Properties

Label 208.10.f.d.129.12
Level $208$
Weight $10$
Character 208.129
Analytic conductor $107.127$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(129,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.129"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.12
Character \(\chi\) \(=\) 208.129
Dual form 208.10.f.d.129.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-117.861 q^{3} -287.112i q^{5} -10358.2i q^{7} -5791.89 q^{9} +82910.8i q^{11} +(6945.91 - 102744. i) q^{13} +33839.1i q^{15} +305577. q^{17} -379376. i q^{19} +1.22082e6i q^{21} -815623. q^{23} +1.87069e6 q^{25} +3.00248e6 q^{27} +5.94311e6 q^{29} +2.09996e6i q^{31} -9.77191e6i q^{33} -2.97396e6 q^{35} +219223. i q^{37} +(-818648. + 1.21094e7i) q^{39} +3.13033e7i q^{41} -2.58799e7 q^{43} +1.66292e6i q^{45} -5.79575e6i q^{47} -6.69388e7 q^{49} -3.60155e7 q^{51} +1.97834e7 q^{53} +2.38046e7 q^{55} +4.47134e7i q^{57} +2.88970e7i q^{59} +2.14079e8 q^{61} +5.99936e7i q^{63} +(-2.94989e7 - 1.99425e6i) q^{65} +2.28111e8i q^{67} +9.61298e7 q^{69} -2.43008e8i q^{71} -1.63522e8i q^{73} -2.20481e8 q^{75} +8.58807e8 q^{77} -1.95194e8 q^{79} -2.39873e8 q^{81} -3.87329e8i q^{83} -8.77347e7i q^{85} -7.00458e8 q^{87} +4.30960e8i q^{89} +(-1.06424e9 - 7.19471e7i) q^{91} -2.47503e8i q^{93} -1.08923e8 q^{95} -1.04747e9i q^{97} -4.80210e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} - 3171556 q^{23} - 13526722 q^{25} + 3694974 q^{27} + 8833508 q^{29} + 8281126 q^{35} + 12056860 q^{39} - 89959038 q^{43} - 172344874 q^{49}+ \cdots - 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/208\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(79\) \(145\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −117.861 −0.840084 −0.420042 0.907505i \(-0.637985\pi\)
−0.420042 + 0.907505i \(0.637985\pi\)
\(4\) 0 0
\(5\) 287.112i 0.205440i −0.994710 0.102720i \(-0.967245\pi\)
0.994710 0.102720i \(-0.0327546\pi\)
\(6\) 0 0
\(7\) 10358.2i 1.63058i −0.579050 0.815292i \(-0.696576\pi\)
0.579050 0.815292i \(-0.303424\pi\)
\(8\) 0 0
\(9\) −5791.89 −0.294258
\(10\) 0 0
\(11\) 82910.8i 1.70743i 0.520737 + 0.853717i \(0.325657\pi\)
−0.520737 + 0.853717i \(0.674343\pi\)
\(12\) 0 0
\(13\) 6945.91 102744.i 0.0674503 0.997723i
\(14\) 0 0
\(15\) 33839.1i 0.172587i
\(16\) 0 0
\(17\) 305577. 0.887361 0.443681 0.896185i \(-0.353672\pi\)
0.443681 + 0.896185i \(0.353672\pi\)
\(18\) 0 0
\(19\) 379376.i 0.667849i −0.942600 0.333925i \(-0.891627\pi\)
0.942600 0.333925i \(-0.108373\pi\)
\(20\) 0 0
\(21\) 1.22082e6i 1.36983i
\(22\) 0 0
\(23\) −815623. −0.607735 −0.303868 0.952714i \(-0.598278\pi\)
−0.303868 + 0.952714i \(0.598278\pi\)
\(24\) 0 0
\(25\) 1.87069e6 0.957794
\(26\) 0 0
\(27\) 3.00248e6 1.08729
\(28\) 0 0
\(29\) 5.94311e6 1.56035 0.780176 0.625560i \(-0.215129\pi\)
0.780176 + 0.625560i \(0.215129\pi\)
\(30\) 0 0
\(31\) 2.09996e6i 0.408398i 0.978929 + 0.204199i \(0.0654590\pi\)
−0.978929 + 0.204199i \(0.934541\pi\)
\(32\) 0 0
\(33\) 9.77191e6i 1.43439i
\(34\) 0 0
\(35\) −2.97396e6 −0.334988
\(36\) 0 0
\(37\) 219223.i 0.0192300i 0.999954 + 0.00961498i \(0.00306059\pi\)
−0.999954 + 0.00961498i \(0.996939\pi\)
\(38\) 0 0
\(39\) −818648. + 1.21094e7i −0.0566639 + 0.838171i
\(40\) 0 0
\(41\) 3.13033e7i 1.73006i 0.501716 + 0.865032i \(0.332702\pi\)
−0.501716 + 0.865032i \(0.667298\pi\)
\(42\) 0 0
\(43\) −2.58799e7 −1.15440 −0.577198 0.816604i \(-0.695854\pi\)
−0.577198 + 0.816604i \(0.695854\pi\)
\(44\) 0 0
\(45\) 1.66292e6i 0.0604525i
\(46\) 0 0
\(47\) 5.79575e6i 0.173248i −0.996241 0.0866242i \(-0.972392\pi\)
0.996241 0.0866242i \(-0.0276079\pi\)
\(48\) 0 0
\(49\) −6.69388e7 −1.65881
\(50\) 0 0
\(51\) −3.60155e7 −0.745458
\(52\) 0 0
\(53\) 1.97834e7 0.344397 0.172199 0.985062i \(-0.444913\pi\)
0.172199 + 0.985062i \(0.444913\pi\)
\(54\) 0 0
\(55\) 2.38046e7 0.350776
\(56\) 0 0
\(57\) 4.47134e7i 0.561050i
\(58\) 0 0
\(59\) 2.88970e7i 0.310469i 0.987878 + 0.155235i \(0.0496133\pi\)
−0.987878 + 0.155235i \(0.950387\pi\)
\(60\) 0 0
\(61\) 2.14079e8 1.97965 0.989826 0.142283i \(-0.0454444\pi\)
0.989826 + 0.142283i \(0.0454444\pi\)
\(62\) 0 0
\(63\) 5.99936e7i 0.479813i
