Properties

Label 208.10.f.d.129.29
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.29
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.30

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+241.055 q^{3} -999.605i q^{5} +3393.35i q^{7} +38424.4 q^{9} +54529.9i q^{11} +(-99437.9 - 26769.3i) q^{13} -240960. i q^{15} +643353. q^{17} -1.06231e6i q^{19} +817984. i q^{21} -781294. q^{23} +953914. q^{25} +4.51771e6 q^{27} +1.44821e6 q^{29} -453270. i q^{31} +1.31447e7i q^{33} +3.39202e6 q^{35} +1.33508e7i q^{37} +(-2.39700e7 - 6.45288e6i) q^{39} -2.91030e7i q^{41} +1.95194e7 q^{43} -3.84093e7i q^{45} +5.93105e7i q^{47} +2.88388e7 q^{49} +1.55083e8 q^{51} +9.92934e7 q^{53} +5.45084e7 q^{55} -2.56076e8i q^{57} +3.96876e7i q^{59} +9.22380e7 q^{61} +1.30388e8i q^{63} +(-2.67588e7 + 9.93987e7i) q^{65} -1.69984e8i q^{67} -1.88335e8 q^{69} +7.66552e7i q^{71} -2.76853e8i q^{73} +2.29946e8 q^{75} -1.85039e8 q^{77} -2.12394e8 q^{79} +3.32709e8 q^{81} +1.34193e8i q^{83} -6.43100e8i q^{85} +3.49098e8 q^{87} +5.95176e8i q^{89} +(9.08378e7 - 3.37428e8i) q^{91} -1.09263e8i q^{93} -1.06189e9 q^{95} +3.79670e8i q^{97} +2.09528e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 241.055 1.71819 0.859093 0.511819i \(-0.171028\pi\)
0.859093 + 0.511819i \(0.171028\pi\)
\(4\) 0 0
\(5\) 999.605i 0.715259i −0.933863 0.357630i \(-0.883585\pi\)
0.933863 0.357630i \(-0.116415\pi\)
\(6\) 0 0
\(7\) 3393.35i 0.534180i 0.963672 + 0.267090i \(0.0860622\pi\)
−0.963672 + 0.267090i \(0.913938\pi\)
\(8\) 0 0
\(9\) 38424.4 1.95216
\(10\) 0 0
\(11\) 54529.9i 1.12297i 0.827487 + 0.561485i \(0.189770\pi\)
−0.827487 + 0.561485i \(0.810230\pi\)
\(12\) 0 0
\(13\) −99437.9 26769.3i −0.965622 0.259952i
\(14\) 0 0
\(15\) 240960.i 1.22895i
\(16\) 0 0
\(17\) 643353. 1.86823 0.934113 0.356977i \(-0.116193\pi\)
0.934113 + 0.356977i \(0.116193\pi\)
\(18\) 0 0
\(19\) 1.06231e6i 1.87008i −0.354537 0.935042i \(-0.615362\pi\)
0.354537 0.935042i \(-0.384638\pi\)
\(20\) 0 0
\(21\) 817984.i 0.917822i
\(22\) 0 0
\(23\) −781294. −0.582156 −0.291078 0.956699i \(-0.594014\pi\)
−0.291078 + 0.956699i \(0.594014\pi\)
\(24\) 0 0
\(25\) 953914. 0.488404
\(26\) 0 0
\(27\) 4.51771e6 1.63599
\(28\) 0 0
\(29\) 1.44821e6 0.380225 0.190112 0.981762i \(-0.439115\pi\)
0.190112 + 0.981762i \(0.439115\pi\)
\(30\) 0 0
\(31\) 453270.i 0.0881514i −0.999028 0.0440757i \(-0.985966\pi\)
0.999028 0.0440757i \(-0.0140343\pi\)
\(32\) 0 0
\(33\) 1.31447e7i 1.92947i
\(34\) 0 0
\(35\) 3.39202e6 0.382078
\(36\) 0 0
\(37\) 1.33508e7i 1.17111i 0.810631 + 0.585557i \(0.199124\pi\)
−0.810631 + 0.585557i \(0.800876\pi\)
\(38\) 0 0
\(39\) −2.39700e7 6.45288e6i −1.65912 0.446645i
\(40\) 0 0
\(41\) 2.91030e7i 1.60846i −0.594319 0.804230i \(-0.702578\pi\)
0.594319 0.804230i \(-0.297422\pi\)
\(42\) 0 0
\(43\) 1.95194e7 0.870680 0.435340 0.900266i \(-0.356628\pi\)
0.435340 + 0.900266i \(0.356628\pi\)
\(44\) 0 0
\(45\) 3.84093e7i 1.39630i
\(46\) 0 0
\(47\) 5.93105e7i 1.77293i 0.462798 + 0.886464i \(0.346845\pi\)
−0.462798 + 0.886464i \(0.653155\pi\)
\(48\) 0 0
\(49\) 2.88388e7 0.714651
\(50\) 0 0
\(51\) 1.55083e8 3.20996
\(52\) 0 0
\(53\) 9.92934e7 1.72854 0.864269 0.503029i \(-0.167781\pi\)
0.864269 + 0.503029i \(0.167781\pi\)
\(54\) 0 0
\(55\) 5.45084e7 0.803215
\(56\) 0 0
\(57\) 2.56076e8i 3.21315i
\(58\) 0 0
\(59\) 3.96876e7i 0.426403i 0.977008 + 0.213202i \(0.0683891\pi\)
−0.977008 + 0.213202i \(0.931611\pi\)
\(60\) 0 0
\(61\) 9.22380e7 0.852954 0.426477 0.904498i \(-0.359754\pi\)
0.426477 + 0.904498i \(0.359754\pi\)
\(62\) 0 0
\(63\) 1.30388e8i 1.04281i
\(64\) 0 0
\(65\) −2.67588e7 + 9.93987e7i −0.185933 + 0.690670i
\(66\) 0 0
\(67\) 1.69984e8i 1.03055i −0.857024 0.515276i \(-0.827689\pi\)
0.857024 0.515276i \(-0.172311\pi\)
\(68\) 0 0
\(69\) −1.88335e8 −1.00025
\(70\) 0 0
\(71\) 7.66552e7i 0.357996i 0.983849 + 0.178998i \(0.0572856\pi\)
−0.983849 + 0.178998i \(0.942714\pi\)
\(72\) 0 0
\(73\) 2.76853e8i 1.14103i −0.821287 0.570515i \(-0.806744\pi\)
0.821287 0.570515i \(-0.193256\pi\)
\(74\) 0 0
\(75\) 2.29946e8 0.839169
\(76\) 0 0
\(77\) −1.85039e8 −0.599868
\(78\) 0 0
\(79\) −2.12394e8 −0.613508 −0.306754 0.951789i \(-0.599243\pi\)
−0.306754 + 0.951789i \(0.599243\pi\)
\(80\) 0 0
\(81\) 3.32709e8 0.858779
\(82\) 0 0
\(83\) 1.34193e8i 0.310368i 0.987886 + 0.155184i \(0.0495971\pi\)
−0.987886 + 0.155184i \(0.950403\pi\)
\(84\) 0 0
\(85\) 6.43100e8i 1.33627i
\(86\) 0 0
