\) 1.79156e13i 1.33185i −0.746017 0.665927i \(-0.768036\pi\)
0.746017 0.665927i \(-0.231964\pi\)
\(828\) 0 0
\(829\) 1.33128e13 0.978983 0.489491 0.872008i \(-0.337182\pi\)
0.489491 + 0.872008i \(0.337182\pi\)
\(830\) 0 0
\(831\) 1.58558e13 1.15341
\(832\) 0 0
\(833\) 5.68100e13 4.08811
\(834\) 0 0
\(835\) −1.80028e13 −1.28160
\(836\) 0 0
\(837\) 1.83581e12i 0.129289i
\(838\) 0 0
\(839\) 2.48694e13i 1.73275i 0.499394 + 0.866375i \(0.333556\pi\)
−0.499394 + 0.866375i \(0.666444\pi\)
\(840\) 0 0
\(841\) 7.12086e12 0.490852
\(842\) 0 0
\(843\) 2.22436e13i 1.51698i
\(844\) 0 0
\(845\) −2.11342e13 + 4.81635e12i −1.42604 + 0.324985i
\(846\) 0 0
\(847\) 2.62750e13i 1.75415i
\(848\) 0 0
\(849\) 2.21634e13 1.46403
\(850\) 0 0
\(851\) 3.35324e12i 0.219170i
\(852\) 0 0
\(853\) 6.73331e12i 0.435470i 0.976008 + 0.217735i \(0.0698668\pi\)
−0.976008 + 0.217735i \(0.930133\pi\)
\(854\) 0 0
\(855\) 2.61497e13 1.67347
\(856\) 0 0
\(857\) 1.35518e13 0.858191 0.429096 0.903259i \(-0.358832\pi\)
0.429096 + 0.903259i \(0.358832\pi\)
\(858\) 0 0
\(859\) −9.79357e12 −0.613722 −0.306861 0.951754i \(-0.599279\pi\)
−0.306861 + 0.951754i \(0.599279\pi\)
\(860\) 0 0
\(861\) −8.93228e12 −0.553922
\(862\) 0 0
\(863\) 3.81725e12i 0.234262i −0.993116 0.117131i \(-0.962630\pi\)
0.993116 0.117131i \(-0.0373697\pi\)
\(864\) 0 0
\(865\) 3.17111e13i 1.92592i
\(866\) 0 0
\(867\) −4.75781e13 −2.85970
\(868\) 0 0
\(869\) 3.73329e13i 2.22076i
\(870\) 0 0
\(871\) 9.12242e12 1.14353e13i 0.537067 0.673231i
\(872\) 0 0
\(873\) 1.24159e13i 0.723461i
\(874\) 0 0
\(875\) 6.45013e12 0.371991
\(876\) 0 0
\(877\) 1.20369e13i 0.687094i −0.939135 0.343547i \(-0.888371\pi\)
0.939135 0.343547i \(-0.111629\pi\)
\(878\) 0 0
\(879\) 1.50398e13i 0.849752i
\(880\) 0 0
\(881\) 1.22937e13 0.687530 0.343765 0.939056i \(-0.388298\pi\)
0.343765 + 0.939056i \(0.388298\pi\)
\(882\) 0 0
\(883\) 2.75030e12 0.152250 0.0761249 0.997098i \(-0.475745\pi\)
0.0761249 + 0.997098i \(0.475745\pi\)
\(884\) 0 0
\(885\) 1.92160e13 1.05298
\(886\) 0 0
\(887\) 4.87054e12 0.264193 0.132096 0.991237i \(-0.457829\pi\)
0.132096 + 0.991237i \(0.457829\pi\)
\(888\) 0 0
\(889\) 2.55201e13i 1.37033i
\(890\) 0 0
\(891\) 2.79406e13i 1.48521i
\(892\) 0 0
\(893\) −1.50490e13 −0.791908
\(894\) 0 0
\(895\) 2.61233e13i 1.36089i
\(896\) 0 0
\(897\) 8.08341e12 + 6.44851e12i 0.416897 + 0.332578i
\(898\) 0 0
\(899\) 3.41472e13i 1.74356i
\(900\) 0 0
\(901\) −9.10224e12 −0.460137
\(902\) 0 0
\(903\) 3.37647e13i 1.68993i
\(904\) 0 0
\(905\) 4.59397e13i 2.27651i
\(906\) 0 0
\(907\) 1.27220e13 0.624198 0.312099 0.950050i \(-0.398968\pi\)
0.312099 + 0.950050i \(0.398968\pi\)
\(908\) 0 0
\(909\) 8.73302e12 0.424255
\(910\) 0 0
\(911\) −2.41400e13 −1.16120 −0.580598 0.814190i \(-0.697181\pi\)
−0.580598 + 0.814190i \(0.697181\pi\)
\(912\) 0 0
\(913\) −2.10938e13 −1.00470
\(914\) 0 0
\(915\) 3.83782e13i 1.81005i
\(916\) 0 0
\(917\) 4.22008e13i 1.97087i
\(918\) 0 0
\(919\) −2.45604e13 −1.13584 −0.567918 0.823085i \(-0.692251\pi\)