\(64\) 0 0
\(65\) −2.94989e7 1.99425e6i −0.204972 0.0138570i
\(66\) 0 0
\(67\) 2.28111e8i 1.38296i 0.722396 + 0.691480i \(0.243041\pi\)
−0.722396 + 0.691480i \(0.756959\pi\)
\(68\) 0 0
\(69\) 9.61298e7 0.510549
\(70\) 0 0
\(71\) 2.43008e8i 1.13490i −0.823408 0.567450i \(-0.807930\pi\)
0.823408 0.567450i \(-0.192070\pi\)
\(72\) 0 0
\(73\) 1.63522e8i 0.673944i −0.941515 0.336972i \(-0.890597\pi\)
0.941515 0.336972i \(-0.109403\pi\)
\(74\) 0 0
\(75\) −2.20481e8 −0.804628
\(76\) 0 0
\(77\) 8.58807e8 2.78412
\(78\) 0 0
\(79\) −1.95194e8 −0.563826 −0.281913 0.959440i \(-0.590969\pi\)
−0.281913 + 0.959440i \(0.590969\pi\)
\(80\) 0 0
\(81\) −2.39873e8 −0.619154
\(82\) 0 0
\(83\) 3.87329e8i 0.895837i −0.894074 0.447919i \(-0.852165\pi\)
0.894074 0.447919i \(-0.147835\pi\)
\(84\) 0 0
\(85\) 8.77347e7i 0.182300i
\(86\) 0 0
\(87\) −7.00458e8 −1.31083
\(88\) 0 0
\(89\) 4.30960e8i 0.728085i 0.931382 + 0.364042i \(0.118604\pi\)
−0.931382 + 0.364042i \(0.881396\pi\)
\(90\) 0 0
\(91\) −1.06424e9 7.19471e7i −1.62687 0.109983i
\(92\) 0 0
\(93\) 2.47503e8i 0.343089i
\(94\) 0 0
\(95\) −1.08923e8 −0.137203
\(96\) 0 0
\(97\) 1.04747e9i 1.20135i −0.799494 0.600674i \(-0.794899\pi\)
0.799494 0.600674i \(-0.205101\pi\)
\(98\) 0 0
\(99\) 4.80210e8i 0.502427i
\(100\) 0 0
\(101\) 3.14680e8 0.300900 0.150450 0.988618i \(-0.451928\pi\)
0.150450 + 0.988618i \(0.451928\pi\)
\(102\) 0 0
\(103\) −8.34709e8 −0.730748 −0.365374 0.930861i \(-0.619059\pi\)
−0.365374 + 0.930861i \(0.619059\pi\)
\(104\) 0 0
\(105\) 3.50513e8 0.281418
\(106\) 0 0
\(107\) 2.44048e9 1.79990 0.899951 0.435991i \(-0.143602\pi\)
0.899951 + 0.435991i \(0.143602\pi\)
\(108\) 0 0
\(109\) 2.79659e9i 1.89762i −0.315850 0.948809i \(-0.602290\pi\)
0.315850 0.948809i \(-0.397710\pi\)
\(110\) 0 0
\(111\) 2.58378e7i 0.0161548i
\(112\) 0 0
\(113\) 1.81100e9 1.04488 0.522438 0.852678i \(-0.325023\pi\)
0.522438 + 0.852678i \(0.325023\pi\)
\(114\) 0 0
\(115\) 2.34175e8i 0.124853i
\(116\) 0 0
\(117\) −4.02299e7 + 5.95080e8i −0.0198478 + 0.293588i
\(118\) 0 0
\(119\) 3.16523e9i 1.44692i
\(120\) 0 0
\(121\) −4.51625e9 −1.91533
\(122\) 0 0
\(123\) 3.68942e9i 1.45340i
\(124\) 0 0
\(125\) 1.09786e9i 0.402210i
\(126\) 0 0
\(127\) 2.74230e9 0.935402 0.467701 0.883887i \(-0.345082\pi\)
0.467701 + 0.883887i \(0.345082\pi\)
\(128\) 0 0
\(129\) 3.05022e9 0.969791
\(130\) 0 0
\(131\) −3.22571e9 −0.956983 −0.478492 0.878092i \(-0.658816\pi\)
−0.478492 + 0.878092i \(0.658816\pi\)
\(132\) 0 0
\(133\) −3.92965e9 −1.08898
\(134\) 0 0
\(135\) 8.62048e8i 0.223372i
\(136\) 0 0
\(137\) 2.75061e9i 0.667093i −0.942734 0.333547i \(-0.891755\pi\)
0.942734 0.333547i \(-0.108245\pi\)
\(138\) 0 0
\(139\) −6.79518e9 −1.54395 −0.771977 0.635650i \(-0.780732\pi\)
−0.771977 + 0.635650i \(0.780732\pi\)
\(140\) 0 0
\(141\) 6.83090e8i 0.145543i
\(142\) 0 0
\(143\) 8.51855e9 + 5.75890e8i 1.70355 + 0.115167i
\(144\) 0 0
\(145\) 1.70633e9i 0.320559i
\(146\) 0 0
\(147\) 7.88945e9 1.39354
\(148\) 0 0
\(149\) 8.86856e9i 1.47406i −0.675861 0.737029i \(-0.736228\pi\)
0.675861 0.737029i \(-0.263772\pi\)
\(150\) 0 0
\(151\) 2.24777e9i 0.351848i 0.984404 + 0.175924i \(0.0562913\pi\)
−0.984404 + 0.175924i \(0.943709\pi\)
\(152\) 0 0
\(153\) −1.76987e9 −0.261113
\(154\) 0 0
\(155\) 6.02923e8 0.0839014
\(156\) 0 0
\(157\) 2.44684e9 0.321408 0.160704 0.987003i \(-0.448624\pi\)
0.160704 + 0.987003i \(0.448624\pi\)
\(158\) 0 0
\(159\) −2.33168e9 −0.289323
\(160\) 0 0
\(161\) 8.44840e9i 0.990964i
\(162\) 0 0
\(163\) 1.31982e10i 1.46443i −0.681072 0.732217i \(-0.738486\pi\)
0.681072 0.732217i \(-0.261514\pi\)
\(164\) 0 0
\(165\) −2.80563e9 −0.294681
\(166\) 0 0
\(167\) 6.48176e8i 0.0644865i −0.999480 0.0322432i \(-0.989735\pi\)
0.999480 0.0322432i \(-0.0102651\pi\)
\(168\) 0 0
\(169\) −1.05080e10 1.42730e9i −0.990901 0.134593i
\(170\) 0 0
\(171\) 2.19730e9i 0.196520i
\(172\) 0 0
\(173\) −9.23110e9 −0.783513 −0.391756 0.920069i \(-0.628132\pi\)
−0.391756 + 0.920069i \(0.628132\pi\)
\(174\) 0 0
\(175\) 1.93770e10i 1.56176i
\(176\) 0 0
\(177\) 3.40582e9i 0.260820i
\(178\) 0 0
\(179\) 1.62540e10 1.18338 0.591688 0.806167i \(-0.298462\pi\)