\(87\) 3.49098e8 0.653297
\(88\) 0 0
\(89\) 5.95176e8i 1.00552i 0.864426 + 0.502759i \(0.167682\pi\)
−0.864426 + 0.502759i \(0.832318\pi\)
\(90\) 0 0
\(91\) 9.08378e7 3.37428e8i 0.138861 0.515816i
\(92\) 0 0
\(93\) 1.09263e8i 0.151461i
\(94\) 0 0
\(95\) −1.06189e9 −1.33759
\(96\) 0 0
\(97\) 3.79670e8i 0.435445i 0.976011 + 0.217723i \(0.0698628\pi\)
−0.976011 + 0.217723i \(0.930137\pi\)
\(98\) 0 0
\(99\) 2.09528e9i 2.19222i
\(100\) 0 0
\(101\) 5.16174e7 0.0493571 0.0246786 0.999695i \(-0.492144\pi\)
0.0246786 + 0.999695i \(0.492144\pi\)
\(102\) 0 0
\(103\) 1.30859e9 1.14561 0.572804 0.819692i \(-0.305856\pi\)
0.572804 + 0.819692i \(0.305856\pi\)
\(104\) 0 0
\(105\) 8.17662e8 0.656481
\(106\) 0 0
\(107\) 2.93978e8 0.216814 0.108407 0.994107i \(-0.465425\pi\)
0.108407 + 0.994107i \(0.465425\pi\)
\(108\) 0 0
\(109\) 1.71333e9i 1.16258i −0.813698 0.581288i \(-0.802549\pi\)
0.813698 0.581288i \(-0.197451\pi\)
\(110\) 0 0
\(111\) 3.21827e9i 2.01219i
\(112\) 0 0
\(113\) −1.39521e9 −0.804983 −0.402492 0.915424i \(-0.631856\pi\)
−0.402492 + 0.915424i \(0.631856\pi\)
\(114\) 0 0
\(115\) 7.80986e8i 0.416392i
\(116\) 0 0
\(117\) −3.82085e9 1.02860e9i −1.88505 0.507468i
\(118\) 0 0
\(119\) 2.18313e9i 0.997970i
\(120\) 0 0
\(121\) −6.15568e8 −0.261061
\(122\) 0 0
\(123\) 7.01541e9i 2.76363i
\(124\) 0 0
\(125\) 2.90589e9i 1.06459i
\(126\) 0 0
\(127\) 1.91222e9 0.652260 0.326130 0.945325i \(-0.394255\pi\)
0.326130 + 0.945325i \(0.394255\pi\)
\(128\) 0 0
\(129\) 4.70525e9 1.49599
\(130\) 0 0
\(131\) −2.29794e9 −0.681739 −0.340869 0.940111i \(-0.610721\pi\)
−0.340869 + 0.940111i \(0.610721\pi\)
\(132\) 0 0
\(133\) 3.60480e9 0.998962
\(134\) 0 0
\(135\) 4.51593e9i 1.17016i
\(136\) 0 0
\(137\) 3.65972e9i 0.887574i −0.896132 0.443787i \(-0.853635\pi\)
0.896132 0.443787i \(-0.146365\pi\)
\(138\) 0 0
\(139\) −3.01567e9 −0.685200 −0.342600 0.939481i \(-0.611308\pi\)
−0.342600 + 0.939481i \(0.611308\pi\)
\(140\) 0 0
\(141\) 1.42971e10i 3.04622i
\(142\) 0 0
\(143\) 1.45973e9 5.42235e9i 0.291918 1.08436i
\(144\) 0 0
\(145\) 1.44764e9i 0.271959i
\(146\) 0 0
\(147\) 6.95172e9 1.22790
\(148\) 0 0
\(149\) 4.56748e9i 0.759168i 0.925157 + 0.379584i \(0.123933\pi\)
−0.925157 + 0.379584i \(0.876067\pi\)
\(150\) 0 0
\(151\) 6.66876e9i 1.04388i −0.852984 0.521938i \(-0.825209\pi\)
0.852984 0.521938i \(-0.174791\pi\)
\(152\) 0 0
\(153\) 2.47205e10 3.64708
\(154\) 0 0
\(155\) −4.53091e8 −0.0630511
\(156\) 0 0
\(157\) −1.44990e9 −0.190454 −0.0952269 0.995456i \(-0.530358\pi\)
−0.0952269 + 0.995456i \(0.530358\pi\)
\(158\) 0 0
\(159\) 2.39352e10 2.96995
\(160\) 0 0
\(161\) 2.65121e9i 0.310976i
\(162\) 0 0
\(163\) 1.29657e9i 0.143864i −0.997410 0.0719322i \(-0.977083\pi\)
0.997410 0.0719322i \(-0.0229165\pi\)
\(164\) 0 0
\(165\) 1.31395e10 1.38007
\(166\) 0 0
\(167\) 3.52591e9i 0.350790i 0.984498 + 0.175395i \(0.0561203\pi\)
−0.984498 + 0.175395i \(0.943880\pi\)
\(168\) 0 0
\(169\) 9.17131e9 + 5.32377e9i 0.864850 + 0.502030i
\(170\) 0 0
\(171\) 4.08188e10i 3.65071i
\(172\) 0 0
\(173\) 9.73757e9 0.826500 0.413250 0.910618i \(-0.364394\pi\)
0.413250 + 0.910618i \(0.364394\pi\)
\(174\) 0 0
\(175\) 3.23697e9i 0.260896i
\(176\) 0 0
\(177\) 9.56688e9i 0.732640i
\(178\) 0 0
\(179\) 1.71262e10 1.24687 0.623436 0.781874i \(-0.285736\pi\)
0.623436 + 0.781874i \(0.285736\pi\)
\(180\) 0 0
\(181\) −2.14459e10 −1.48522 −0.742611 0.669723i \(-0.766413\pi\)
−0.742611 + 0.669723i \(0.766413\pi\)
\(182\) 0 0
\(183\) 2.22344e10 1.46553
\(184\) 0 0
\(185\) 1.33455e10 0.837650
\(186\) 0 0
\(187\) 3.50820e10i 2.09796i
\(188\) 0 0
\(189\) 1.53302e10i 0.873916i
\(190\) 0 0
\(191\) −1.37072e10 −0.745242 −0.372621 0.927984i \(-0.621541\pi\)
−0.372621 + 0.927984i \(0.621541\pi\)
\(192\) 0 0
\(193\) 9.25493e9i 0.480137i −0.970756 0.240069i \(-0.922830\pi\)
0.970756 0.240069i \(-0.0771699\pi\)
\(194\) 0 0
\(195\) −6.45033e9 + 2.39605e10i −0.319467 + 1.18670i
\(196\) 0 0
\(197\) 3.37885e10i 1.59835i −0.601101 0.799173i \(-0.705271\pi\)
0.601101 0.799173i \(-0.294729\pi\)
\(198\) 0 0
\(199\) −1.41480e10 −0.639524 −0.319762 0.947498i \(-0.603603\pi\)
−0.319762 + 0.947498i \(0.603603\pi\)
\(200\) 0 0
\(201\) 4.09754e10i 1.77068i
\(202\) 0 0
\(203\) 4.91429e9i 0.203109i
\(204\) 0 0
\(205\) −2.90915e10 −1.15047
\(206\) 0 0
\(207\) −3.00208e10 −1.13646
\(208\) 0 0
\(209\) 5.79278e10 2.10005
\(210\) 0 0
\(211\) 4.50949e10 1.56623 0.783116 0.621875i \(-0.213629\pi\)
0.783116 + 0.621875i \(0.213629\pi\)
