Properties

Label 208.10.f.d.129.23
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.23
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+144.011 q^{3} +1019.43i q^{5} +5657.65i q^{7} +1056.24 q^{9} -66157.5i q^{11} +(43262.5 - 93449.7i) q^{13} +146809. i q^{15} +100620. q^{17} -188252. i q^{19} +814765. i q^{21} -2.22375e6 q^{23} +913897. q^{25} -2.68246e6 q^{27} -5.75947e6 q^{29} +7.19142e6i q^{31} -9.52743e6i q^{33} -5.76755e6 q^{35} +3.71695e6i q^{37} +(6.23029e6 - 1.34578e7i) q^{39} -2.77654e6i q^{41} +1.44942e7 q^{43} +1.07676e6i q^{45} -6.34145e7i q^{47} +8.34464e6 q^{49} +1.44903e7 q^{51} -8.43154e7 q^{53} +6.74427e7 q^{55} -2.71104e7i q^{57} -1.12066e8i q^{59} -1.70009e8 q^{61} +5.97583e6i q^{63} +(9.52651e7 + 4.41029e7i) q^{65} +4.94626e7i q^{67} -3.20245e8 q^{69} -1.17412e8i q^{71} -2.58227e8i q^{73} +1.31611e8 q^{75} +3.74296e8 q^{77} +4.68955e8 q^{79} -4.07095e8 q^{81} -5.71870e8i q^{83} +1.02574e8i q^{85} -8.29428e8 q^{87} +1.75654e8i q^{89} +(5.28706e8 + 2.44764e8i) q^{91} +1.03565e9i q^{93} +1.91909e8 q^{95} -1.58656e8i q^{97} -6.98782e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 144.011 1.02648 0.513240 0.858245i \(-0.328445\pi\)
0.513240 + 0.858245i \(0.328445\pi\)
\(4\) 0 0
\(5\) 1019.43i 0.729442i 0.931117 + 0.364721i \(0.118836\pi\)
−0.931117 + 0.364721i \(0.881164\pi\)
\(6\) 0 0
\(7\) 5657.65i 0.890625i 0.895375 + 0.445312i \(0.146907\pi\)
−0.895375 + 0.445312i \(0.853093\pi\)
\(8\) 0 0
\(9\) 1056.24 0.0536625
\(10\) 0 0
\(11\) 66157.5i 1.36242i −0.732086 0.681212i \(-0.761453\pi\)
0.732086 0.681212i \(-0.238547\pi\)
\(12\) 0 0
\(13\) 43262.5 93449.7i 0.420113 0.907472i
\(14\) 0 0
\(15\) 146809.i 0.748758i
\(16\) 0 0
\(17\) 100620. 0.292188 0.146094 0.989271i \(-0.453330\pi\)
0.146094 + 0.989271i \(0.453330\pi\)
\(18\) 0 0
\(19\) 188252.i 0.331396i −0.986177 0.165698i \(-0.947012\pi\)
0.986177 0.165698i \(-0.0529878\pi\)
\(20\) 0 0
\(21\) 814765.i 0.914209i
\(22\) 0 0
\(23\) −2.22375e6 −1.65696 −0.828478 0.560022i \(-0.810793\pi\)
−0.828478 + 0.560022i \(0.810793\pi\)
\(24\) 0 0
\(25\) 913897. 0.467915
\(26\) 0 0
\(27\) −2.68246e6 −0.971397
\(28\) 0 0
\(29\) −5.75947e6 −1.51214 −0.756069 0.654492i \(-0.772882\pi\)
−0.756069 + 0.654492i \(0.772882\pi\)
\(30\) 0 0
\(31\) 7.19142e6i 1.39858i 0.714838 + 0.699290i \(0.246500\pi\)
−0.714838 + 0.699290i \(0.753500\pi\)
\(32\) 0 0
\(33\) 9.52743e6i 1.39850i
\(34\) 0 0
\(35\) −5.76755e6 −0.649658
\(36\) 0 0
\(37\) 3.71695e6i 0.326046i 0.986622 + 0.163023i \(0.0521244\pi\)
−0.986622 + 0.163023i \(0.947876\pi\)
\(38\) 0 0
\(39\) 6.23029e6 1.34578e7i 0.431238 0.931502i
\(40\) 0 0
\(41\) 2.77654e6i 0.153454i −0.997052 0.0767268i \(-0.975553\pi\)
0.997052 0.0767268i \(-0.0244469\pi\)
\(42\) 0 0
\(43\) 1.44942e7 0.646526 0.323263 0.946309i \(-0.395220\pi\)
0.323263 + 0.946309i \(0.395220\pi\)
\(44\) 0 0
\(45\) 1.07676e6i 0.0391437i
\(46\) 0 0
\(47\) 6.34145e7i 1.89561i −0.318854 0.947804i \(-0.603298\pi\)
0.318854 0.947804i \(-0.396702\pi\)
\(48\) 0 0
\(49\) 8.34464e6 0.206788
\(50\) 0 0
\(51\) 1.44903e7 0.299925
\(52\) 0 0
\(53\) −8.43154e7 −1.46779 −0.733897 0.679260i \(-0.762301\pi\)
−0.733897 + 0.679260i \(0.762301\pi\)
\(54\) 0 0
\(55\) 6.74427e7 0.993808
\(56\) 0 0
\(57\) 2.71104e7i 0.340172i
\(58\) 0 0
\(59\) 1.12066e8i 1.20404i −0.798483 0.602018i \(-0.794364\pi\)
0.798483 0.602018i \(-0.205636\pi\)
\(60\) 0 0
\(61\) −1.70009e8 −1.57213 −0.786063 0.618146i \(-0.787884\pi\)
−0.786063 + 0.618146i \(0.787884\pi\)
\(62\) 0 0
\(63\) 5.97583e6i 0.0477932i
\(64\) 0 0
\(65\) 9.52651e7 + 4.41029e7i 0.661947 + 0.306448i
\(66\) 0 0
\(67\) 4.94626e7i 0.299875i 0.988695 + 0.149937i \(0.0479072\pi\)
−0.988695 + 0.149937i \(0.952093\pi\)
\(68\) 0 0
\(69\) −3.20245e8 −1.70083
\(70\) 0 0
\(71\) 1.17412e8i 0.548341i −0.961681 0.274171i \(-0.911597\pi\)
0.961681 0.274171i \(-0.0884033\pi\)
\(72\) 0 0
\(73\) 2.58227e8i 1.06426i −0.846662 0.532131i \(-0.821391\pi\)
0.846662 0.532131i \(-0.178609\pi\)
\(74\) 0 0
\(75\) 1.31611e8 0.480306
\(76\) 0 0
\(77\) 3.74296e8 1.21341
\(78\) 0 0
\(79\) 4.68955e8 1.35459 0.677297 0.735710i \(-0.263151\pi\)
0.677297 + 0.735710i \(0.263151\pi\)
\(80\) 0 0
\(81\) −4.07095e8 −1.05078
\(82\) 0 0
\(83\) 5.71870e8i 1.32265i −0.750098 0.661327i \(-0.769994\pi\)
0.750098 0.661327i \(-0.230006\pi\)
\(84\) 0 0
\(85\) 1.02574e8i 0.213134i
\(86\) 0 0
\(87\) −8.29428e8 −1.55218
\(88\) 0 0