0.591688 + 0.806167i \(0.298462\pi\)
\(180\) 0 0
\(181\) −1.76021e10 −1.21902 −0.609509 0.792779i \(-0.708633\pi\)
−0.609509 + 0.792779i \(0.708633\pi\)
\(182\) 0 0
\(183\) −2.52314e10 −1.66307
\(184\) 0 0
\(185\) 6.29415e7 0.00395061
\(186\) 0 0
\(187\) 2.53356e10i 1.51511i
\(188\) 0 0
\(189\) 3.11004e10i 1.77291i
\(190\) 0 0
\(191\) 2.47938e10 1.34801 0.674004 0.738727i \(-0.264573\pi\)
0.674004 + 0.738727i \(0.264573\pi\)
\(192\) 0 0
\(193\) 2.32103e10i 1.20413i 0.798448 + 0.602064i \(0.205655\pi\)
−0.798448 + 0.602064i \(0.794345\pi\)
\(194\) 0 0
\(195\) 3.47675e9 + 2.35043e8i 0.172194 + 0.0116411i
\(196\) 0 0
\(197\) 1.83364e10i 0.867393i −0.901059 0.433697i \(-0.857209\pi\)
0.901059 0.433697i \(-0.142791\pi\)
\(198\) 0 0
\(199\) 2.38275e10 1.07706 0.538529 0.842607i \(-0.318980\pi\)
0.538529 + 0.842607i \(0.318980\pi\)
\(200\) 0 0
\(201\) 2.68853e10i 1.16180i
\(202\) 0 0
\(203\) 6.15599e10i 2.54429i
\(204\) 0 0
\(205\) 8.98753e9 0.355425
\(206\) 0 0
\(207\) 4.72400e9 0.178831
\(208\) 0 0
\(209\) 3.14543e10 1.14031
\(210\) 0 0
\(211\) −1.40683e10 −0.488618 −0.244309 0.969697i \(-0.578561\pi\)
−0.244309 + 0.969697i \(0.578561\pi\)
\(212\) 0 0
\(213\) 2.86410e10i 0.953412i
\(214\) 0 0
\(215\) 7.43043e9i 0.237160i
\(216\) 0 0
\(217\) 2.17518e10 0.665928
\(218\) 0 0
\(219\) 1.92728e10i 0.566170i
\(220\) 0 0
\(221\) 2.12251e9 3.13961e10i 0.0598528 0.885340i
\(222\) 0 0
\(223\) 5.01267e10i 1.35737i −0.734430 0.678684i \(-0.762551\pi\)
0.734430 0.678684i \(-0.237449\pi\)
\(224\) 0 0
\(225\) −1.08348e10 −0.281839
\(226\) 0 0
\(227\) 3.02939e10i 0.757250i −0.925550 0.378625i \(-0.876397\pi\)
0.925550 0.378625i \(-0.123603\pi\)
\(228\) 0 0
\(229\) 3.87640e10i 0.931470i −0.884924 0.465735i \(-0.845790\pi\)
0.884924 0.465735i \(-0.154210\pi\)
\(230\) 0 0
\(231\) −1.01219e11 −2.33889
\(232\) 0 0
\(233\) 4.42353e10 0.983258 0.491629 0.870805i \(-0.336402\pi\)
0.491629 + 0.870805i \(0.336402\pi\)
\(234\) 0 0
\(235\) −1.66403e9 −0.0355922
\(236\) 0 0
\(237\) 2.30057e10 0.473661
\(238\) 0 0
\(239\) 7.17928e10i 1.42328i 0.702544 + 0.711640i \(0.252047\pi\)
−0.702544 + 0.711640i \(0.747953\pi\)
\(240\) 0 0
\(241\) 1.31018e10i 0.250181i 0.992145 + 0.125091i \(0.0399222\pi\)
−0.992145 + 0.125091i \(0.960078\pi\)
\(242\) 0 0
\(243\) −3.08264e10 −0.567145
\(244\) 0 0
\(245\) 1.92189e10i 0.340786i
\(246\) 0 0
\(247\) −3.89784e10 2.63511e9i −0.666328 0.0450466i
\(248\) 0 0
\(249\) 4.56509e10i 0.752579i
\(250\) 0 0
\(251\) −7.85551e10 −1.24923 −0.624615 0.780933i \(-0.714744\pi\)
−0.624615 + 0.780933i \(0.714744\pi\)
\(252\) 0 0
\(253\) 6.76240e10i 1.03767i
\(254\) 0 0
\(255\) 1.03405e10i 0.153147i
\(256\) 0 0
\(257\) −7.88264e10 −1.12713 −0.563564 0.826073i \(-0.690570\pi\)
−0.563564 + 0.826073i \(0.690570\pi\)
\(258\) 0 0
\(259\) 2.27076e9 0.0313561
\(260\) 0 0
\(261\) −3.44218e10 −0.459147
\(262\) 0 0
\(263\) −5.85081e10 −0.754076 −0.377038 0.926198i \(-0.623057\pi\)
−0.377038 + 0.926198i \(0.623057\pi\)
\(264\) 0 0
\(265\) 5.68004e9i 0.0707530i
\(266\) 0 0
\(267\) 5.07932e10i 0.611653i
\(268\) 0 0
\(269\) −9.27738e9 −0.108029 −0.0540145 0.998540i \(-0.517202\pi\)
−0.0540145 + 0.998540i \(0.517202\pi\)
\(270\) 0 0
\(271\) 1.74708e10i 0.196766i −0.995149 0.0983830i \(-0.968633\pi\)
0.995149 0.0983830i \(-0.0313670\pi\)
\(272\) 0 0
\(273\) 1.25432e11 + 8.47973e9i 1.36671 + 0.0923953i
\(274\) 0 0
\(275\) 1.55101e11i 1.63537i
\(276\) 0 0
\(277\) 1.69004e11 1.72480 0.862401 0.506226i \(-0.168960\pi\)
0.862401 + 0.506226i \(0.168960\pi\)
\(278\) 0 0
\(279\) 1.21627e10i 0.120175i
\(280\) 0 0
\(281\) 7.28605e10i 0.697130i 0.937285 + 0.348565i \(0.113331\pi\)
−0.937285 + 0.348565i \(0.886669\pi\)
\(282\) 0 0
\(283\) 1.43889e11 1.33349 0.666744 0.745286i \(-0.267687\pi\)
0.666744 + 0.745286i \(0.267687\pi\)
\(284\) 0 0
\(285\) 1.28377e10 0.115262
\(286\) 0 0
\(287\) 3.24246e11 2.82102
\(288\) 0 0
\(289\) −2.52106e10 −0.212590
\(290\) 0 0
\(291\) 1.23455e11i 1.00923i
\(292\) 0 0
\(293\) 4.33136e10i 0.343336i 0.985155 + 0.171668i \(0.0549157\pi\)
−0.985155 + 0.171668i \(0.945084\pi\)
\(294\) 0 0
\(295\) 8.29666e9 0.0637829