\(212\) 0 0
\(213\) 1.84781e10i 0.615105i
\(214\) 0 0
\(215\) 1.95117e10i 0.622762i
\(216\) 0 0
\(217\) 1.53811e9 0.0470888
\(218\) 0 0
\(219\) 6.67369e10i 1.96050i
\(220\) 0 0
\(221\) −6.39737e10 1.72221e10i −1.80400 0.485648i
\(222\) 0 0
\(223\) 1.41963e10i 0.384417i 0.981354 + 0.192208i \(0.0615650\pi\)
−0.981354 + 0.192208i \(0.938435\pi\)
\(224\) 0 0
\(225\) 3.66536e10 0.953444
\(226\) 0 0
\(227\) 3.49962e10i 0.874791i 0.899269 + 0.437395i \(0.144099\pi\)
−0.899269 + 0.437395i \(0.855901\pi\)
\(228\) 0 0
\(229\) 7.84361e10i 1.88476i 0.334541 + 0.942381i \(0.391419\pi\)
−0.334541 + 0.942381i \(0.608581\pi\)
\(230\) 0 0
\(231\) −4.46047e10 −1.03069
\(232\) 0 0
\(233\) −2.76296e10 −0.614147 −0.307074 0.951686i \(-0.599350\pi\)
−0.307074 + 0.951686i \(0.599350\pi\)
\(234\) 0 0
\(235\) 5.92871e10 1.26810
\(236\) 0 0
\(237\) −5.11986e10 −1.05412
\(238\) 0 0
\(239\) 2.97447e10i 0.589683i 0.955546 + 0.294842i \(0.0952669\pi\)
−0.955546 + 0.294842i \(0.904733\pi\)
\(240\) 0 0
\(241\) 3.45661e10i 0.660046i −0.943973 0.330023i \(-0.892944\pi\)
0.943973 0.330023i \(-0.107056\pi\)
\(242\) 0 0
\(243\) −8.72113e9 −0.160452
\(244\) 0 0
\(245\) 2.88274e10i 0.511161i
\(246\) 0 0
\(247\) −2.84374e10 + 1.05634e11i −0.486131 + 1.80579i
\(248\) 0 0
\(249\) 3.23478e10i 0.533271i
\(250\) 0 0
\(251\) −4.66764e10 −0.742276 −0.371138 0.928578i \(-0.621032\pi\)
−0.371138 + 0.928578i \(0.621032\pi\)
\(252\) 0 0
\(253\) 4.26039e10i 0.653743i
\(254\) 0 0
\(255\) 1.55022e11i 2.29595i
\(256\) 0 0
\(257\) −3.62948e10 −0.518973 −0.259487 0.965747i \(-0.583553\pi\)
−0.259487 + 0.965747i \(0.583553\pi\)
\(258\) 0 0
\(259\) −4.53039e10 −0.625586
\(260\) 0 0
\(261\) 5.56466e10 0.742261
\(262\) 0 0
\(263\) 5.40730e9 0.0696914 0.0348457 0.999393i \(-0.488906\pi\)
0.0348457 + 0.999393i \(0.488906\pi\)
\(264\) 0 0
\(265\) 9.92543e10i 1.23635i
\(266\) 0 0
\(267\) 1.43470e11i 1.72767i
\(268\) 0 0
\(269\) −1.36543e11 −1.58995 −0.794977 0.606639i \(-0.792517\pi\)
−0.794977 + 0.606639i \(0.792517\pi\)
\(270\) 0 0
\(271\) 7.07968e10i 0.797355i 0.917091 + 0.398678i \(0.130531\pi\)
−0.917091 + 0.398678i \(0.869469\pi\)
\(272\) 0 0
\(273\) 2.18969e10 8.13387e10i 0.238589 0.886268i
\(274\) 0 0
\(275\) 5.20169e10i 0.548463i
\(276\) 0 0
\(277\) −1.45023e9 −0.0148005 −0.00740027 0.999973i \(-0.502356\pi\)
−0.00740027 + 0.999973i \(0.502356\pi\)
\(278\) 0 0
\(279\) 1.74166e10i 0.172086i
\(280\) 0 0
\(281\) 1.15279e11i 1.10299i 0.834179 + 0.551494i \(0.185942\pi\)
−0.834179 + 0.551494i \(0.814058\pi\)
\(282\) 0 0
\(283\) −7.85405e10 −0.727872 −0.363936 0.931424i \(-0.618567\pi\)
−0.363936 + 0.931424i \(0.618567\pi\)
\(284\) 0 0
\(285\) −2.55975e11 −2.29824
\(286\) 0 0
\(287\) 9.87567e10 0.859208
\(288\) 0 0
\(289\) 2.95316e11 2.49027
\(290\) 0 0
\(291\) 9.15213e10i 0.748176i
\(292\) 0 0
\(293\) 1.83406e11i 1.45382i −0.686734 0.726909i \(-0.740956\pi\)
0.686734 0.726909i \(-0.259044\pi\)
\(294\) 0 0
\(295\) 3.96719e10 0.304989
\(296\) 0 0
\(297\) 2.46351e11i 1.83717i
\(298\) 0 0
\(299\) 7.76902e10 + 2.09147e10i 0.562142 + 0.151332i
\(300\) 0 0
\(301\) 6.62363e10i 0.465100i
\(302\) 0 0
\(303\) 1.24426e10 0.0848047
\(304\) 0 0
\(305\) 9.22016e10i 0.610084i
\(306\) 0 0
\(307\) 1.82595e11i 1.17319i 0.809882 + 0.586593i \(0.199531\pi\)
−0.809882 + 0.586593i \(0.800469\pi\)
\(308\) 0 0
\(309\) 3.15442e11 1.96837
\(310\) 0 0
\(311\) −2.19529e10 −0.133067 −0.0665335 0.997784i \(-0.521194\pi\)
−0.0665335 + 0.997784i \(0.521194\pi\)
\(312\) 0 0
\(313\) −1.74741e11 −1.02907 −0.514535 0.857469i \(-0.672036\pi\)
−0.514535 + 0.857469i \(0.672036\pi\)
\(314\) 0 0
\(315\) 1.30336e11 0.745878
\(316\) 0 0
\(317\) 2.20673e11i 1.22739i −0.789544 0.613695i \(-0.789683\pi\)
0.789544 0.613695i \(-0.210317\pi\)
\(318\) 0 0
\(319\) 7.89707e10i 0.426981i
\(320\) 0 0
\(321\) 7.08649e10 0.372527
\(322\) 0 0
\(323\) 6.83442e11i 3.49374i
\(324\) 0 0
\(325\) −9.48552e10 2.55356e10i −0.471613 0.126961i
\(326\) 0 0
\(327\) 4.13006e11i 1.99752i
\(328\) 0 0
\(329\) −2.01261e11 −0.947063
\(330\) 0 0
\(331\) 2.69594e11i 1.23448i −0.786774 0.617241i \(-0.788250\pi\)
0.786774 0.617241i \(-0.211750\pi\)
\(332\) 0 0
\(333\) 5.12996e11i 2.28620i
\(334\) 0 0
\(335\) −1.69916e11 −0.737113
\(336\) 0 0
\(337\) 6.80145e10 0.287255 0.143627 0.989632i \(-0.454123\pi\)
0.143627 + 0.989632i \(0.454123\pi\)
\(338\) 0 0
\(339\) −3.36322e11 −1.38311
\(340\) 0 0
\(341\) 2.47168e10 0.0989914