\(89\) 1.75654e8i 0.296758i 0.988931 + 0.148379i \(0.0474056\pi\)
−0.988931 + 0.148379i \(0.952594\pi\)
\(90\) 0 0
\(91\) 5.28706e8 + 2.44764e8i 0.808216 + 0.374163i
\(92\) 0 0
\(93\) 1.03565e9i 1.43561i
\(94\) 0 0
\(95\) 1.91909e8 0.241734
\(96\) 0 0
\(97\) 1.58656e8i 0.181963i −0.995853 0.0909817i \(-0.971000\pi\)
0.995853 0.0909817i \(-0.0290005\pi\)
\(98\) 0 0
\(99\) 6.98782e7i 0.0731111i
\(100\) 0 0
\(101\) −1.60681e9 −1.53644 −0.768222 0.640183i \(-0.778859\pi\)
−0.768222 + 0.640183i \(0.778859\pi\)
\(102\) 0 0
\(103\) −4.56431e8 −0.399583 −0.199792 0.979838i \(-0.564027\pi\)
−0.199792 + 0.979838i \(0.564027\pi\)
\(104\) 0 0
\(105\) −8.30592e8 −0.666862
\(106\) 0 0
\(107\) 2.54620e9 1.87787 0.938936 0.344091i \(-0.111813\pi\)
0.938936 + 0.344091i \(0.111813\pi\)
\(108\) 0 0
\(109\) 1.44182e9i 0.978345i −0.872187 0.489173i \(-0.837299\pi\)
0.872187 0.489173i \(-0.162701\pi\)
\(110\) 0 0
\(111\) 5.35282e8i 0.334680i
\(112\) 0 0
\(113\) 4.84320e8 0.279434 0.139717 0.990191i \(-0.455381\pi\)
0.139717 + 0.990191i \(0.455381\pi\)
\(114\) 0 0
\(115\) 2.26695e9i 1.20865i
\(116\) 0 0
\(117\) 4.56956e7 9.87053e7i 0.0225443 0.0486972i
\(118\) 0 0
\(119\) 5.69270e8i 0.260230i
\(120\) 0 0
\(121\) −2.01887e9 −0.856198
\(122\) 0 0
\(123\) 3.99854e8i 0.157517i
\(124\) 0 0
\(125\) 2.92272e9i 1.07076i
\(126\) 0 0
\(127\) 7.84228e8 0.267501 0.133751 0.991015i \(-0.457298\pi\)
0.133751 + 0.991015i \(0.457298\pi\)
\(128\) 0 0
\(129\) 2.08733e9 0.663646
\(130\) 0 0
\(131\) −4.48111e9 −1.32943 −0.664713 0.747099i \(-0.731446\pi\)
−0.664713 + 0.747099i \(0.731446\pi\)
\(132\) 0 0
\(133\) 1.06506e9 0.295150
\(134\) 0 0
\(135\) 2.73457e9i 0.708577i
\(136\) 0 0
\(137\) 3.14080e9i 0.761723i −0.924632 0.380862i \(-0.875627\pi\)
0.924632 0.380862i \(-0.124373\pi\)
\(138\) 0 0
\(139\) −6.22133e8 −0.141357 −0.0706784 0.997499i \(-0.522516\pi\)
−0.0706784 + 0.997499i \(0.522516\pi\)
\(140\) 0 0
\(141\) 9.13241e9i 1.94580i
\(142\) 0 0
\(143\) −6.18240e9 2.86214e9i −1.23636 0.572372i
\(144\) 0 0
\(145\) 5.87135e9i 1.10302i
\(146\) 0 0
\(147\) 1.20172e9 0.212264
\(148\) 0 0
\(149\) 4.92841e8i 0.0819159i 0.999161 + 0.0409580i \(0.0130410\pi\)
−0.999161 + 0.0409580i \(0.986959\pi\)
\(150\) 0 0
\(151\) 1.47293e9i 0.230561i 0.993333 + 0.115281i \(0.0367767\pi\)
−0.993333 + 0.115281i \(0.963223\pi\)
\(152\) 0 0
\(153\) 1.06278e8 0.0156795
\(154\) 0 0
\(155\) −7.33112e9 −1.02018
\(156\) 0 0
\(157\) 1.22713e10 1.61192 0.805960 0.591970i \(-0.201650\pi\)
0.805960 + 0.591970i \(0.201650\pi\)
\(158\) 0 0
\(159\) −1.21424e10 −1.50666
\(160\) 0 0
\(161\) 1.25812e10i 1.47573i
\(162\) 0 0
\(163\) 8.06073e9i 0.894397i −0.894435 0.447198i \(-0.852422\pi\)
0.894435 0.447198i \(-0.147578\pi\)
\(164\) 0 0
\(165\) 9.71250e9 1.02012
\(166\) 0 0
\(167\) 1.49991e10i 1.49224i −0.665809 0.746122i \(-0.731914\pi\)
0.665809 0.746122i \(-0.268086\pi\)
\(168\) 0 0
\(169\) −6.86121e9 8.08574e9i −0.647010 0.762482i
\(170\) 0 0
\(171\) 1.98839e8i 0.0177836i
\(172\) 0 0
\(173\) −1.28624e10 −1.09173 −0.545863 0.837874i \(-0.683798\pi\)
−0.545863 + 0.837874i \(0.683798\pi\)
\(174\) 0 0
\(175\) 5.17050e9i 0.416737i
\(176\) 0 0
\(177\) 1.61387e10i 1.23592i
\(178\) 0 0
\(179\) −4.35641e9 −0.317169 −0.158584 0.987345i \(-0.550693\pi\)
−0.158584 + 0.987345i \(0.550693\pi\)
\(180\) 0 0
\(181\) −8.91267e9 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(182\) 0 0
\(183\) −2.44832e10 −1.61376
\(184\) 0 0
\(185\) −3.78915e9 −0.237831
\(186\) 0 0
\(187\) 6.65674e9i 0.398084i
\(188\) 0 0
\(189\) 1.51764e10i 0.865150i
\(190\) 0 0
\(191\) 3.13880e9 0.170653 0.0853264 0.996353i \(-0.472807\pi\)
0.0853264 + 0.996353i \(0.472807\pi\)
\(192\) 0 0
\(193\) 3.53426e9i 0.183354i −0.995789 0.0916769i \(-0.970777\pi\)
0.995789 0.0916769i \(-0.0292227\pi\)
\(194\) 0 0
\(195\) 1.37192e10 + 6.35131e9i 0.679476 + 0.314563i
\(196\) 0 0
\(197\) 3.09388e10i 1.46355i 0.681549 + 0.731773i \(0.261307\pi\)
−0.681549 + 0.731773i \(0.738693\pi\)
\(198\) 0 0
\(199\) 2.71870e10 1.22892 0.614459 0.788949i \(-0.289375\pi\)
0.614459 + 0.788949i \(0.289375\pi\)
\(200\) 0 0
\(201\) 7.12317e9i 0.307816i
\(202\) 0 0
\(203\) 3.25850e10i 1.34675i
\(204\) 0 0
\(205\) 2.83048e9 0.111935
\(206\) 0 0
\(207\) −2.34881e9 −0.0889164
\(208\) 0 0
\(209\) −1.24543e10 −0.451502
\(210\) 0 0
\(211\) −4.36809e10 −1.51712 −0.758561 0.651602i \(-0.774097\pi\)
−0.758561 + 0.651602i \(0.774097\pi\)
\(212\) 0 0
\(213\) 1.69087e10i 0.562862i