\(296\) 0 0
\(297\) 2.48938e11i 1.85647i
\(298\) 0 0
\(299\) −5.66524e9 + 8.38001e10i −0.0409919 + 0.606351i
\(300\) 0 0
\(301\) 2.68070e11i 1.88234i
\(302\) 0 0
\(303\) −3.70883e10 −0.252782
\(304\) 0 0
\(305\) 6.14644e10i 0.406700i
\(306\) 0 0
\(307\) 1.41537e11i 0.909382i −0.890649 0.454691i \(-0.849750\pi\)
0.890649 0.454691i \(-0.150250\pi\)
\(308\) 0 0
\(309\) 9.83793e10 0.613890
\(310\) 0 0
\(311\) −1.18766e11 −0.719895 −0.359947 0.932973i \(-0.617205\pi\)
−0.359947 + 0.932973i \(0.617205\pi\)
\(312\) 0 0
\(313\) −2.74722e11 −1.61787 −0.808936 0.587897i \(-0.799956\pi\)
−0.808936 + 0.587897i \(0.799956\pi\)
\(314\) 0 0
\(315\) 1.72248e10 0.0985730
\(316\) 0 0
\(317\) 8.89417e9i 0.0494696i 0.999694 + 0.0247348i \(0.00787414\pi\)
−0.999694 + 0.0247348i \(0.992126\pi\)
\(318\) 0 0
\(319\) 4.92748e11i 2.66420i
\(320\) 0 0
\(321\) −2.87637e11 −1.51207
\(322\) 0 0
\(323\) 1.15929e11i 0.592624i
\(324\) 0 0
\(325\) 1.29937e10 1.92202e11i 0.0646035 0.955613i
\(326\) 0 0
\(327\) 3.29607e11i 1.59416i
\(328\) 0 0
\(329\) −6.00335e10 −0.282496
\(330\) 0 0
\(331\) 5.22620e10i 0.239310i −0.992816 0.119655i \(-0.961821\pi\)
0.992816 0.119655i \(-0.0381788\pi\)
\(332\) 0 0
\(333\) 1.26972e9i 0.00565858i
\(334\) 0 0
\(335\) 6.54933e10 0.284115
\(336\) 0 0
\(337\) 3.04679e10 0.128679 0.0643396 0.997928i \(-0.479506\pi\)
0.0643396 + 0.997928i \(0.479506\pi\)
\(338\) 0 0
\(339\) −2.13445e11 −0.877783
\(340\) 0 0
\(341\) −1.74109e11 −0.697313
\(342\) 0 0
\(343\) 2.75375e11i 1.07424i
\(344\) 0 0
\(345\) 2.76000e10i 0.104887i
\(346\) 0 0
\(347\) 1.07323e11 0.397384 0.198692 0.980062i \(-0.436331\pi\)
0.198692 + 0.980062i \(0.436331\pi\)
\(348\) 0 0
\(349\) 1.84031e11i 0.664015i 0.943277 + 0.332007i \(0.107726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(350\) 0 0
\(351\) 2.08550e10 3.08486e11i 0.0733378 1.08481i
\(352\) 0 0
\(353\) 5.22950e11i 1.79256i 0.443489 + 0.896280i \(0.353741\pi\)
−0.443489 + 0.896280i \(0.646259\pi\)
\(354\) 0 0
\(355\) −6.97704e10 −0.233154
\(356\) 0 0
\(357\) 3.73056e11i 1.21553i
\(358\) 0 0
\(359\) 4.49510e11i 1.42828i −0.700001 0.714142i \(-0.746817\pi\)
0.700001 0.714142i \(-0.253183\pi\)
\(360\) 0 0
\(361\) 1.78762e11 0.553977
\(362\) 0 0
\(363\) 5.32288e11 1.60904
\(364\) 0 0
\(365\) −4.69491e10 −0.138455
\(366\) 0 0
\(367\) 1.79671e11 0.516988 0.258494 0.966013i \(-0.416774\pi\)
0.258494 + 0.966013i \(0.416774\pi\)
\(368\) 0 0
\(369\) 1.81305e11i 0.509086i
\(370\) 0 0
\(371\) 2.04920e11i 0.561569i
\(372\) 0 0
\(373\) 1.70024e10 0.0454801 0.0227400 0.999741i \(-0.492761\pi\)
0.0227400 + 0.999741i \(0.492761\pi\)
\(374\) 0 0
\(375\) 1.29395e11i 0.337890i
\(376\) 0 0
\(377\) 4.12803e10 6.10617e11i 0.105246 1.55680i
\(378\) 0 0
\(379\) 2.57542e11i 0.641168i 0.947220 + 0.320584i \(0.103879\pi\)
−0.947220 + 0.320584i \(0.896121\pi\)
\(380\) 0 0
\(381\) −3.23209e11 −0.785817
\(382\) 0 0
\(383\) 1.66718e11i 0.395901i 0.980212 + 0.197951i \(0.0634286\pi\)
−0.980212 + 0.197951i \(0.936571\pi\)
\(384\) 0 0
\(385\) 2.46573e11i 0.571969i
\(386\) 0 0
\(387\) 1.49894e11 0.339691
\(388\) 0 0
\(389\) −5.97102e11 −1.32213 −0.661066 0.750327i \(-0.729896\pi\)
−0.661066 + 0.750327i \(0.729896\pi\)
\(390\) 0 0
\(391\) −2.49236e11 −0.539281
\(392\) 0 0
\(393\) 3.80184e11 0.803947
\(394\) 0 0
\(395\) 5.60425e10i 0.115832i
\(396\) 0 0
\(397\) 1.02153e11i 0.206392i −0.994661 0.103196i \(-0.967093\pi\)
0.994661 0.103196i \(-0.0329068\pi\)
\(398\) 0 0
\(399\) 4.63151e11 0.914839
\(400\) 0 0
\(401\) 5.24543e10i 0.101305i −0.998716 0.0506526i \(-0.983870\pi\)
0.998716 0.0506526i \(-0.0161301\pi\)
\(402\) 0 0
\(403\) 2.15758e11 + 1.45861e10i 0.407468 + 0.0275466i
\(404\) 0 0
\(405\) 6.88702e10i 0.127199i
\(406\) 0 0
\(407\) −1.81760e10 −0.0328339
\(408\) 0 0
\(409\) 2.40354e11i 0.424714i −0.977192 0.212357i \(-0.931886\pi\)
0.977192 0.212357i \(-0.0681140\pi\)
\(410\) 0 0
\(411\) 3.24188e11i 0.560414i
\(412\) 0 0
\(413\) 2.99321e11 0.506246
\(414\) 0 0
\(415\) −1.11207e11 −0.184041
\(416\) 0 0
\(417\) 8.00884e11 1.29705
\(418\) 0 0
\(419\) −5.72554e11 −0.907514 −0.453757 0.891125i \(-0.649917\pi\)