\(342\) 0 0
\(343\) 2.34794e11i 0.915933i
\(344\) 0 0
\(345\) 1.88260e11i 0.715440i
\(346\) 0 0
\(347\) −3.28948e11 −1.21799 −0.608997 0.793173i \(-0.708428\pi\)
−0.608997 + 0.793173i \(0.708428\pi\)
\(348\) 0 0
\(349\) 3.68799e11i 1.33068i 0.746539 + 0.665342i \(0.231714\pi\)
−0.746539 + 0.665342i \(0.768286\pi\)
\(350\) 0 0
\(351\) −4.49232e11 1.20936e11i −1.57975 0.425279i
\(352\) 0 0
\(353\) 5.28320e11i 1.81097i 0.424381 + 0.905484i \(0.360492\pi\)
−0.424381 + 0.905484i \(0.639508\pi\)
\(354\) 0 0
\(355\) 7.66249e10 0.256060
\(356\) 0 0
\(357\) 5.26253e11i 1.71470i
\(358\) 0 0
\(359\) 3.00778e11i 0.955697i 0.878442 + 0.477849i \(0.158583\pi\)
−0.878442 + 0.477849i \(0.841417\pi\)
\(360\) 0 0
\(361\) −8.05820e11 −2.49721
\(362\) 0 0
\(363\) −1.48386e11 −0.448551
\(364\) 0 0
\(365\) −2.76744e11 −0.816133
\(366\) 0 0
\(367\) −4.73248e11 −1.36173 −0.680866 0.732408i \(-0.738397\pi\)
−0.680866 + 0.732408i \(0.738397\pi\)
\(368\) 0 0
\(369\) 1.11827e12i 3.13998i
\(370\) 0 0
\(371\) 3.36938e11i 0.923352i
\(372\) 0 0
\(373\) −4.68473e10 −0.125313 −0.0626563 0.998035i \(-0.519957\pi\)
−0.0626563 + 0.998035i \(0.519957\pi\)
\(374\) 0 0
\(375\) 7.00479e11i 1.82917i
\(376\) 0 0
\(377\) −1.44007e11 3.87676e10i −0.367153 0.0988399i
\(378\) 0 0
\(379\) 1.03319e11i 0.257220i 0.991695 + 0.128610i \(0.0410515\pi\)
−0.991695 + 0.128610i \(0.958948\pi\)
\(380\) 0 0
\(381\) 4.60949e11 1.12070
\(382\) 0 0
\(383\) 5.99429e11i 1.42345i 0.702457 + 0.711726i \(0.252086\pi\)
−0.702457 + 0.711726i \(0.747914\pi\)
\(384\) 0 0
\(385\) 1.84966e11i 0.429062i
\(386\) 0 0
\(387\) 7.50022e11 1.69971
\(388\) 0 0
\(389\) 4.83508e11 1.07061 0.535304 0.844659i \(-0.320197\pi\)
0.535304 + 0.844659i \(0.320197\pi\)
\(390\) 0 0
\(391\) −5.02648e11 −1.08760
\(392\) 0 0
\(393\) −5.53930e11 −1.17135
\(394\) 0 0
\(395\) 2.12310e11i 0.438817i
\(396\) 0 0
\(397\) 9.08247e11i 1.83504i −0.397685 0.917522i \(-0.630186\pi\)
0.397685 0.917522i \(-0.369814\pi\)
\(398\) 0 0
\(399\) 8.68955e11 1.71640
\(400\) 0 0
\(401\) 6.49944e11i 1.25524i 0.778521 + 0.627619i \(0.215970\pi\)
−0.778521 + 0.627619i \(0.784030\pi\)
\(402\) 0 0
\(403\) −1.21337e10 + 4.50722e10i −0.0229151 + 0.0851209i
\(404\) 0 0
\(405\) 3.32577e11i 0.614250i
\(406\) 0 0
\(407\) −7.28017e11 −1.31512
\(408\) 0 0
\(409\) 1.74848e11i 0.308962i −0.987996 0.154481i \(-0.950629\pi\)
0.987996 0.154481i \(-0.0493705\pi\)
\(410\) 0 0
\(411\) 8.82192e11i 1.52502i
\(412\) 0 0
\(413\) −1.34674e11 −0.227776
\(414\) 0 0
\(415\) 1.34140e11 0.221994
\(416\) 0 0
\(417\) −7.26942e11 −1.17730
\(418\) 0 0
\(419\) 6.33675e11 1.00439 0.502196 0.864754i \(-0.332525\pi\)
0.502196 + 0.864754i \(0.332525\pi\)
\(420\) 0 0
\(421\) 2.62942e11i 0.407934i 0.978978 + 0.203967i \(0.0653835\pi\)
−0.978978 + 0.203967i \(0.934616\pi\)
\(422\) 0 0
\(423\) 2.27897e12i 3.46104i
\(424\) 0 0
\(425\) 6.13704e11 0.912449
\(426\) 0 0
\(427\) 3.12996e11i 0.455632i
\(428\) 0 0
\(429\) 3.51875e11 1.30708e12i 0.501569 1.86314i
\(430\) 0 0
\(431\) 5.32577e11i 0.743421i −0.928349 0.371710i \(-0.878771\pi\)
0.928349 0.371710i \(-0.121229\pi\)
\(432\) 0 0
\(433\) −1.15456e12 −1.57842 −0.789210 0.614123i \(-0.789510\pi\)
−0.789210 + 0.614123i \(0.789510\pi\)
\(434\) 0 0
\(435\) 3.48960e11i 0.467277i
\(436\) 0 0
\(437\) 8.29978e11i 1.08868i
\(438\) 0 0
\(439\) −6.73385e11 −0.865313 −0.432657 0.901559i \(-0.642424\pi\)
−0.432657 + 0.901559i \(0.642424\pi\)
\(440\) 0 0
\(441\) 1.10811e12 1.39512
\(442\) 0 0
\(443\) −1.00519e12 −1.24003 −0.620015 0.784590i \(-0.712874\pi\)
−0.620015 + 0.784590i \(0.712874\pi\)
\(444\) 0 0
\(445\) 5.94941e11 0.719207
\(446\) 0 0
\(447\) 1.10101e12i 1.30439i
\(448\) 0 0
\(449\) 6.78172e11i 0.787465i 0.919225 + 0.393733i \(0.128816\pi\)
−0.919225 + 0.393733i \(0.871184\pi\)
\(450\) 0 0
\(451\) 1.58698e12 1.80625
\(452\) 0 0
\(453\) 1.60754e12i 1.79357i
\(454\) 0 0
\(455\) −3.37295e11 9.08020e10i −0.368942 0.0993217i
\(456\) 0 0
\(457\) 2.63711e11i 0.282817i 0.989951 + 0.141408i \(0.0451631\pi\)
−0.989951 + 0.141408i \(0.954837\pi\)
\(458\) 0 0
\(459\) 2.90649e12 3.05641
\(460\) 0 0
\(461\) 2.80546e11i 0.289301i −0.989483 0.144650i \(-0.953794\pi\)
0.989483 0.144650i \(-0.0462057\pi\)
\(462\) 0 0
\(463\) 9.80047e11i 0.991134i −0.868570 0.495567i \(-0.834960\pi\)
0.868570 0.495567i \(-0.165040\pi\)
\(464\) 0 0
\(465\) −1.09220e11 −0.108334
\(466\) 0 0
\(467\) 9.71824e11 0.945500 0.472750 0.881197i \(-0.343261\pi\)