\(214\) 0 0
\(215\) 1.47758e10i 0.471603i
\(216\) 0 0
\(217\) −4.06865e10 −1.24561
\(218\) 0 0
\(219\) 3.71876e10i 1.09244i
\(220\) 0 0
\(221\) 4.35305e9 9.40287e9i 0.122752 0.265152i
\(222\) 0 0
\(223\) 1.84977e10i 0.500895i −0.968130 0.250448i \(-0.919422\pi\)
0.968130 0.250448i \(-0.0805778\pi\)
\(224\) 0 0
\(225\) 9.65294e8 0.0251095
\(226\) 0 0
\(227\) 6.94482e10i 1.73598i 0.496582 + 0.867990i \(0.334588\pi\)
−0.496582 + 0.867990i \(0.665412\pi\)
\(228\) 0 0
\(229\) 4.16396e10i 1.00057i 0.865861 + 0.500285i \(0.166771\pi\)
−0.865861 + 0.500285i \(0.833229\pi\)
\(230\) 0 0
\(231\) 5.39028e10 1.24554
\(232\) 0 0
\(233\) 1.25595e10 0.279171 0.139585 0.990210i \(-0.455423\pi\)
0.139585 + 0.990210i \(0.455423\pi\)
\(234\) 0 0
\(235\) 6.46464e10 1.38273
\(236\) 0 0
\(237\) 6.75348e10 1.39046
\(238\) 0 0
\(239\) 5.12144e9i 0.101532i 0.998711 + 0.0507658i \(0.0161662\pi\)
−0.998711 + 0.0507658i \(0.983834\pi\)
\(240\) 0 0
\(241\) 1.76949e9i 0.0337887i 0.999857 + 0.0168944i \(0.00537790\pi\)
−0.999857 + 0.0168944i \(0.994622\pi\)
\(242\) 0 0
\(243\) −5.82731e9 −0.107211
\(244\) 0 0
\(245\) 8.50674e9i 0.150840i
\(246\) 0 0
\(247\) −1.75921e10 8.14424e9i −0.300733 0.139224i
\(248\) 0 0
\(249\) 8.23557e10i 1.35768i
\(250\) 0 0
\(251\) 4.22358e10 0.671660 0.335830 0.941923i \(-0.390983\pi\)
0.335830 + 0.941923i \(0.390983\pi\)
\(252\) 0 0
\(253\) 1.47118e11i 2.25748i
\(254\) 0 0
\(255\) 1.47718e10i 0.218778i
\(256\) 0 0
\(257\) −8.08463e10 −1.15601 −0.578004 0.816034i \(-0.696168\pi\)
−0.578004 + 0.816034i \(0.696168\pi\)
\(258\) 0 0
\(259\) −2.10292e10 −0.290384
\(260\) 0 0
\(261\) −6.08337e9 −0.0811451
\(262\) 0 0
\(263\) 1.29543e11 1.66960 0.834802 0.550550i \(-0.185582\pi\)
0.834802 + 0.550550i \(0.185582\pi\)
\(264\) 0 0
\(265\) 8.59533e10i 1.07067i
\(266\) 0 0
\(267\) 2.52961e10i 0.304617i
\(268\) 0 0
\(269\) −6.65588e10 −0.775033 −0.387516 0.921863i \(-0.626667\pi\)
−0.387516 + 0.921863i \(0.626667\pi\)
\(270\) 0 0
\(271\) 4.22523e10i 0.475870i −0.971281 0.237935i \(-0.923529\pi\)
0.971281 0.237935i \(-0.0764706\pi\)
\(272\) 0 0
\(273\) 7.61396e10 + 3.52488e10i 0.829619 + 0.384071i
\(274\) 0 0
\(275\) 6.04611e10i 0.637498i
\(276\) 0 0
\(277\) −8.10641e10 −0.827313 −0.413656 0.910433i \(-0.635748\pi\)
−0.413656 + 0.910433i \(0.635748\pi\)
\(278\) 0 0
\(279\) 7.59586e9i 0.0750513i
\(280\) 0 0
\(281\) 1.39877e11i 1.33834i 0.743108 + 0.669172i \(0.233351\pi\)
−0.743108 + 0.669172i \(0.766649\pi\)
\(282\) 0 0
\(283\) −7.96402e10 −0.738063 −0.369031 0.929417i \(-0.620310\pi\)
−0.369031 + 0.929417i \(0.620310\pi\)
\(284\) 0 0
\(285\) 2.76370e10 0.248136
\(286\) 0 0
\(287\) 1.57087e10 0.136670
\(288\) 0 0
\(289\) −1.08464e11 −0.914626
\(290\) 0 0
\(291\) 2.28483e10i 0.186782i
\(292\) 0 0
\(293\) 6.84760e10i 0.542792i 0.962468 + 0.271396i \(0.0874854\pi\)
−0.962468 + 0.271396i \(0.912515\pi\)
\(294\) 0 0
\(295\) 1.14243e11 0.878273
\(296\) 0 0
\(297\) 1.77465e11i 1.32345i
\(298\) 0 0
\(299\) −9.62050e10 + 2.07809e11i −0.696109 + 1.50364i
\(300\) 0 0
\(301\) 8.20030e10i 0.575812i
\(302\) 0 0
\(303\) −2.31398e11 −1.57713
\(304\) 0 0
\(305\) 1.73311e11i 1.14677i
\(306\) 0 0
\(307\) 6.22329e10i 0.399851i −0.979811 0.199925i \(-0.935930\pi\)
0.979811 0.199925i \(-0.0640699\pi\)
\(308\) 0 0
\(309\) −6.57312e10 −0.410165
\(310\) 0 0
\(311\) 1.23651e11 0.749504 0.374752 0.927125i \(-0.377728\pi\)
0.374752 + 0.927125i \(0.377728\pi\)
\(312\) 0 0
\(313\) −1.63911e11 −0.965289 −0.482644 0.875816i \(-0.660324\pi\)
−0.482644 + 0.875816i \(0.660324\pi\)
\(314\) 0 0
\(315\) −6.09191e9 −0.0348623
\(316\) 0 0
\(317\) 2.49803e11i 1.38941i −0.719294 0.694706i \(-0.755534\pi\)
0.719294 0.694706i \(-0.244466\pi\)
\(318\) 0 0
\(319\) 3.81032e11i 2.06017i
\(320\) 0 0
\(321\) 3.66682e11 1.92760
\(322\) 0 0
\(323\) 1.89418e10i 0.0968300i
\(324\) 0 0
\(325\) 3.95374e10 8.54034e10i 0.196577 0.424620i
\(326\) 0 0
\(327\) 2.07638e11i 1.00425i
\(328\) 0 0
\(329\) 3.58777e11 1.68827
\(330\) 0 0
\(331\) 9.19306e10i 0.420953i 0.977599 + 0.210477i \(0.0675016\pi\)
−0.977599 + 0.210477i \(0.932498\pi\)
\(332\) 0 0
\(333\) 3.92599e9i 0.0174964i
\(334\) 0 0
\(335\) −5.04234e10 −0.218741
\(336\) 0 0
\(337\) 1.66525e11 0.703306 0.351653 0.936130i \(-0.385620\pi\)
0.351653 + 0.936130i \(0.385620\pi\)
\(338\) 0 0
\(339\) 6.97475e10 0.286834
\(340\) 0 0
\(341\) 4.75767e11 1.90546
\(342\) 0 0
\(343\) 2.75517e11i 1.07479i
\(344\) 0 0
\(345\) 3.26466e11i 1.24066i