−0.453757 + 0.891125i \(0.649917\pi\)
\(420\) 0 0
\(421\) 2.53296e11i 0.392970i 0.980507 + 0.196485i \(0.0629526\pi\)
−0.980507 + 0.196485i \(0.937047\pi\)
\(422\) 0 0
\(423\) 3.35683e10i 0.0509798i
\(424\) 0 0
\(425\) 5.71640e11 0.849910
\(426\) 0 0
\(427\) 2.21747e12i 3.22799i
\(428\) 0 0
\(429\) −1.00400e12 6.78748e10i −1.43112 0.0967499i
\(430\) 0 0
\(431\) 9.69705e10i 0.135360i −0.997707 0.0676802i \(-0.978440\pi\)
0.997707 0.0676802i \(-0.0215598\pi\)
\(432\) 0 0
\(433\) 9.47354e10 0.129514 0.0647570 0.997901i \(-0.479373\pi\)
0.0647570 + 0.997901i \(0.479373\pi\)
\(434\) 0 0
\(435\) 2.01110e11i 0.269297i
\(436\) 0 0
\(437\) 3.09428e11i 0.405876i
\(438\) 0 0
\(439\) −4.03403e11 −0.518380 −0.259190 0.965826i \(-0.583456\pi\)
−0.259190 + 0.965826i \(0.583456\pi\)
\(440\) 0 0
\(441\) 3.87702e11 0.488118
\(442\) 0 0
\(443\) −2.78717e11 −0.343833 −0.171916 0.985112i \(-0.554996\pi\)
−0.171916 + 0.985112i \(0.554996\pi\)
\(444\) 0 0
\(445\) 1.23734e11 0.149578
\(446\) 0 0
\(447\) 1.04525e12i 1.23833i
\(448\) 0 0
\(449\) 2.01740e11i 0.234252i −0.993117 0.117126i \(-0.962632\pi\)
0.993117 0.117126i \(-0.0373681\pi\)
\(450\) 0 0
\(451\) −2.59538e12 −2.95397
\(452\) 0 0
\(453\) 2.64923e11i 0.295582i
\(454\) 0 0
\(455\) −2.06568e10 + 3.05555e11i −0.0225950 + 0.334225i
\(456\) 0 0
\(457\) 4.52715e11i 0.485515i −0.970087 0.242757i \(-0.921948\pi\)
0.970087 0.242757i \(-0.0780519\pi\)
\(458\) 0 0
\(459\) 9.17490e11 0.964816
\(460\) 0 0
\(461\) 2.70174e11i 0.278605i 0.990250 + 0.139303i \(0.0444861\pi\)
−0.990250 + 0.139303i \(0.955514\pi\)
\(462\) 0 0
\(463\) 4.37353e11i 0.442301i −0.975240 0.221151i \(-0.929019\pi\)
0.975240 0.221151i \(-0.0709812\pi\)
\(464\) 0 0
\(465\) −7.10608e10 −0.0704842
\(466\) 0 0
\(467\) −1.18691e12 −1.15476 −0.577382 0.816474i \(-0.695926\pi\)
−0.577382 + 0.816474i \(0.695926\pi\)
\(468\) 0 0
\(469\) 2.36282e12 2.25503
\(470\) 0 0
\(471\) −2.88386e11 −0.270010
\(472\) 0 0
\(473\) 2.14573e12i 1.97106i
\(474\) 0 0
\(475\) 7.09695e11i 0.639662i
\(476\) 0 0
\(477\) −1.14583e11 −0.101342
\(478\) 0 0
\(479\) 5.14115e11i 0.446222i 0.974793 + 0.223111i \(0.0716212\pi\)
−0.974793 + 0.223111i \(0.928379\pi\)
\(480\) 0 0
\(481\) 2.25238e10 + 1.52270e9i 0.0191862 + 0.00129707i
\(482\) 0 0
\(483\) 9.95733e11i 0.832493i
\(484\) 0 0
\(485\) −3.00741e11 −0.246805
\(486\) 0 0
\(487\) 9.09851e11i 0.732976i 0.930423 + 0.366488i \(0.119440\pi\)
−0.930423 + 0.366488i \(0.880560\pi\)
\(488\) 0 0
\(489\) 1.55554e12i 1.23025i
\(490\) 0 0
\(491\) 4.39330e11 0.341134 0.170567 0.985346i \(-0.445440\pi\)
0.170567 + 0.985346i \(0.445440\pi\)
\(492\) 0 0
\(493\) 1.81608e12 1.38460
\(494\) 0 0
\(495\) −1.37874e11 −0.103219
\(496\) 0 0
\(497\) −2.51713e12 −1.85055
\(498\) 0 0
\(499\) 1.24276e12i 0.897291i −0.893710 0.448646i \(-0.851907\pi\)
0.893710 0.448646i \(-0.148093\pi\)
\(500\) 0 0
\(501\) 7.63943e10i 0.0541741i
\(502\) 0 0
\(503\) −1.47132e11 −0.102483 −0.0512415 0.998686i \(-0.516318\pi\)
−0.0512415 + 0.998686i \(0.516318\pi\)
\(504\) 0 0
\(505\) 9.03482e10i 0.0618170i
\(506\) 0 0
\(507\) 1.23848e12 + 1.68222e11i 0.832440 + 0.113070i
\(508\) 0 0
\(509\) 1.91001e12i 1.26126i −0.776082 0.630632i \(-0.782796\pi\)
0.776082 0.630632i \(-0.217204\pi\)
\(510\) 0 0
\(511\) −1.69380e12 −1.09892
\(512\) 0 0
\(513\) 1.13907e12i 0.726143i
\(514\) 0 0
\(515\) 2.39655e11i 0.150125i
\(516\) 0 0
\(517\) 4.80530e11 0.295810
\(518\) 0 0
\(519\) 1.08798e12 0.658217
\(520\) 0 0
\(521\) −1.36628e12 −0.812401 −0.406201 0.913784i \(-0.633147\pi\)
−0.406201 + 0.913784i \(0.633147\pi\)
\(522\) 0 0
\(523\) 2.32317e12 1.35776 0.678881 0.734249i \(-0.262465\pi\)
0.678881 + 0.734249i \(0.262465\pi\)
\(524\) 0 0
\(525\) 2.28379e12i 1.31201i
\(526\) 0 0
\(527\) 6.41700e11i 0.362397i
\(528\) 0 0
\(529\) −1.13591e12 −0.630658
\(530\) 0 0
\(531\) 1.67368e11i 0.0913582i
\(532\) 0 0
\(533\) 3.21621e12 + 2.17430e11i 1.72612 + 0.116693i
\(534\) 0 0
\(535\) 7.00691e11i 0.369772i
\(536\) 0 0
\(537\) −1.91571e12 −0.994135
\(538\) 0 0
\(539\) 5.54995e12i 2.83230i
\(540\) 0 0
\(541\) 3.14940e12i 1.58067i −0.612677 0.790333i \(-0.709907\pi\)
0.612677 0.790333i \(-0.290093\pi\)