0.472750 + 0.881197i \(0.343261\pi\)
\(468\) 0 0
\(469\) 5.76814e11 0.550501
\(470\) 0 0
\(471\) −3.49506e11 −0.327235
\(472\) 0 0
\(473\) 1.06439e12i 0.977747i
\(474\) 0 0
\(475\) 1.01335e12i 0.913356i
\(476\) 0 0
\(477\) 3.81529e12 3.37439
\(478\) 0 0
\(479\) 1.57710e12i 1.36883i −0.729092 0.684416i \(-0.760057\pi\)
0.729092 0.684416i \(-0.239943\pi\)
\(480\) 0 0
\(481\) 3.57391e11 1.32757e12i 0.304433 1.13085i
\(482\) 0 0
\(483\) 6.39086e11i 0.534315i
\(484\) 0 0
\(485\) 3.79520e11 0.311456
\(486\) 0 0
\(487\) 3.96093e11i 0.319093i 0.987190 + 0.159546i \(0.0510031\pi\)
−0.987190 + 0.159546i \(0.948997\pi\)
\(488\) 0 0
\(489\) 3.12546e11i 0.247186i
\(490\) 0 0
\(491\) −1.23825e12 −0.961479 −0.480740 0.876863i \(-0.659632\pi\)
−0.480740 + 0.876863i \(0.659632\pi\)
\(492\) 0 0
\(493\) 9.31710e11 0.710346
\(494\) 0 0
\(495\) 2.09446e12 1.56801
\(496\) 0 0
\(497\) −2.60118e11 −0.191235
\(498\) 0 0
\(499\) 1.28906e12i 0.930723i 0.885121 + 0.465361i \(0.154076\pi\)
−0.885121 + 0.465361i \(0.845924\pi\)
\(500\) 0 0
\(501\) 8.49939e11i 0.602723i
\(502\) 0 0
\(503\) 3.21065e11 0.223634 0.111817 0.993729i \(-0.464333\pi\)
0.111817 + 0.993729i \(0.464333\pi\)
\(504\) 0 0
\(505\) 5.15970e10i 0.0353032i
\(506\) 0 0
\(507\) 2.21079e12 + 1.28332e12i 1.48597 + 0.862580i
\(508\) 0 0
\(509\) 2.88071e12i 1.90226i −0.308797 0.951128i \(-0.599927\pi\)
0.308797 0.951128i \(-0.400073\pi\)
\(510\) 0 0
\(511\) 9.39462e11 0.609516
\(512\) 0 0
\(513\) 4.79922e12i 3.05945i
\(514\) 0 0
\(515\) 1.30807e12i 0.819407i
\(516\) 0 0
\(517\) −3.23420e12 −1.99094
\(518\) 0 0
\(519\) 2.34729e12 1.42008
\(520\) 0 0
\(521\) 2.84526e11 0.169181 0.0845907 0.996416i \(-0.473042\pi\)
0.0845907 + 0.996416i \(0.473042\pi\)
\(522\) 0 0
\(523\) −1.67324e11 −0.0977915 −0.0488957 0.998804i \(-0.515570\pi\)
−0.0488957 + 0.998804i \(0.515570\pi\)
\(524\) 0 0
\(525\) 7.80287e11i 0.448268i
\(526\) 0 0
\(527\) 2.91613e11i 0.164687i
\(528\) 0 0
\(529\) −1.19073e12 −0.661095
\(530\) 0 0
\(531\) 1.52497e12i 0.832409i
\(532\) 0 0
\(533\) −7.79067e11 + 2.89394e12i −0.418121 + 1.55316i
\(534\) 0 0
\(535\) 2.93862e11i 0.155079i
\(536\) 0 0
\(537\) 4.12835e12 2.14236
\(538\) 0 0
\(539\) 1.57258e12i 0.802532i
\(540\) 0 0
\(541\) 2.03454e12i 1.02113i 0.859840 + 0.510563i \(0.170563\pi\)
−0.859840 + 0.510563i \(0.829437\pi\)
\(542\) 0 0
\(543\) −5.16964e12 −2.55189
\(544\) 0 0
\(545\) −1.71265e12 −0.831543
\(546\) 0 0
\(547\) −2.30343e12 −1.10010 −0.550049 0.835132i \(-0.685391\pi\)
−0.550049 + 0.835132i \(0.685391\pi\)
\(548\) 0 0
\(549\) 3.54419e12 1.66511
\(550\) 0 0
\(551\) 1.53845e12i 0.711052i
\(552\) 0 0
\(553\) 7.20728e11i 0.327724i
\(554\) 0 0
\(555\) 3.21700e12 1.43924
\(556\) 0 0
\(557\) 1.06563e12i 0.469090i −0.972105 0.234545i \(-0.924640\pi\)
0.972105 0.234545i \(-0.0753601\pi\)
\(558\) 0 0
\(559\) −1.94097e12 5.22521e11i −0.840748 0.226335i
\(560\) 0 0
\(561\) 8.45669e12i 3.60469i
\(562\) 0 0
\(563\) 9.98781e11 0.418969 0.209485 0.977812i \(-0.432821\pi\)
0.209485 + 0.977812i \(0.432821\pi\)
\(564\) 0 0
\(565\) 1.39466e12i 0.575772i
\(566\) 0 0
\(567\) 1.12900e12i 0.458743i
\(568\) 0 0
\(569\) −1.07382e11 −0.0429464 −0.0214732 0.999769i \(-0.506836\pi\)
−0.0214732 + 0.999769i \(0.506836\pi\)
\(570\) 0 0
\(571\) −4.60685e12 −1.81360 −0.906800 0.421561i \(-0.861482\pi\)
−0.906800 + 0.421561i \(0.861482\pi\)
\(572\) 0 0
\(573\) −3.30418e12 −1.28046
\(574\) 0 0
\(575\) −7.45287e11 −0.284327
\(576\) 0 0
\(577\) 3.03741e12i 1.14081i −0.821365 0.570403i \(-0.806787\pi\)
0.821365 0.570403i \(-0.193213\pi\)
\(578\) 0 0
\(579\) 2.23095e12i 0.824965i
\(580\) 0 0
\(581\) −4.55363e11 −0.165793
\(582\) 0 0
\(583\) 5.41447e12i 1.94110i
\(584\) 0 0
\(585\) −1.02819e12 + 3.81934e12i −0.362971 + 1.34830i
\(586\) 0 0
\(587\) 5.09566e11i 0.177145i −0.996070 0.0885726i \(-0.971769\pi\)
0.996070 0.0885726i \(-0.0282305\pi\)
\(588\) 0 0
\(589\) −4.81514e11 −0.164851
\(590\) 0 0
\(591\) 8.14488e12i 2.74626i
\(592\) 0 0
\(593\) 2.02750e12i 0.673310i 0.941628 + 0.336655i \(0.109296\pi\)
−0.941628 + 0.336655i \(0.890704\pi\)
\(594\) 0 0
\(595\) 2.18227e12 0.713808
\(596\) 0 0
\(597\) −3.41045e12 −1.09882
\(598\) 0 0
\(599\) −6.18048e12 −1.96156 −0.980779 0.195120i \(-0.937490\pi\)
−0.980779 + 0.195120i \(0.937490\pi\)
\(600\) 0 0
\(601\) 9.62398e11 0.300898 0.150449 0.988618i \(-0.451928\pi\)
0.150449 + 0.988618i \(0.451928\pi\)
\(602\) 0 0
\(603\) 6.53152e12i 2.01181i