\(346\) 0 0
\(347\) 2.63149e10 0.0974361 0.0487180 0.998813i \(-0.484486\pi\)
0.0487180 + 0.998813i \(0.484486\pi\)
\(348\) 0 0
\(349\) 5.07968e11i 1.83283i 0.400231 + 0.916414i \(0.368930\pi\)
−0.400231 + 0.916414i \(0.631070\pi\)
\(350\) 0 0
\(351\) −1.16050e11 + 2.50675e11i −0.408097 + 0.881515i
\(352\) 0 0
\(353\) 1.01111e11i 0.346588i 0.984870 + 0.173294i \(0.0554411\pi\)
−0.984870 + 0.173294i \(0.944559\pi\)
\(354\) 0 0
\(355\) 1.19693e11 0.399983
\(356\) 0 0
\(357\) 8.19812e10i 0.267121i
\(358\) 0 0
\(359\) 8.98227e10i 0.285405i −0.989766 0.142702i \(-0.954421\pi\)
0.989766 0.142702i \(-0.0455792\pi\)
\(360\) 0 0
\(361\) 2.87249e11 0.890176
\(362\) 0 0
\(363\) −2.90740e11 −0.878870
\(364\) 0 0
\(365\) 2.63243e11 0.776317
\(366\) 0 0
\(367\) −2.00813e11 −0.577823 −0.288911 0.957356i \(-0.593293\pi\)
−0.288911 + 0.957356i \(0.593293\pi\)
\(368\) 0 0
\(369\) 2.93270e9i 0.00823471i
\(370\) 0 0
\(371\) 4.77027e11i 1.30725i
\(372\) 0 0
\(373\) −1.14957e11 −0.307500 −0.153750 0.988110i \(-0.549135\pi\)
−0.153750 + 0.988110i \(0.549135\pi\)
\(374\) 0 0
\(375\) 4.20904e11i 1.09911i
\(376\) 0 0
\(377\) −2.49169e11 + 5.38221e11i −0.635269 + 1.37222i
\(378\) 0 0
\(379\) 7.25204e10i 0.180544i 0.995917 + 0.0902721i \(0.0287737\pi\)
−0.995917 + 0.0902721i \(0.971226\pi\)
\(380\) 0 0
\(381\) 1.12938e11 0.274585
\(382\) 0 0
\(383\) 5.58942e11i 1.32731i 0.748039 + 0.663655i \(0.230996\pi\)
−0.748039 + 0.663655i \(0.769004\pi\)
\(384\) 0 0
\(385\) 3.81567e11i 0.885110i
\(386\) 0 0
\(387\) 1.53093e10 0.0346942
\(388\) 0 0
\(389\) −6.00696e11 −1.33009 −0.665045 0.746803i \(-0.731588\pi\)
−0.665045 + 0.746803i \(0.731588\pi\)
\(390\) 0 0
\(391\) −2.23753e11 −0.484142
\(392\) 0 0
\(393\) −6.45330e11 −1.36463
\(394\) 0 0
\(395\) 4.78064e11i 0.988097i
\(396\) 0 0
\(397\) 7.85491e11i 1.58703i −0.608554 0.793513i \(-0.708250\pi\)
0.608554 0.793513i \(-0.291750\pi\)
\(398\) 0 0
\(399\) 1.53381e11 0.302966
\(400\) 0 0
\(401\) 3.29034e11i 0.635465i 0.948180 + 0.317732i \(0.102921\pi\)
−0.948180 + 0.317732i \(0.897079\pi\)
\(402\) 0 0
\(403\) 6.72037e11 + 3.11119e11i 1.26917 + 0.587562i
\(404\) 0 0
\(405\) 4.15003e11i 0.766485i
\(406\) 0 0
\(407\) 2.45904e11 0.444212
\(408\) 0 0
\(409\) 7.87247e11i 1.39109i 0.718481 + 0.695547i \(0.244838\pi\)
−0.718481 + 0.695547i \(0.755162\pi\)
\(410\) 0 0
\(411\) 4.52310e11i 0.781894i
\(412\) 0 0
\(413\) 6.34029e11 1.07234
\(414\) 0 0
\(415\) 5.82979e11 0.964798
\(416\) 0 0
\(417\) −8.95942e10 −0.145100
\(418\) 0 0
\(419\) 1.50859e11 0.239116 0.119558 0.992827i \(-0.461852\pi\)
0.119558 + 0.992827i \(0.461852\pi\)
\(420\) 0 0
\(421\) 2.40864e11i 0.373682i −0.982390 0.186841i \(-0.940175\pi\)
0.982390 0.186841i \(-0.0598250\pi\)
\(422\) 0 0
\(423\) 6.69809e10i 0.101723i
\(424\) 0 0
\(425\) 9.19558e10 0.136719
\(426\) 0 0
\(427\) 9.61851e11i 1.40017i
\(428\) 0 0
\(429\) −8.90336e11 4.12180e11i −1.26910 0.587529i
\(430\) 0 0
\(431\) 6.22528e11i 0.868983i −0.900676 0.434492i \(-0.856928\pi\)
0.900676 0.434492i \(-0.143072\pi\)
\(432\) 0 0
\(433\) −3.18425e11 −0.435324 −0.217662 0.976024i \(-0.569843\pi\)
−0.217662 + 0.976024i \(0.569843\pi\)
\(434\) 0 0
\(435\) 8.45540e11i 1.13222i
\(436\) 0 0
\(437\) 4.18625e11i 0.549109i
\(438\) 0 0
\(439\) −3.56306e11 −0.457860 −0.228930 0.973443i \(-0.573523\pi\)
−0.228930 + 0.973443i \(0.573523\pi\)
\(440\) 0 0
\(441\) 8.81394e9 0.0110968
\(442\) 0 0
\(443\) −8.26027e11 −1.01901 −0.509504 0.860468i \(-0.670171\pi\)
−0.509504 + 0.860468i \(0.670171\pi\)
\(444\) 0 0
\(445\) −1.79066e11 −0.216468
\(446\) 0 0
\(447\) 7.09746e10i 0.0840851i
\(448\) 0 0
\(449\) 2.78166e11i 0.322994i −0.986873 0.161497i \(-0.948368\pi\)
0.986873 0.161497i \(-0.0516323\pi\)
\(450\) 0 0
\(451\) −1.83689e11 −0.209069
\(452\) 0 0
\(453\) 2.12119e11i 0.236667i
\(454\) 0 0
\(455\) −2.49519e11 + 5.38976e11i −0.272930 + 0.589547i
\(456\) 0 0
\(457\) 3.13216e11i 0.335909i 0.985795 + 0.167954i \(0.0537161\pi\)
−0.985795 + 0.167954i \(0.946284\pi\)
\(458\) 0 0
\(459\) −2.69908e11 −0.283830
\(460\) 0 0
\(461\) 1.62785e12i 1.67865i −0.543629 0.839326i \(-0.682950\pi\)
0.543629 0.839326i \(-0.317050\pi\)
\(462\) 0 0
\(463\) 1.20183e12i 1.21542i −0.794158 0.607711i \(-0.792088\pi\)
0.794158 0.607711i \(-0.207912\pi\)
\(464\) 0 0
\(465\) −1.05576e12 −1.04720
\(466\) 0 0
\(467\) 4.12465e11 0.401293 0.200646 0.979664i \(-0.435696\pi\)
0.200646 + 0.979664i \(0.435696\pi\)