\(542\) 0 0
\(543\) 2.07459e12 1.02408
\(544\) 0 0
\(545\) −8.02932e11 −0.389847
\(546\) 0 0
\(547\) 2.53983e12 1.21300 0.606501 0.795083i \(-0.292573\pi\)
0.606501 + 0.795083i \(0.292573\pi\)
\(548\) 0 0
\(549\) −1.23992e12 −0.582529
\(550\) 0 0
\(551\) 2.25467e12i 1.04208i
\(552\) 0 0
\(553\) 2.02186e12i 0.919365i
\(554\) 0 0
\(555\) −7.41832e9 −0.00331885
\(556\) 0 0
\(557\) 6.71608e11i 0.295643i −0.989014 0.147821i \(-0.952774\pi\)
0.989014 0.147821i \(-0.0472261\pi\)
\(558\) 0 0
\(559\) −1.79760e11 + 2.65900e12i −0.0778644 + 1.15177i
\(560\) 0 0
\(561\) 2.98607e12i 1.27282i
\(562\) 0 0
\(563\) 1.47508e12 0.618768 0.309384 0.950937i \(-0.399877\pi\)
0.309384 + 0.950937i \(0.399877\pi\)
\(564\) 0 0
\(565\) 5.19958e11i 0.214659i
\(566\) 0 0
\(567\) 2.48465e12i 1.00958i
\(568\) 0 0
\(569\) 8.74932e11 0.349920 0.174960 0.984576i \(-0.444020\pi\)
0.174960 + 0.984576i \(0.444020\pi\)
\(570\) 0 0
\(571\) −3.22112e12 −1.26807 −0.634037 0.773302i \(-0.718603\pi\)
−0.634037 + 0.773302i \(0.718603\pi\)
\(572\) 0 0
\(573\) −2.92221e12 −1.13244
\(574\) 0 0
\(575\) −1.52578e12 −0.582085
\(576\) 0 0
\(577\) 2.87776e12i 1.08085i −0.841394 0.540423i \(-0.818264\pi\)
0.841394 0.540423i \(-0.181736\pi\)
\(578\) 0 0
\(579\) 2.73558e12i 1.01157i
\(580\) 0 0
\(581\) −4.01204e12 −1.46074
\(582\) 0 0
\(583\) 1.64026e12i 0.588035i
\(584\) 0 0
\(585\) 1.70854e11 + 1.15505e10i 0.0603149 + 0.00407754i
\(586\) 0 0
\(587\) 1.67814e12i 0.583387i −0.956512 0.291693i \(-0.905781\pi\)
0.956512 0.291693i \(-0.0942187\pi\)
\(588\) 0 0
\(589\) 7.96674e11 0.272748
\(590\) 0 0
\(591\) 2.16114e12i 0.728683i
\(592\) 0 0
\(593\) 2.55499e12i 0.848481i 0.905549 + 0.424241i \(0.139459\pi\)
−0.905549 + 0.424241i \(0.860541\pi\)
\(594\) 0 0
\(595\) −9.08774e11 −0.297255
\(596\) 0 0
\(597\) −2.80832e12 −0.904820
\(598\) 0 0
\(599\) 4.54852e12 1.44361 0.721804 0.692098i \(-0.243313\pi\)
0.721804 + 0.692098i \(0.243313\pi\)
\(600\) 0 0
\(601\) 1.13936e12 0.356227 0.178113 0.984010i \(-0.443001\pi\)
0.178113 + 0.984010i \(0.443001\pi\)
\(602\) 0 0
\(603\) 1.32119e12i 0.406947i
\(604\) 0 0
\(605\) 1.29667e12i 0.393486i
\(606\) 0 0
\(607\) −2.74311e12 −0.820151 −0.410075 0.912052i \(-0.634498\pi\)
−0.410075 + 0.912052i \(0.634498\pi\)
\(608\) 0 0
\(609\) 7.25549e12i 2.13742i
\(610\) 0 0
\(611\) −5.95476e11 4.02567e10i −0.172854 0.0116856i
\(612\) 0 0
\(613\) 5.31737e12i 1.52098i −0.649348 0.760492i \(-0.724958\pi\)
0.649348 0.760492i \(-0.275042\pi\)
\(614\) 0 0
\(615\) −1.05928e12 −0.298587
\(616\) 0 0
\(617\) 3.03575e11i 0.0843302i 0.999111 + 0.0421651i \(0.0134256\pi\)
−0.999111 + 0.0421651i \(0.986574\pi\)
\(618\) 0 0
\(619\) 1.76719e12i 0.483810i 0.970300 + 0.241905i \(0.0777723\pi\)
−0.970300 + 0.241905i \(0.922228\pi\)
\(620\) 0 0
\(621\) −2.44890e12 −0.660782
\(622\) 0 0
\(623\) 4.46397e12 1.18720
\(624\) 0 0
\(625\) 3.33849e12 0.875164
\(626\) 0 0
\(627\) −3.70723e12 −0.957955
\(628\) 0 0
\(629\) 6.69895e10i 0.0170639i
\(630\) 0 0
\(631\) 8.00234e11i 0.200949i −0.994940 0.100474i \(-0.967964\pi\)
0.994940 0.100474i \(-0.0320360\pi\)
\(632\) 0 0
\(633\) 1.65809e12 0.410480
\(634\) 0 0
\(635\) 7.87346e11i 0.192169i
\(636\) 0 0
\(637\) −4.64951e11 + 6.87754e12i −0.111887 + 1.65503i
\(638\) 0 0
\(639\) 1.40747e12i 0.333954i
\(640\) 0 0
\(641\) 5.13894e12 1.20230 0.601150 0.799137i \(-0.294710\pi\)
0.601150 + 0.799137i \(0.294710\pi\)
\(642\) 0 0
\(643\) 1.58114e12i 0.364772i 0.983227 + 0.182386i \(0.0583820\pi\)
−0.983227 + 0.182386i \(0.941618\pi\)
\(644\) 0 0
\(645\) 8.75754e11i 0.199234i
\(646\) 0 0
\(647\) 7.12841e12 1.59928 0.799638 0.600482i \(-0.205025\pi\)
0.799638 + 0.600482i \(0.205025\pi\)
\(648\) 0 0
\(649\) −2.39587e12 −0.530106
\(650\) 0 0
\(651\) −2.56368e12 −0.559435
\(652\) 0 0
\(653\) 2.58426e12 0.556194 0.278097 0.960553i \(-0.410296\pi\)
0.278097 + 0.960553i \(0.410296\pi\)
\(654\) 0 0
\(655\) 9.26138e11i 0.196603i
\(656\) 0 0
\(657\) 9.47102e11i 0.198314i
\(658\) 0 0
\(659\) 9.50790e12 1.96381 0.981907 0.189365i \(-0.0606430\pi\)
0.981907 + 0.189365i \(0.0606430\pi\)
\(660\) 0 0
\(661\) 4.92881e12i 1.00423i −0.864799 0.502117i \(-0.832554\pi\)