\(604\) 0 0
\(605\) 6.15325e11i 0.186726i
\(606\) 0 0
\(607\) 7.73991e11 0.231413 0.115706 0.993283i \(-0.463087\pi\)
0.115706 + 0.993283i \(0.463087\pi\)
\(608\) 0 0
\(609\) 1.18461e12i 0.348978i
\(610\) 0 0
\(611\) 1.58770e12 5.89771e12i 0.460875 1.71198i
\(612\) 0 0
\(613\) 2.10077e12i 0.600905i −0.953797 0.300453i \(-0.902862\pi\)
0.953797 0.300453i \(-0.0971377\pi\)
\(614\) 0 0
\(615\) −7.01265e12 −1.97671
\(616\) 0 0
\(617\) 1.45302e11i 0.0403633i −0.999796 0.0201817i \(-0.993576\pi\)
0.999796 0.0201817i \(-0.00642446\pi\)
\(618\) 0 0
\(619\) 6.77807e12i 1.85566i 0.373005 + 0.927829i \(0.378328\pi\)
−0.373005 + 0.927829i \(0.621672\pi\)
\(620\) 0 0
\(621\) −3.52966e12 −0.952403
\(622\) 0 0
\(623\) −2.01964e12 −0.537129
\(624\) 0 0
\(625\) −1.04163e12 −0.273058
\(626\) 0 0
\(627\) 1.39638e13 3.60827
\(628\) 0 0
\(629\) 8.58927e12i 2.18790i
\(630\) 0 0
\(631\) 8.59928e11i 0.215939i 0.994154 + 0.107969i \(0.0344348\pi\)
−0.994154 + 0.107969i \(0.965565\pi\)
\(632\) 0 0
\(633\) 1.08703e13 2.69108
\(634\) 0 0
\(635\) 1.91146e12i 0.466535i
\(636\) 0 0
\(637\) −2.86767e12 7.71994e11i −0.690083 0.185775i
\(638\) 0 0
\(639\) 2.94543e12i 0.698868i
\(640\) 0 0
\(641\) 4.66144e12 1.09058 0.545292 0.838246i \(-0.316419\pi\)
0.545292 + 0.838246i \(0.316419\pi\)
\(642\) 0 0
\(643\) 1.20355e12i 0.277660i −0.990316 0.138830i \(-0.955666\pi\)
0.990316 0.138830i \(-0.0443341\pi\)
\(644\) 0 0
\(645\) 4.70339e12i 1.07002i
\(646\) 0 0
\(647\) −3.84558e12 −0.862765 −0.431382 0.902169i \(-0.641974\pi\)
−0.431382 + 0.902169i \(0.641974\pi\)
\(648\) 0 0
\(649\) −2.16416e12 −0.478838
\(650\) 0 0
\(651\) 3.70768e11 0.0809073
\(652\) 0 0
\(653\) −3.00668e12 −0.647110 −0.323555 0.946209i \(-0.604878\pi\)
−0.323555 + 0.946209i \(0.604878\pi\)
\(654\) 0 0
\(655\) 2.29703e12i 0.487620i
\(656\) 0 0
\(657\) 1.06379e13i 2.22748i
\(658\) 0 0
\(659\) 8.55776e12 1.76757 0.883783 0.467897i \(-0.154988\pi\)
0.883783 + 0.467897i \(0.154988\pi\)
\(660\) 0 0
\(661\) 7.73594e12i 1.57618i −0.615558 0.788092i \(-0.711069\pi\)
0.615558 0.788092i \(-0.288931\pi\)
\(662\) 0 0
\(663\) −1.54212e13 4.15148e12i −3.09961 0.834434i
\(664\) 0 0
\(665\) 3.60338e12i 0.714517i
\(666\) 0 0
\(667\) −1.13148e12 −0.221350
\(668\) 0 0
\(669\) 3.42208e12i 0.660500i
\(670\) 0 0
\(671\) 5.02973e12i 0.957842i
\(672\) 0 0
\(673\) −1.12825e12 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(674\) 0 0
\(675\) 4.30951e12 0.799026
\(676\) 0 0
\(677\) −2.65351e12 −0.485481 −0.242740 0.970091i \(-0.578046\pi\)
−0.242740 + 0.970091i \(0.578046\pi\)
\(678\) 0 0
\(679\) −1.28835e12 −0.232606
\(680\) 0 0
\(681\) 8.43600e12i 1.50305i
\(682\) 0 0
\(683\) 7.10336e12i 1.24902i 0.781015 + 0.624512i \(0.214702\pi\)
−0.781015 + 0.624512i \(0.785298\pi\)
\(684\) 0 0
\(685\) −3.65827e12 −0.634846
\(686\) 0 0
\(687\) 1.89074e13i 3.23837i
\(688\) 0 0
\(689\) −9.87354e12 2.65802e12i −1.66911 0.449336i
\(690\) 0 0
\(691\) 1.13125e12i 0.188759i 0.995536 + 0.0943795i \(0.0300867\pi\)
−0.995536 + 0.0943795i \(0.969913\pi\)
\(692\) 0 0
\(693\) −7.11004e12 −1.17104
\(694\) 0 0
\(695\) 3.01448e12i 0.490096i
\(696\) 0 0
\(697\) 1.87235e13i 3.00497i
\(698\) 0 0
\(699\) −6.66024e12 −1.05522
\(700\) 0 0
\(701\) 2.76494e12 0.432469 0.216234 0.976341i \(-0.430622\pi\)
0.216234 + 0.976341i \(0.430622\pi\)
\(702\) 0 0
\(703\) 1.41827e13 2.19008
\(704\) 0 0
\(705\) 1.42914e13 2.17884
\(706\) 0 0
\(707\) 1.75156e11i 0.0263656i
\(708\) 0 0
\(709\) 2.15735e12i 0.320636i −0.987065 0.160318i \(-0.948748\pi\)
0.987065 0.160318i \(-0.0512520\pi\)
\(710\) 0 0
\(711\) −8.16112e12 −1.19767
\(712\) 0 0
\(713\) 3.54137e11i 0.0513178i
\(714\) 0 0
\(715\) −5.42021e12 1.45915e12i −0.775601 0.208797i
\(716\) 0 0
\(717\) 7.17010e12i 1.01319i
\(718\) 0 0
\(719\) 8.17722e12 1.14111 0.570553 0.821261i \(-0.306729\pi\)
0.570553 + 0.821261i \(0.306729\pi\)
\(720\) 0 0
\(721\) 4.44051e12i 0.611961i
\(722\) 0 0
\(723\) 8.33233e12i 1.13408i
\(724\) 0 0
\(725\) 1.38147e12 0.185703
\(726\) 0 0
\(727\) 2.62778e12 0.348886 0.174443 0.984667i \(-0.444187\pi\)
0.174443 + 0.984667i \(0.444187\pi\)
\(728\) 0 0
\(729\) −8.65098e12 −1.13447
\(730\) 0 0
\(731\) 1.25579e13 1.62663
\(732\) 0 0
\(733\) 3.57647e11i 0.0457601i −0.999738 0.0228800i \(-0.992716\pi\)
0.999738 0.0228800i \(-0.00728358\pi\)
\(734\) 0 0
\(735\) 6.94898e12i 0.878270i
\(736\) 0 0
\(737\) 9.26919e12 1.15728
\(738\) 0 0