\(468\) 0 0
\(469\) −2.79842e11 −0.267076
\(470\) 0 0
\(471\) 1.76721e12 1.65460
\(472\) 0 0
\(473\) 9.58900e11i 0.880842i
\(474\) 0 0
\(475\) 1.72043e11i 0.155065i
\(476\) 0 0
\(477\) −8.90572e10 −0.0787656
\(478\) 0 0
\(479\) 2.80958e11i 0.243855i −0.992539 0.121927i \(-0.961092\pi\)
0.992539 0.121927i \(-0.0389075\pi\)
\(480\) 0 0
\(481\) 3.47348e11 + 1.60804e11i 0.295877 + 0.136976i
\(482\) 0 0
\(483\) 1.81183e12i 1.51480i
\(484\) 0 0
\(485\) 1.61738e11 0.132732
\(486\) 0 0
\(487\) 7.68961e11i 0.619475i 0.950822 + 0.309738i \(0.100241\pi\)
−0.950822 + 0.309738i \(0.899759\pi\)
\(488\) 0 0
\(489\) 1.16084e12i 0.918081i
\(490\) 0 0
\(491\) −1.31018e12 −1.01734 −0.508670 0.860962i \(-0.669863\pi\)
−0.508670 + 0.860962i \(0.669863\pi\)
\(492\) 0 0
\(493\) −5.79515e11 −0.441828
\(494\) 0 0
\(495\) 7.12356e10 0.0533303
\(496\) 0 0
\(497\) 6.64277e11 0.488366
\(498\) 0 0
\(499\) 1.80186e12i 1.30097i −0.759519 0.650486i \(-0.774565\pi\)
0.759519 0.650486i \(-0.225435\pi\)
\(500\) 0 0
\(501\) 2.16003e12i 1.53176i
\(502\) 0 0
\(503\) 4.33301e11 0.301810 0.150905 0.988548i \(-0.451781\pi\)
0.150905 + 0.988548i \(0.451781\pi\)
\(504\) 0 0
\(505\) 1.63802e12i 1.12075i
\(506\) 0 0
\(507\) −9.88092e11 1.16444e12i −0.664143 0.782673i
\(508\) 0 0
\(509\) 1.74228e12i 1.15050i 0.817977 + 0.575251i \(0.195096\pi\)
−0.817977 + 0.575251i \(0.804904\pi\)
\(510\) 0 0
\(511\) 1.46096e12 0.947858
\(512\) 0 0
\(513\) 5.04978e11i 0.321918i
\(514\) 0 0
\(515\) 4.65297e11i 0.291473i
\(516\) 0 0
\(517\) −4.19535e12 −2.58262
\(518\) 0 0
\(519\) −1.85233e12 −1.12064
\(520\) 0 0
\(521\) −1.05717e12 −0.628601 −0.314300 0.949324i \(-0.601770\pi\)
−0.314300 + 0.949324i \(0.601770\pi\)
\(522\) 0 0
\(523\) 1.45993e12 0.853246 0.426623 0.904430i \(-0.359703\pi\)
0.426623 + 0.904430i \(0.359703\pi\)
\(524\) 0 0
\(525\) 7.44611e11i 0.427772i
\(526\) 0 0
\(527\) 7.23597e11i 0.408648i
\(528\) 0 0
\(529\) 3.14392e12 1.74550
\(530\) 0 0
\(531\) 1.18368e11i 0.0646116i
\(532\) 0 0
\(533\) −2.59467e11 1.20120e11i −0.139255 0.0644679i
\(534\) 0 0
\(535\) 2.59567e12i 1.36980i
\(536\) 0 0
\(537\) −6.27373e11 −0.325568
\(538\) 0 0
\(539\) 5.52061e11i 0.281733i
\(540\) 0 0
\(541\) 1.20235e12i 0.603455i −0.953394 0.301727i \(-0.902437\pi\)
0.953394 0.301727i \(-0.0975633\pi\)
\(542\) 0 0
\(543\) −1.28352e12 −0.633585
\(544\) 0 0
\(545\) 1.46983e12 0.713646
\(546\) 0 0
\(547\) −1.37979e12 −0.658978 −0.329489 0.944159i \(-0.606876\pi\)
−0.329489 + 0.944159i \(0.606876\pi\)
\(548\) 0 0
\(549\) −1.79570e11 −0.0843643
\(550\) 0 0
\(551\) 1.08423e12i 0.501117i
\(552\) 0 0
\(553\) 2.65318e12i 1.20643i
\(554\) 0 0
\(555\) −5.45680e11 −0.244129
\(556\) 0 0
\(557\) 7.03748e11i 0.309791i 0.987931 + 0.154895i \(0.0495041\pi\)
−0.987931 + 0.154895i \(0.950496\pi\)
\(558\) 0 0
\(559\) 6.27055e11 1.35448e12i 0.271614 0.586704i
\(560\) 0 0
\(561\) 9.58645e11i 0.408625i
\(562\) 0 0
\(563\) −3.48720e12 −1.46282 −0.731408 0.681940i \(-0.761136\pi\)
−0.731408 + 0.681940i \(0.761136\pi\)
\(564\) 0 0
\(565\) 4.93728e11i 0.203831i
\(566\) 0 0
\(567\) 2.30320e12i 0.935853i
\(568\) 0 0
\(569\) 5.14453e11 0.205750 0.102875 0.994694i \(-0.467196\pi\)
0.102875 + 0.994694i \(0.467196\pi\)
\(570\) 0 0
\(571\) −1.66430e11 −0.0655191 −0.0327596 0.999463i \(-0.510430\pi\)
−0.0327596 + 0.999463i \(0.510430\pi\)
\(572\) 0 0
\(573\) 4.52022e11 0.175172
\(574\) 0 0
\(575\) −2.03228e12 −0.775315
\(576\) 0 0
\(577\) 3.87826e11i 0.145662i −0.997344 0.0728310i \(-0.976797\pi\)
0.997344 0.0728310i \(-0.0232034\pi\)
\(578\) 0 0
\(579\) 5.08973e11i 0.188209i
\(580\) 0 0
\(581\) 3.23544e12 1.17799
\(582\) 0 0
\(583\) 5.57810e12i 1.99976i
\(584\) 0 0
\(585\) 1.00623e11 + 4.65832e10i 0.0355218 + 0.0164448i
\(586\) 0 0
\(587\) 3.36701e12i 1.17050i 0.810852 + 0.585252i \(0.199004\pi\)
−0.810852 + 0.585252i \(0.800996\pi\)
\(588\) 0 0
\(589\) 1.35380e12 0.463484
\(590\) 0 0
\(591\) 4.45554e12i 1.50230i
\(592\) 0 0
\(593\) 3.59554e12i 1.19404i −0.802227 0.597019i \(-0.796352\pi\)
0.802227 0.597019i \(-0.203648\pi\)
\(594\) 0 0
\(595\) −5.80328e11 −0.189822
\(596\) 0 0
\(597\) 3.91523e12 1.26146
\(598\) 0 0
\(599\) 3.88170e12 1.23197 0.615987 0.787756i \(-0.288757\pi\)
0.615987 + 0.787756i \(0.288757\pi\)
\(600\) 0 0
\(601\) 3.39593e12 1.06175 0.530877 0.847449i \(-0.321863\pi\)
0.530877 + 0.847449i \(0.321863\pi\)
\(602\) 0 0
\(603\) 5.22443e10i 0.0160920i
\(604\) 0 0
\(605\) 2.05809e12i 0.624546i