0.864799 0.502117i \(-0.167446\pi\)
\(662\) 0 0
\(663\) −2.50160e11 + 3.70036e12i −0.0502814 + 0.743761i
\(664\) 0 0
\(665\) 1.12825e12i 0.223721i
\(666\) 0 0
\(667\) −4.84734e12 −0.948281
\(668\) 0 0
\(669\) 5.90797e12i 1.14030i
\(670\) 0 0
\(671\) 1.77494e13i 3.38012i
\(672\) 0 0
\(673\) 7.54694e12 1.41809 0.709044 0.705164i \(-0.249127\pi\)
0.709044 + 0.705164i \(0.249127\pi\)
\(674\) 0 0
\(675\) 5.61672e12 1.04140
\(676\) 0 0
\(677\) −4.71143e12 −0.861994 −0.430997 0.902353i \(-0.641838\pi\)
−0.430997 + 0.902353i \(0.641838\pi\)
\(678\) 0 0
\(679\) −1.08499e13 −1.95890
\(680\) 0 0
\(681\) 3.57046e12i 0.636154i
\(682\) 0 0
\(683\) 6.72669e12i 1.18279i −0.806381 0.591396i \(-0.798577\pi\)
0.806381 0.591396i \(-0.201423\pi\)
\(684\) 0 0
\(685\) −7.89732e11 −0.137048
\(686\) 0 0
\(687\) 4.56875e12i 0.782513i
\(688\) 0 0
\(689\) 1.37414e11 2.03262e12i 0.0232297 0.343613i
\(690\) 0 0
\(691\) 1.34071e12i 0.223709i 0.993725 + 0.111854i \(0.0356790\pi\)
−0.993725 + 0.111854i \(0.964321\pi\)
\(692\) 0 0
\(693\) −4.97411e12 −0.819249
\(694\) 0 0
\(695\) 1.95098e12i 0.317190i
\(696\) 0 0
\(697\) 9.56556e12i 1.53519i
\(698\) 0 0
\(699\) −5.21360e12 −0.826019
\(700\) 0 0
\(701\) 6.31380e12 0.987551 0.493776 0.869589i \(-0.335616\pi\)
0.493776 + 0.869589i \(0.335616\pi\)
\(702\) 0 0
\(703\) 8.31680e10 0.0128427
\(704\) 0 0
\(705\) 1.96123e11 0.0299004
\(706\) 0 0
\(707\) 3.25952e12i 0.490643i
\(708\) 0 0
\(709\) 1.13652e13i 1.68915i 0.535439 + 0.844574i \(0.320146\pi\)
−0.535439 + 0.844574i \(0.679854\pi\)
\(710\) 0 0
\(711\) 1.13054e12 0.165910
\(712\) 0 0
\(713\) 1.71278e12i 0.248198i
\(714\) 0 0
\(715\) 1.65345e11 2.44577e12i 0.0236599 0.349977i
\(716\) 0 0
\(717\) 8.46154e12i 1.19568i
\(718\) 0 0
\(719\) −1.06987e13 −1.49297 −0.746484 0.665403i \(-0.768260\pi\)
−0.746484 + 0.665403i \(0.768260\pi\)
\(720\) 0 0
\(721\) 8.64609e12i 1.19155i
\(722\) 0 0
\(723\) 1.54419e12i 0.210174i
\(724\) 0 0
\(725\) 1.11177e13 1.49450
\(726\) 0 0
\(727\) −4.51319e12 −0.599210 −0.299605 0.954063i \(-0.596855\pi\)
−0.299605 + 0.954063i \(0.596855\pi\)
\(728\) 0 0
\(729\) 8.35463e12 1.09560
\(730\) 0 0
\(731\) −7.90831e12 −1.02437
\(732\) 0 0
\(733\) 6.87256e12i 0.879328i 0.898162 + 0.439664i \(0.144902\pi\)
−0.898162 + 0.439664i \(0.855098\pi\)
\(734\) 0 0
\(735\) 2.26515e12i 0.286289i
\(736\) 0 0
\(737\) −1.89128e13 −2.36131
\(738\) 0 0
\(739\) 2.20989e11i 0.0272565i −0.999907 0.0136283i \(-0.995662\pi\)
0.999907 0.0136283i \(-0.00433815\pi\)
\(740\) 0 0
\(741\) 4.59402e12 + 3.10575e11i 0.559772 + 0.0378430i
\(742\) 0 0
\(743\) 1.40022e13i 1.68557i 0.538247 + 0.842787i \(0.319087\pi\)
−0.538247 + 0.842787i \(0.680913\pi\)
\(744\) 0 0
\(745\) −2.54626e12 −0.302831
\(746\) 0 0
\(747\) 2.24337e12i 0.263608i
\(748\) 0 0
\(749\) 2.52790e13i 2.93489i
\(750\) 0 0
\(751\) 1.92803e12 0.221174 0.110587 0.993866i \(-0.464727\pi\)
0.110587 + 0.993866i \(0.464727\pi\)
\(752\) 0 0
\(753\) 9.25854e12 1.04946
\(754\) 0 0
\(755\) 6.45359e11 0.0722837
\(756\) 0 0
\(757\) −1.75178e12 −0.193887 −0.0969433 0.995290i \(-0.530907\pi\)
−0.0969433 + 0.995290i \(0.530907\pi\)
\(758\) 0 0
\(759\) 7.97020e12i 0.871728i
\(760\) 0 0
\(761\) 9.26118e12i 1.00100i 0.865736 + 0.500502i \(0.166851\pi\)
−0.865736 + 0.500502i \(0.833149\pi\)
\(762\) 0 0
\(763\) −2.89676e13 −3.09423
\(764\) 0 0
\(765\) 5.08149e11i 0.0536432i
\(766\) 0 0
\(767\) 2.96898e12 + 2.00716e11i 0.309762 + 0.0209412i
\(768\) 0 0
\(769\) 5.38976e12i 0.555778i −0.960613 0.277889i \(-0.910365\pi\)
0.960613 0.277889i \(-0.0896347\pi\)
\(770\) 0 0
\(771\) 9.29053e12 0.946882
\(772\) 0 0
\(773\) 1.17249e13i 1.18114i 0.806988 + 0.590568i \(0.201096\pi\)
−0.806988 + 0.590568i \(0.798904\pi\)
\(774\) 0 0
\(775\) 3.92838e12i 0.391161i
\(776\) 0 0
\(777\) −2.67633e11 −0.0263418
\(778\) 0 0
\(779\) 1.18757e13 1.15542
\(780\) 0 0
\(781\) 2.01480e13 1.93777
\(782\) 0 0
\(783\) 1.78441e13 1.69655
\(784\) 0 0
\(785\) 7.02515e11i 0.0660301i
\(786\) 0 0
\(787\) 4.02466e12i 0.373976i −0.982362 0.186988i \(-0.940127\pi\)
0.982362 0.186988i \(-0.0598725\pi\)
\(788\) 0 0