\(739\) 8.15940e12i 1.00637i 0.864178 + 0.503186i \(0.167839\pi\)
−0.864178 + 0.503186i \(0.832161\pi\)
\(740\) 0 0
\(741\) −6.85497e12 + 2.54636e13i −0.835264 + 3.10269i
\(742\) 0 0
\(743\) 9.41025e10i 0.0113280i 0.999984 + 0.00566398i \(0.00180291\pi\)
−0.999984 + 0.00566398i \(0.998197\pi\)
\(744\) 0 0
\(745\) 4.56567e12 0.543002
\(746\) 0 0
\(747\) 5.15628e12i 0.605890i
\(748\) 0 0
\(749\) 9.97572e11i 0.115818i
\(750\) 0 0
\(751\) −1.05448e13 −1.20965 −0.604823 0.796360i \(-0.706756\pi\)
−0.604823 + 0.796360i \(0.706756\pi\)
\(752\) 0 0
\(753\) −1.12516e13 −1.27537
\(754\) 0 0
\(755\) −6.66613e12 −0.746642
\(756\) 0 0
\(757\) 5.97398e12 0.661199 0.330600 0.943771i \(-0.392749\pi\)
0.330600 + 0.943771i \(0.392749\pi\)
\(758\) 0 0
\(759\) 1.02699e13i 1.12325i
\(760\) 0 0
\(761\) 5.96477e12i 0.644707i 0.946619 + 0.322354i \(0.104474\pi\)
−0.946619 + 0.322354i \(0.895526\pi\)
\(762\) 0 0
\(763\) 5.81393e12 0.621025
\(764\) 0 0
\(765\) 2.47107e13i 2.60861i
\(766\) 0 0
\(767\) 1.06241e12 3.94645e12i 0.110844 0.411744i
\(768\) 0 0
\(769\) 6.03902e11i 0.0622728i −0.999515 0.0311364i \(-0.990087\pi\)
0.999515 0.0311364i \(-0.00991262\pi\)
\(770\) 0 0
\(771\) −8.74903e12 −0.891693
\(772\) 0 0
\(773\) 1.15311e13i 1.16162i −0.814040 0.580809i \(-0.802736\pi\)
0.814040 0.580809i \(-0.197264\pi\)
\(774\) 0 0
\(775\) 4.32381e11i 0.0430535i
\(776\) 0 0
\(777\) −1.09207e13 −1.07487
\(778\) 0 0
\(779\) −3.09165e13 −3.00795
\(780\) 0 0
\(781\) −4.18000e12 −0.402019
\(782\) 0 0
\(783\) 6.54259e12 0.622045
\(784\) 0 0
\(785\) 1.44933e12i 0.136224i
\(786\) 0 0
\(787\) 9.67693e12i 0.899189i 0.893233 + 0.449595i \(0.148432\pi\)
−0.893233 + 0.449595i \(0.851568\pi\)
\(788\) 0 0
\(789\) 1.30346e12 0.119743
\(790\) 0 0
\(791\) 4.73444e12i 0.430006i
\(792\) 0 0
\(793\) −9.17196e12 2.46915e12i −0.823631 0.221727i
\(794\) 0 0
\(795\) 2.39257e13i 2.12429i
\(796\) 0 0
\(797\) −3.94698e11 −0.0346500 −0.0173250 0.999850i \(-0.505515\pi\)
−0.0173250 + 0.999850i \(0.505515\pi\)
\(798\) 0 0
\(799\) 3.81576e13i 3.31223i
\(800\) 0 0
\(801\) 2.28693e13i 1.96294i
\(802\) 0 0
\(803\) 1.50968e13 1.28134
\(804\) 0 0
\(805\) −2.65016e12 −0.222429
\(806\) 0 0
\(807\) −3.29144e13 −2.73184
\(808\) 0 0
\(809\) 8.51462e12 0.698871 0.349435 0.936960i \(-0.386373\pi\)
0.349435 + 0.936960i \(0.386373\pi\)
\(810\) 0 0
\(811\) 7.06843e12i 0.573758i −0.957967 0.286879i \(-0.907382\pi\)
0.957967 0.286879i \(-0.0926178\pi\)
\(812\) 0 0
\(813\) 1.70659e13i 1.37001i
\(814\) 0 0
\(815\) −1.29606e12 −0.102900
\(816\) 0 0
\(817\) 2.07357e13i 1.62824i
\(818\) 0 0
\(819\) 3.49039e12 1.29655e13i 0.271079 1.00696i
\(820\) 0 0
\(821\) 3.58345e12i 0.275269i 0.990483 + 0.137634i \(0.0439499\pi\)
−0.990483 + 0.137634i \(0.956050\pi\)
\(822\) 0 0
\(823\) 1.28284e13 0.974702 0.487351 0.873206i \(-0.337963\pi\)
0.487351 + 0.873206i \(0.337963\pi\)
\(824\) 0 0
\(825\) 1.25389e13i 0.942361i
\(826\) 0 0
\(827\) 9.12355e12i 0.678249i −0.940742 0.339124i \(-0.889869\pi\)
0.940742 0.339124i \(-0.110131\pi\)
\(828\) 0 0
\(829\) −1.95044e13 −1.43429 −0.717147 0.696922i \(-0.754552\pi\)
−0.717147 + 0.696922i \(0.754552\pi\)
\(830\) 0 0
\(831\) −3.49585e11 −0.0254301
\(832\) 0 0
\(833\) 1.85535e13 1.33513
\(834\) 0 0
\(835\) 3.52452e12 0.250906
\(836\) 0 0
\(837\) 2.04774e12i 0.144215i
\(838\) 0 0
\(839\) 2.99062e12i 0.208368i −0.994558 0.104184i \(-0.966777\pi\)
0.994558 0.104184i \(-0.0332231\pi\)
\(840\) 0 0
\(841\) −1.24098e13 −0.855429
\(842\) 0 0
\(843\) 2.77885e13i 1.89514i
\(844\) 0 0
\(845\) 5.32167e12 9.16769e12i 0.359081 0.618592i
\(846\) 0 0
\(847\) 2.08884e12i 0.139454i
\(848\) 0 0
\(849\) −1.89326e13 −1.25062
\(850\) 0 0
\(851\) 1.04309e13i 0.681770i
\(852\) 0 0
\(853\) 1.21453e13i 0.785484i −0.919649 0.392742i \(-0.871527\pi\)
0.919649 0.392742i \(-0.128473\pi\)
\(854\) 0 0
\(855\) −4.08027e13 −2.61120
\(856\) 0 0
\(857\) 8.03500e12 0.508829 0.254415 0.967095i \(-0.418117\pi\)
0.254415 + 0.967095i \(0.418117\pi\)
\(858\) 0 0
\(859\) 7.86012e12 0.492561 0.246281 0.969199i \(-0.420792\pi\)
0.246281 + 0.969199i \(0.420792\pi\)
\(860\) 0 0
\(861\) 2.38058e13 1.47628
\(862\) 0 0
\(863\) 1.94302e13i 1.19242i −0.802829 0.596209i \(-0.796673\pi\)
0.802829 0.596209i \(-0.203327\pi\)
\(864\) 0 0
\(865\) 9.73373e12i 0.591162i
\(866\) 0 0
\(867\) 7.11873e13 4.27875
\(868\) 0 0
\(869\) 1.15818e13i 0.688951i
\(870\) 0 0
\(871\) −4.55034e12 + 1.69028e13i −0.267894 + 0.995124i
\(872\) 0 0