\(606\) 0 0
\(607\) 5.99535e12 1.79252 0.896262 0.443524i \(-0.146272\pi\)
0.896262 + 0.443524i \(0.146272\pi\)
\(608\) 0 0
\(609\) 4.69261e12i 1.38241i
\(610\) 0 0
\(611\) −5.92607e12 2.74347e12i −1.72021 0.796370i
\(612\) 0 0
\(613\) 6.77602e12i 1.93822i 0.246632 + 0.969109i \(0.420676\pi\)
−0.246632 + 0.969109i \(0.579324\pi\)
\(614\) 0 0
\(615\) 4.07621e11 0.114900
\(616\) 0 0
\(617\) 2.93800e12i 0.816148i 0.912949 + 0.408074i \(0.133799\pi\)
−0.912949 + 0.408074i \(0.866201\pi\)
\(618\) 0 0
\(619\) 4.03266e12i 1.10404i −0.833832 0.552019i \(-0.813858\pi\)
0.833832 0.552019i \(-0.186142\pi\)
\(620\) 0 0
\(621\) 5.96513e12 1.60956
\(622\) 0 0
\(623\) −9.93788e11 −0.264300
\(624\) 0 0
\(625\) −1.19454e12 −0.313140
\(626\) 0 0
\(627\) −1.79355e12 −0.463458
\(628\) 0 0
\(629\) 3.73997e11i 0.0952666i
\(630\) 0 0
\(631\) 5.08917e12i 1.27795i 0.769226 + 0.638977i \(0.220642\pi\)
−0.769226 + 0.638977i \(0.779358\pi\)
\(632\) 0 0
\(633\) −6.29054e12 −1.55730
\(634\) 0 0
\(635\) 7.99462e11i 0.195126i
\(636\) 0 0
\(637\) 3.61010e11 7.79805e11i 0.0868744 0.187654i
\(638\) 0 0
\(639\) 1.24016e11i 0.0294254i
\(640\) 0 0
\(641\) 1.72593e12 0.403797 0.201898 0.979406i \(-0.435289\pi\)
0.201898 + 0.979406i \(0.435289\pi\)
\(642\) 0 0
\(643\) 1.01796e12i 0.234844i −0.993082 0.117422i \(-0.962537\pi\)
0.993082 0.117422i \(-0.0374630\pi\)
\(644\) 0 0
\(645\) 2.12787e12i 0.484091i
\(646\) 0 0
\(647\) 5.28525e11 0.118576 0.0592879 0.998241i \(-0.481117\pi\)
0.0592879 + 0.998241i \(0.481117\pi\)
\(648\) 0 0
\(649\) −7.41400e12 −1.64041
\(650\) 0 0
\(651\) −5.85932e12 −1.27859
\(652\) 0 0
\(653\) 4.61467e12 0.993187 0.496594 0.867983i \(-0.334584\pi\)
0.496594 + 0.867983i \(0.334584\pi\)
\(654\) 0 0
\(655\) 4.56815e12i 0.969739i
\(656\) 0 0
\(657\) 2.72749e11i 0.0571110i
\(658\) 0 0
\(659\) 6.06886e12 1.25350 0.626748 0.779222i \(-0.284386\pi\)
0.626748 + 0.779222i \(0.284386\pi\)
\(660\) 0 0
\(661\) 2.26704e12i 0.461904i 0.972965 + 0.230952i \(0.0741841\pi\)
−0.972965 + 0.230952i \(0.925816\pi\)
\(662\) 0 0
\(663\) 6.26888e11 1.35412e12i 0.126003 0.272174i
\(664\) 0 0
\(665\) 1.08575e12i 0.215294i
\(666\) 0 0
\(667\) 1.28076e13 2.50554
\(668\) 0 0
\(669\) 2.66388e12i 0.514159i
\(670\) 0 0
\(671\) 1.12474e13i 2.14190i
\(672\) 0 0
\(673\) −9.67448e12 −1.81786 −0.908929 0.416951i \(-0.863099\pi\)
−0.908929 + 0.416951i \(0.863099\pi\)
\(674\) 0 0
\(675\) −2.45149e12 −0.454531
\(676\) 0 0
\(677\) −7.02561e12 −1.28539 −0.642695 0.766122i \(-0.722184\pi\)
−0.642695 + 0.766122i \(0.722184\pi\)
\(678\) 0 0
\(679\) 8.97620e11 0.162061
\(680\) 0 0
\(681\) 1.00013e13i 1.78195i
\(682\) 0 0
\(683\) 1.24988e12i 0.219774i 0.993944 + 0.109887i \(0.0350489\pi\)
−0.993944 + 0.109887i \(0.964951\pi\)
\(684\) 0 0
\(685\) 3.20181e12 0.555633
\(686\) 0 0
\(687\) 5.99658e12i 1.02707i
\(688\) 0 0
\(689\) −3.64769e12 + 7.87925e12i −0.616640 + 1.33198i
\(690\) 0 0
\(691\) 1.07396e13i 1.79200i −0.444055 0.896000i \(-0.646460\pi\)
0.444055 0.896000i \(-0.353540\pi\)
\(692\) 0 0
\(693\) 3.95346e11 0.0651145
\(694\) 0 0
\(695\) 6.34218e11i 0.103112i
\(696\) 0 0
\(697\) 2.79375e11i 0.0448373i
\(698\) 0 0
\(699\) 1.80871e12 0.286563
\(700\) 0 0
\(701\) −4.89863e12 −0.766203 −0.383101 0.923706i \(-0.625144\pi\)
−0.383101 + 0.923706i \(0.625144\pi\)
\(702\) 0 0
\(703\) 6.99722e11 0.108050
\(704\) 0 0
\(705\) 9.30981e12 1.41935
\(706\) 0 0
\(707\) 9.09074e12i 1.36840i
\(708\) 0 0
\(709\) 6.17750e12i 0.918131i 0.888402 + 0.459065i \(0.151816\pi\)
−0.888402 + 0.459065i \(0.848184\pi\)
\(710\) 0 0
\(711\) 4.95328e11 0.0726909
\(712\) 0 0
\(713\) 1.59919e13i 2.31738i
\(714\) 0 0
\(715\) 2.91774e12 6.30250e12i 0.417512 0.901853i
\(716\) 0 0
\(717\) 7.37545e11i 0.104220i
\(718\) 0 0
\(719\) −1.50484e11 −0.0209996 −0.0104998 0.999945i \(-0.503342\pi\)
−0.0104998 + 0.999945i \(0.503342\pi\)
\(720\) 0 0
\(721\) 2.58232e12i 0.355879i
\(722\) 0 0
\(723\) 2.54827e11i 0.0346835i
\(724\) 0 0
\(725\) −5.26356e12 −0.707552
\(726\) 0 0
\(727\) 1.33111e13 1.76729 0.883644 0.468159i \(-0.155082\pi\)
0.883644 + 0.468159i \(0.155082\pi\)
\(728\) 0 0
\(729\) 7.17365e12 0.940733
\(730\) 0 0
\(731\) 1.45840e12 0.188907
\(732\) 0 0
\(733\) 9.04695e12i 1.15754i 0.815492 + 0.578768i \(0.196466\pi\)
−0.815492 + 0.578768i \(0.803534\pi\)
\(734\) 0 0
\(735\) 1.22507e12i 0.154834i
\(736\) 0 0
\(737\) 3.27232e12 0.408557
\(738\) 0 0
\(739\) 8.38312e12i 1.03397i 0.855996 + 0.516983i \(0.172945\pi\)