−0.567918 + 0.823085i \(0.692251\pi\)
\(920\) 0 0
\(921\) 3.31271e13i 1.51710i
\(922\) 0 0
\(923\) 6.03883e12 7.56987e12i 0.273870 0.343305i
\(924\) 0 0
\(925\) 1.45002e13i 0.651233i
\(926\) 0 0
\(927\) −1.93347e13 −0.859959
\(928\) 0 0
\(929\) 2.29424e13i 1.01057i −0.862952 0.505287i \(-0.831387\pi\)
0.862952 0.505287i \(-0.168613\pi\)
\(930\) 0 0
\(931\) 6.56076e13i 2.86207i
\(932\) 0 0
\(933\) 5.24469e12 0.226596
\(934\) 0 0
\(935\) 8.36517e13 3.57950
\(936\) 0 0
\(937\) −3.18986e13 −1.35190 −0.675949 0.736949i \(-0.736266\pi\)
−0.675949 + 0.736949i \(0.736266\pi\)
\(938\) 0 0
\(939\) 6.08609e13 2.55472
\(940\) 0 0
\(941\) 3.41587e13i 1.42020i 0.704102 + 0.710098i \(0.251350\pi\)
−0.704102 + 0.710098i \(0.748650\pi\)
\(942\) 0 0
\(943\) 2.02899e12i 0.0835561i
\(944\) 0 0
\(945\) −5.93190e12 −0.241964
\(946\) 0 0
\(947\) 2.79320e13i 1.12857i 0.825581 + 0.564284i \(0.190848\pi\)
−0.825581 + 0.564284i \(0.809152\pi\)
\(948\) 0 0
\(949\) −1.76983e13 + 2.21855e13i −0.708329 + 0.887913i
\(950\) 0 0
\(951\) 2.94180e13i 1.16627i
\(952\) 0 0
\(953\) −2.75447e13 −1.08173 −0.540866 0.841109i \(-0.681903\pi\)
−0.540866 + 0.841109i \(0.681903\pi\)
\(954\) 0 0
\(955\) 3.13286e13i 1.21878i
\(956\) 0 0
\(957\) 6.16997e13i 2.37782i
\(958\) 0 0
\(959\) −5.02826e13 −1.91970
\(960\) 0 0
\(961\) −2.74735e13 −1.03910
\(962\) 0 0
\(963\) 1.96971e13 0.738046
\(964\) 0 0
\(965\) −3.42170e13 −1.27019
\(966\) 0 0
\(967\) 6.06675e12i 0.223119i 0.993758 + 0.111560i \(0.0355846\pi\)
−0.993758 + 0.111560i \(0.964415\pi\)
\(968\) 0 0
\(969\) 8.16727e13i 2.97591i
\(970\) 0 0
\(971\) 3.40239e13 1.22828 0.614139 0.789198i \(-0.289503\pi\)
0.614139 + 0.789198i \(0.289503\pi\)
\(972\) 0 0
\(973\) 5.66745e13i 2.02712i
\(974\) 0 0
\(975\) −3.49546e13 2.78849e13i −1.23875 0.988208i
\(976\) 0 0
\(977\) 4.23784e13i 1.48806i −0.668148 0.744028i \(-0.732913\pi\)
0.668148 0.744028i \(-0.267087\pi\)
\(978\) 0 0
\(979\) −4.58625e13 −1.59564
\(980\) 0 0
\(981\) 3.44376e13i 1.18720i
\(982\) 0 0
\(983\) 2.66982e13i 0.911992i 0.889982 + 0.455996i \(0.150717\pi\)
−0.889982 + 0.455996i \(0.849283\pi\)
\(984\) 0 0
\(985\) 5.38289e13 1.82202
\(986\) 0 0
\(987\) −4.90333e13 −1.64461
\(988\) 0 0
\(989\) −7.66974e12 −0.254916
\(990\) 0 0
\(991\) −4.43518e13 −1.46076 −0.730382 0.683039i \(-0.760658\pi\)
−0.730382 + 0.683039i \(0.760658\pi\)
\(992\) 0 0
\(993\) 6.29211e13i 2.05364i
\(994\) 0 0
\(995\) 4.54962e13i 1.47154i
\(996\) 0 0
\(997\) 2.32994e13 0.746821 0.373410 0.927666i \(-0.378188\pi\)
0.373410 + 0.927666i \(0.378188\pi\)
\(998\) 0 0
\(999\) 1.62939e12i 0.0517585i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.5 32
4.3 odd 2 104.10.f.a.25.28 yes 32
13.12 even 2 inner 208.10.f.d.129.6 32
52.51 odd 2 104.10.f.a.25.27 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.27 32 52.51 odd 2
104.10.f.a.25.28 yes 32 4.3 odd 2
208.10.f.d.129.5 32 1.1 even 1 trivial
208.10.f.d.129.6 32 13.12 even 2 inner