\(873\) 1.45886e13i 0.850060i
\(874\) 0 0
\(875\) 9.86072e12 0.568686
\(876\) 0 0
\(877\) 4.08869e12i 0.233392i 0.993168 + 0.116696i \(0.0372303\pi\)
−0.993168 + 0.116696i \(0.962770\pi\)
\(878\) 0 0
\(879\) 4.42110e13i 2.49793i
\(880\) 0 0
\(881\) −1.23517e13 −0.690772 −0.345386 0.938461i \(-0.612252\pi\)
−0.345386 + 0.938461i \(0.612252\pi\)
\(882\) 0 0
\(883\) 2.86217e13 1.58443 0.792214 0.610244i \(-0.208929\pi\)
0.792214 + 0.610244i \(0.208929\pi\)
\(884\) 0 0
\(885\) 9.56311e12 0.524028
\(886\) 0 0
\(887\) 5.28822e12 0.286849 0.143425 0.989661i \(-0.454189\pi\)
0.143425 + 0.989661i \(0.454189\pi\)
\(888\) 0 0
\(889\) 6.48883e12i 0.348424i
\(890\) 0 0
\(891\) 1.81426e13i 0.964383i
\(892\) 0 0
\(893\) 6.30062e13 3.31552
\(894\) 0 0
\(895\) 1.71194e13i 0.891837i
\(896\) 0 0
\(897\) 1.87276e13 + 5.04159e12i 0.965865 + 0.260017i
\(898\) 0 0
\(899\) 6.56429e11i 0.0335173i
\(900\) 0 0
\(901\) 6.38808e13 3.22930
\(902\) 0 0
\(903\) 1.59666e13i 0.799129i
\(904\) 0 0
\(905\) 2.14375e13i 1.06232i
\(906\) 0 0
\(907\) 4.70499e12 0.230848 0.115424 0.993316i \(-0.463177\pi\)
0.115424 + 0.993316i \(0.463177\pi\)
\(908\) 0 0
\(909\) 1.98337e12 0.0963532
\(910\) 0 0
\(911\) 8.42934e12 0.405472 0.202736 0.979233i \(-0.435017\pi\)
0.202736 + 0.979233i \(0.435017\pi\)
\(912\) 0 0
\(913\) −7.31752e12 −0.348534
\(914\) 0 0
\(915\) 2.22257e13i 1.04824i
\(916\) 0 0
\(917\) 7.79772e12i 0.364171i
\(918\) 0 0
\(919\) −3.51131e13 −1.62386 −0.811932 0.583752i \(-0.801584\pi\)
−0.811932 + 0.583752i \(0.801584\pi\)
\(920\) 0 0
\(921\) 4.40155e13i 2.01575i
\(922\) 0 0
\(923\) 2.05201e12 7.62243e12i 0.0930617 0.345689i
\(924\) 0 0
\(925\) 1.27355e13i 0.571976i
\(926\) 0 0
\(927\) 5.02818e13 2.23641
\(928\) 0 0
\(929\) 8.89009e12i 0.391594i 0.980644 + 0.195797i \(0.0627293\pi\)
−0.980644 + 0.195797i \(0.937271\pi\)
\(930\) 0 0
\(931\) 3.06358e13i 1.33646i
\(932\) 0 0
\(933\) −5.29185e12 −0.228634
\(934\) 0 0
\(935\) 3.50682e13 1.50059
\(936\) 0 0
\(937\) 4.82026e12 0.204288 0.102144 0.994770i \(-0.467430\pi\)
0.102144 + 0.994770i \(0.467430\pi\)
\(938\) 0 0
\(939\) −4.21221e13 −1.76813
\(940\) 0 0
\(941\) 2.71110e12i 0.112718i −0.998411 0.0563588i \(-0.982051\pi\)
0.998411 0.0563588i \(-0.0179491\pi\)
\(942\) 0 0
\(943\) 2.27380e13i 0.936374i
\(944\) 0 0
\(945\) 1.53242e13 0.625077
\(946\) 0 0
\(947\) 1.95635e12i 0.0790445i 0.999219 + 0.0395223i \(0.0125836\pi\)
−0.999219 + 0.0395223i \(0.987416\pi\)
\(948\) 0 0
\(949\) −7.41118e12 + 2.75297e13i −0.296613 + 1.10180i
\(950\) 0 0
\(951\) 5.31943e13i 2.10888i
\(952\) 0 0
\(953\) −3.34572e13 −1.31393 −0.656964 0.753922i \(-0.728160\pi\)
−0.656964 + 0.753922i \(0.728160\pi\)
\(954\) 0 0
\(955\) 1.37017e13i 0.533041i
\(956\) 0 0
\(957\) 1.90363e13i 0.733632i
\(958\) 0 0
\(959\) 1.24187e13 0.474125
\(960\) 0 0
\(961\) 2.62342e13 0.992229
\(962\) 0 0
\(963\) 1.12959e13 0.423257
\(964\) 0 0
\(965\) −9.25128e12 −0.343423
\(966\) 0 0
\(967\) 2.58352e13i 0.950151i 0.879945 + 0.475075i \(0.157579\pi\)
−0.879945 + 0.475075i \(0.842421\pi\)
\(968\) 0 0
\(969\) 1.64747e14i 6.00290i
\(970\) 0 0
\(971\) 4.31980e13 1.55947 0.779736 0.626109i \(-0.215353\pi\)
0.779736 + 0.626109i \(0.215353\pi\)
\(972\) 0 0
\(973\) 1.02332e13i 0.366020i
\(974\) 0 0
\(975\) −2.28653e13 6.15549e12i −0.810320 0.218143i
\(976\) 0 0
\(977\) 4.54896e13i 1.59730i 0.601796 + 0.798650i \(0.294452\pi\)
−0.601796 + 0.798650i \(0.705548\pi\)
\(978\) 0 0
\(979\) −3.24549e13 −1.12917
\(980\) 0 0
\(981\) 6.58337e13i 2.26954i
\(982\) 0 0
\(983\) 3.66857e13i 1.25316i 0.779358 + 0.626579i \(0.215545\pi\)
−0.779358 + 0.626579i \(0.784455\pi\)
\(984\) 0 0
\(985\) −3.37752e13 −1.14323
\(986\) 0 0
\(987\) −4.85150e13 −1.62723
\(988\) 0 0
\(989\) −1.52504e13 −0.506871
\(990\) 0 0
\(991\) 1.90942e13 0.628883 0.314442 0.949277i \(-0.398183\pi\)
0.314442 + 0.949277i \(0.398183\pi\)
\(992\) 0 0
\(993\) 6.49870e13i 2.12107i
\(994\) 0 0
\(995\) 1.41424e13i 0.457425i
\(996\) 0 0
\(997\) 3.28282e13 1.05225 0.526124 0.850408i \(-0.323645\pi\)
0.526124 + 0.850408i \(0.323645\pi\)
\(998\) 0 0
\(999\) 6.03150e13i 1.91593i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.29 32
4.3 odd 2 104.10.f.a.25.4 yes 32
13.12 even 2 inner 208.10.f.d.129.30 32
52.51 odd 2 104.10.f.a.25.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.3 32 52.51 odd 2
104.10.f.a.25.4 yes 32 4.3 odd 2
208.10.f.d.129.29 32 1.1 even 1 trivial
208.10.f.d.129.30 32 13.12 even 2 inner