−0.855996 + 0.516983i \(0.827055\pi\)
\(740\) 0 0
\(741\) −2.53346e12 1.17286e12i −0.308696 0.142911i
\(742\) 0 0
\(743\) 9.05951e12i 1.09057i 0.838249 + 0.545287i \(0.183579\pi\)
−0.838249 + 0.545287i \(0.816421\pi\)
\(744\) 0 0
\(745\) −5.02414e11 −0.0597529
\(746\) 0 0
\(747\) 6.04032e11i 0.0709769i
\(748\) 0 0
\(749\) 1.44055e13i 1.67248i
\(750\) 0 0
\(751\) −5.44464e12 −0.624583 −0.312291 0.949986i \(-0.601096\pi\)
−0.312291 + 0.949986i \(0.601096\pi\)
\(752\) 0 0
\(753\) 6.08243e12 0.689446
\(754\) 0 0
\(755\) −1.50154e12 −0.168181
\(756\) 0 0
\(757\) −9.76848e12 −1.08117 −0.540587 0.841288i \(-0.681798\pi\)
−0.540587 + 0.841288i \(0.681798\pi\)
\(758\) 0 0
\(759\) 2.11866e13i 2.31725i
\(760\) 0 0
\(761\) 1.04489e13i 1.12938i −0.825305 0.564688i \(-0.808997\pi\)
0.825305 0.564688i \(-0.191003\pi\)
\(762\) 0 0
\(763\) 8.15731e12 0.871338
\(764\) 0 0
\(765\) 1.08343e11i 0.0114373i
\(766\) 0 0
\(767\) −1.04725e13 4.84825e12i −1.09263 0.505831i
\(768\) 0 0
\(769\) 1.33503e11i 0.0137664i −0.999976 0.00688322i \(-0.997809\pi\)
0.999976 0.00688322i \(-0.00219101\pi\)
\(770\) 0 0
\(771\) −1.16428e13 −1.18662
\(772\) 0 0
\(773\) 5.29031e12i 0.532934i −0.963844 0.266467i \(-0.914144\pi\)
0.963844 0.266467i \(-0.0858563\pi\)
\(774\) 0 0
\(775\) 6.57222e12i 0.654416i
\(776\) 0 0
\(777\) −3.02844e12 −0.298074
\(778\) 0 0
\(779\) −5.22689e11 −0.0508540
\(780\) 0 0
\(781\) −7.76771e12 −0.747073
\(782\) 0 0
\(783\) 1.54496e13 1.46889
\(784\) 0 0
\(785\) 1.25097e13i 1.17580i
\(786\) 0 0
\(787\) 3.47869e12i 0.323243i −0.986853 0.161621i \(-0.948328\pi\)
0.986853 0.161621i \(-0.0516723\pi\)
\(788\) 0 0
\(789\) 1.86557e13 1.71382
\(790\) 0 0
\(791\) 2.74011e12i 0.248871i
\(792\) 0 0
\(793\) −7.35501e12 + 1.58873e13i −0.660471 + 1.42666i
\(794\) 0 0
\(795\) 1.23782e13i 1.09902i
\(796\) 0 0
\(797\) 3.96304e12 0.347909 0.173955 0.984754i \(-0.444345\pi\)
0.173955 + 0.984754i \(0.444345\pi\)
\(798\) 0 0
\(799\) 6.38074e12i 0.553873i
\(800\) 0 0
\(801\) 1.85533e11i 0.0159248i
\(802\) 0 0
\(803\) −1.70837e13 −1.44998
\(804\) 0 0
\(805\) 1.28256e13 1.07646
\(806\) 0 0
\(807\) −9.58521e12 −0.795556
\(808\) 0 0
\(809\) 9.83579e12 0.807311 0.403656 0.914911i \(-0.367739\pi\)
0.403656 + 0.914911i \(0.367739\pi\)
\(810\) 0 0
\(811\) 4.13429e12i 0.335588i 0.985822 + 0.167794i \(0.0536644\pi\)
−0.985822 + 0.167794i \(0.946336\pi\)
\(812\) 0 0
\(813\) 6.08481e12i 0.488472i
\(814\) 0 0
\(815\) 8.21732e12 0.652410
\(816\) 0 0
\(817\) 2.72856e12i 0.214256i
\(818\) 0 0
\(819\) 5.58440e11 + 2.58529e11i 0.0433709 + 0.0200785i
\(820\) 0 0
\(821\) 9.84105e12i 0.755957i 0.925814 + 0.377979i \(0.123381\pi\)
−0.925814 + 0.377979i \(0.876619\pi\)
\(822\) 0 0
\(823\) 8.39381e12 0.637764 0.318882 0.947794i \(-0.396693\pi\)
0.318882 + 0.947794i \(0.396693\pi\)
\(824\) 0 0
\(825\) 8.70708e12i 0.654380i
\(826\) 0 0
\(827\) 1.61555e13i 1.20101i −0.799621 0.600505i \(-0.794966\pi\)
0.799621 0.600505i \(-0.205034\pi\)
\(828\) 0 0
\(829\) −2.38584e13 −1.75447 −0.877234 0.480063i \(-0.840614\pi\)
−0.877234 + 0.480063i \(0.840614\pi\)
\(830\) 0 0
\(831\) −1.16741e13 −0.849220
\(832\) 0 0
\(833\) 8.39634e11 0.0604209
\(834\) 0 0
\(835\) 1.52904e13 1.08850
\(836\) 0 0
\(837\) 1.92907e13i 1.35858i
\(838\) 0 0
\(839\) 2.05540e13i 1.43208i 0.698057 + 0.716042i \(0.254048\pi\)
−0.698057 + 0.716042i \(0.745952\pi\)
\(840\) 0 0
\(841\) 1.86643e13 1.28656
\(842\) 0 0
\(843\) 2.01438e13i 1.37378i
\(844\) 0 0
\(845\) 8.24281e12 6.99449e12i 0.556186 0.471956i
\(846\) 0 0
\(847\) 1.14221e13i 0.762551i
\(848\) 0 0
\(849\) −1.14691e13 −0.757607
\(850\) 0 0
\(851\) 8.26556e12i 0.540243i
\(852\) 0 0
\(853\) 9.96261e12i 0.644321i 0.946685 + 0.322161i \(0.104409\pi\)
−0.946685 + 0.322161i \(0.895591\pi\)
\(854\) 0 0
\(855\) 2.02701e11 0.0129721
\(856\) 0 0
\(857\) −2.03354e12 −0.128777 −0.0643884 0.997925i \(-0.520510\pi\)
−0.0643884 + 0.997925i \(0.520510\pi\)
\(858\) 0 0
\(859\) 1.31123e13 0.821690 0.410845 0.911705i \(-0.365234\pi\)
0.410845 + 0.911705i \(0.365234\pi\)
\(860\) 0 0
\(861\) 2.26223e12 0.140289
\(862\) 0 0
\(863\) 3.19813e13i 1.96267i −0.192307 0.981335i \(-0.561597\pi\)
0.192307 0.981335i \(-0.438403\pi\)
\(864\) 0 0
\(865\) 1.31122e13i 0.796351i
\(866\) 0 0
\(867\) −1.56200e13 −0.938846
\(868\) 0 0
\(869\) 3.10249e13i 1.84553i
\(870\) 0 0
\(871\) 4.62227e12 + 2.13987e12i 0.272128 + 0.125981i
\(872\) 0 0
\(873\) 1.67579e11i 0.00976462i
\(874\) 0 0
\(875\) −1.65357e13 −0.953643
\(876\) 0 0
\(877\) 2.83695e13i 1.61939i −0.586848 0.809697i \(-0.699631\pi\)
0.586848 0.809697i \(-0.300369\pi\)
\(878\) 0 0
\(879\) 9.86131e12i 0.557166i
\(880\) 0 0
\(881\) 2.70171e13 1.51094 0.755469 0.655184i \(-0.227409\pi\)
0.755469 + 0.655184i \(0.227409\pi\)
\(882\) 0 0
\(883\) −2.67416e13 −1.48035 −0.740174 0.672416i \(-0.765257\pi\)
−0.740174 + 0.672416i \(0.765257\pi\)
\(884\) 0 0
\(885\) 1.64522e13 0.901531
\(886\) 0 0
\(887\) 7.44336e12 0.403750 0.201875 0.979411i \(-0.435297\pi\)
0.201875 + 0.979411i \(0.435297\pi\)
\(888\) 0 0
\(889\) 4.43689e12i 0.238243i
\(890\) 0 0
\(891\) 2.69324e13i 1.43161i
\(892\) 0 0
\(893\) −1.19379e13 −0.628198
\(894\) 0 0
\(895\) 4.44104e12i 0.231356i
\(896\) 0 0
\(897\) −1.38546e13 + 2.99268e13i −0.714543 + 1.54346i
\(898\) 0 0
\(899\) 4.14187e13i 2.11484i
\(900\) 0 0
\(901\) −8.48377e12 −0.428872
\(902\) 0 0
\(903\) 1.18094e13i 0.591060i
\(904\) 0 0
\(905\) 9.08580e12i 0.450241i
\(906\) 0 0
\(907\) −3.19922e13 −1.56968 −0.784841 0.619697i \(-0.787256\pi\)
−0.784841 + 0.619697i \(0.787256\pi\)
\(908\) 0 0
\(909\) −1.69717e12 −0.0824495
\(910\) 0 0
\(911\) −2.16462e13 −1.04123 −0.520617 0.853790i \(-0.674298\pi\)
−0.520617 + 0.853790i \(0.674298\pi\)
\(912\) 0 0
\(913\) −3.78335e13 −1.80201
\(914\) 0 0
\(915\) 2.49588e13i 1.17714i
\(916\) 0 0
\(917\) 2.53525e13i 1.18402i
\(918\) 0 0
\(919\) −2.07241e13 −0.958422 −0.479211 0.877700i \(-0.659077\pi\)
−0.479211 + 0.877700i \(0.659077\pi\)
\(920\) 0 0
\(921\) 8.96224e12i 0.410439i
\(922\) 0 0
\(923\) −1.09722e13 5.07955e12i −0.497604 0.230366i
\(924\) 0 0
\(925\) 3.39691e12i 0.152562i
\(926\) 0 0
\(927\) −4.82100e11 −0.0214427
\(928\) 0 0
\(929\) 8.15082e12i 0.359030i −0.983755 0.179515i \(-0.942547\pi\)
0.983755 0.179515i \(-0.0574528\pi\)
\(930\) 0 0
\(931\) 1.57089e12i 0.0685288i
\(932\) 0 0
\(933\) 1.78071e13 0.769352
\(934\) 0 0
\(935\) 6.78605e12 0.290379
\(936\) 0 0
\(937\) −8.09462e12 −0.343058 −0.171529 0.985179i \(-0.554871\pi\)
−0.171529 + 0.985179i \(0.554871\pi\)
\(938\) 0 0
\(939\) −2.36050e13 −0.990850
\(940\) 0 0
\(941\) 4.10705e13i 1.70756i −0.520633 0.853780i \(-0.674304\pi\)
0.520633 0.853780i \(-0.325696\pi\)
\(942\) 0 0
\(943\) 6.17434e12i 0.254266i
\(944\) 0 0
\(945\) 1.54712e13 0.631076
\(946\) 0 0
\(947\) 1.12577e13i 0.454855i −0.973795 0.227428i \(-0.926969\pi\)
0.973795 0.227428i \(-0.0730315\pi\)
\(948\) 0 0
\(949\) −2.41312e13 1.11715e13i −0.965788 0.447111i
\(950\) 0 0
\(951\) 3.59745e13i 1.42620i
\(952\) 0 0
\(953\) 4.29747e13 1.68770 0.843849 0.536580i \(-0.180284\pi\)
0.843849 + 0.536580i \(0.180284\pi\)
\(954\) 0 0
\(955\) 3.19977e12i 0.124481i
\(956\) 0 0
\(957\) 5.48729e13i 2.11473i
\(958\) 0 0
\(959\) 1.77695e13 0.678409
\(960\) 0 0
\(961\) −2.52769e13 −0.956025
\(962\) 0 0
\(963\) 2.68940e12 0.100771
\(964\) 0 0
\(965\) 3.60291e12 0.133746
\(966\) 0 0
\(967\) 1.48377e13i 0.545692i 0.962058 + 0.272846i \(0.0879649\pi\)
−0.962058 + 0.272846i \(0.912035\pi\)
\(968\) 0 0
\(969\) 2.72783e12i 0.0993941i
\(970\) 0 0
\(971\) 2.51875e13 0.909282 0.454641 0.890675i \(-0.349768\pi\)
0.454641 + 0.890675i \(0.349768\pi\)
\(972\) 0 0
\(973\) 3.51981e12i 0.125896i
\(974\) 0 0
\(975\) 5.69384e12 1.22991e13i 0.201783 0.435864i
\(976\) 0 0
\(977\) 1.45041e13i 0.509289i −0.967035 0.254644i \(-0.918042\pi\)
0.967035 0.254644i \(-0.0819584\pi\)
\(978\) 0 0
\(979\) 1.16208e13 0.404311
\(980\) 0 0
\(981\) 1.52291e12i 0.0525005i
\(982\) 0 0
\(983\) 4.23394e13i 1.44628i −0.690699 0.723142i \(-0.742697\pi\)
0.690699 0.723142i \(-0.257303\pi\)
\(984\) 0 0
\(985\) −3.15399e13 −1.06757
\(986\) 0 0
\(987\) 5.16679e13 1.73298
\(988\) 0 0
\(989\) −3.22315e13 −1.07126
\(990\) 0 0
\(991\) −2.45013e13 −0.806972 −0.403486 0.914986i \(-0.632202\pi\)
−0.403486 + 0.914986i \(0.632202\pi\)
\(992\) 0 0
\(993\) 1.32390e13i 0.432100i
\(994\) 0 0
\(995\) 2.77151e13i 0.896423i
\(996\) 0 0
\(997\) 6.54322e11 0.0209731 0.0104866 0.999945i \(-0.496662\pi\)
0.0104866 + 0.999945i \(0.496662\pi\)
\(998\) 0 0
\(999\) 9.97057e12i 0.316720i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.23 32
4.3 odd 2 104.10.f.a.25.10 yes 32
13.12 even 2 inner 208.10.f.d.129.24 32
52.51 odd 2 104.10.f.a.25.9 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.9 32 52.51 odd 2
104.10.f.a.25.10 yes 32 4.3 odd 2
208.10.f.d.129.23 32 1.1 even 1 trivial
208.10.f.d.129.24 32 13.12 even 2 inner