\(789\) 6.89580e12 0.633488
\(790\) 0 0
\(791\) 1.87587e13i 1.70376i
\(792\) 0 0
\(793\) 1.48697e12 2.19952e13i 0.133528 1.97514i
\(794\) 0 0
\(795\) 6.69453e11i 0.0594385i
\(796\) 0 0
\(797\) −4.71670e12 −0.414072 −0.207036 0.978333i \(-0.566382\pi\)
−0.207036 + 0.978333i \(0.566382\pi\)
\(798\) 0 0
\(799\) 1.77105e12i 0.153734i
\(800\) 0 0
\(801\) 2.49607e12i 0.214245i
\(802\) 0 0
\(803\) 1.35578e13 1.15071
\(804\) 0 0
\(805\) 2.42563e12 0.203584
\(806\) 0 0
\(807\) 1.09344e12 0.0907534
\(808\) 0 0
\(809\) −2.01556e13 −1.65435 −0.827175 0.561944i \(-0.810053\pi\)
−0.827175 + 0.561944i \(0.810053\pi\)
\(810\) 0 0
\(811\) 1.98588e13i 1.61198i −0.591930 0.805989i \(-0.701634\pi\)
0.591930 0.805989i \(-0.298366\pi\)
\(812\) 0 0
\(813\) 2.05911e12i 0.165300i
\(814\) 0 0
\(815\) −3.78935e12 −0.300854
\(816\) 0 0
\(817\) 9.81822e12i 0.770963i
\(818\) 0 0
\(819\) 6.16396e12 + 4.16710e11i 0.478721 + 0.0323635i
\(820\) 0 0
\(821\) 8.60654e12i 0.661127i 0.943784 + 0.330563i \(0.107239\pi\)
−0.943784 + 0.330563i \(0.892761\pi\)
\(822\) 0 0
\(823\) 1.69297e13 1.28633 0.643163 0.765729i \(-0.277622\pi\)
0.643163 + 0.765729i \(0.277622\pi\)
\(824\) 0 0
\(825\) 1.82802e13i 1.37385i
\(826\) 0 0
\(827\) 2.31778e13i 1.72305i −0.507716 0.861524i \(-0.669510\pi\)
0.507716 0.861524i \(-0.330490\pi\)
\(828\) 0 0
\(829\) −1.39793e13 −1.02799 −0.513996 0.857793i \(-0.671835\pi\)
−0.513996 + 0.857793i \(0.671835\pi\)
\(830\) 0 0
\(831\) −1.99190e13 −1.44898
\(832\) 0 0
\(833\) −2.04550e13 −1.47196
\(834\) 0 0
\(835\) −1.86099e11 −0.0132481
\(836\) 0 0
\(837\) 6.30510e12i 0.444045i
\(838\) 0 0
\(839\) 1.58497e13i 1.10431i −0.833740 0.552157i \(-0.813805\pi\)
0.833740 0.552157i \(-0.186195\pi\)
\(840\) 0 0
\(841\) 2.08134e13 1.43470
\(842\) 0 0
\(843\) 8.58738e12i 0.585648i
\(844\) 0 0
\(845\) −4.09793e11 + 3.01697e12i −0.0276509 + 0.203571i
\(846\) 0 0
\(847\) 4.67802e13i 3.12311i
\(848\) 0 0
\(849\) −1.69589e13 −1.12024
\(850\) 0 0
\(851\) 1.78804e11i 0.0116867i
\(852\) 0 0
\(853\) 2.79835e13i 1.80980i −0.425619 0.904902i \(-0.639944\pi\)
0.425619 0.904902i \(-0.360056\pi\)
\(854\) 0 0
\(855\) 6.30871e11 0.0403732
\(856\) 0 0
\(857\) −1.50277e13 −0.951652 −0.475826 0.879539i \(-0.657851\pi\)
−0.475826 + 0.879539i \(0.657851\pi\)
\(858\) 0 0
\(859\) 1.05497e13 0.661108 0.330554 0.943787i \(-0.392764\pi\)
0.330554 + 0.943787i \(0.392764\pi\)
\(860\) 0 0
\(861\) −3.82158e13 −2.36989
\(862\) 0 0
\(863\) 8.04536e12i 0.493739i 0.969049 + 0.246869i \(0.0794018\pi\)
−0.969049 + 0.246869i \(0.920598\pi\)
\(864\) 0 0
\(865\) 2.65035e12i 0.160965i
\(866\) 0 0
\(867\) 2.97134e12 0.178594
\(868\) 0 0
\(869\) 1.61837e13i 0.962695i
\(870\) 0 0
\(871\) 2.34369e13 + 1.58444e12i 1.37981 + 0.0932810i
\(872\) 0 0
\(873\) 6.06683e12i 0.353507i
\(874\) 0 0
\(875\) −1.13719e13 −0.655837
\(876\) 0 0
\(877\) 1.57718e13i 0.900294i 0.892955 + 0.450147i \(0.148628\pi\)
−0.892955 + 0.450147i \(0.851372\pi\)
\(878\) 0 0
\(879\) 5.10496e12i 0.288431i
\(880\) 0 0
\(881\) −3.27966e12 −0.183416 −0.0917080 0.995786i \(-0.529233\pi\)
−0.0917080 + 0.995786i \(0.529233\pi\)
\(882\) 0 0
\(883\) −9.55819e12 −0.529118 −0.264559 0.964370i \(-0.585226\pi\)
−0.264559 + 0.964370i \(0.585226\pi\)
\(884\) 0 0
\(885\) −9.77849e11 −0.0535830
\(886\) 0 0
\(887\) −4.23026e12 −0.229462 −0.114731 0.993397i \(-0.536601\pi\)
−0.114731 + 0.993397i \(0.536601\pi\)
\(888\) 0 0
\(889\) 2.84053e13i 1.52525i
\(890\) 0 0
\(891\) 1.98880e13i 1.05716i
\(892\) 0 0
\(893\) −2.19877e12 −0.115704
\(894\) 0 0
\(895\) 4.66672e12i 0.243113i
\(896\) 0 0
\(897\) 6.67709e11 9.87673e12i 0.0344367 0.509386i
\(898\) 0 0
\(899\) 1.24803e13i 0.637245i
\(900\) 0 0
\(901\) 6.04535e12 0.305605
\(902\) 0 0
\(903\) 3.15948e13i 1.58133i
\(904\) 0 0
\(905\) 5.05376e12i 0.250435i
\(906\) 0 0
\(907\) 1.50413e13 0.737991 0.368996 0.929431i \(-0.379702\pi\)
0.368996 + 0.929431i \(0.379702\pi\)
\(908\) 0 0
\(909\) −1.82259e12 −0.0885424
\(910\) 0 0
\(911\) 1.03485e13 0.497787 0.248894 0.968531i \(-0.419933\pi\)
0.248894 + 0.968531i \(0.419933\pi\)
\(912\) 0 0
\(913\) 3.21138e13 1.52958
\(914\) 0 0
\(915\) 7.24423e12i 0.341662i
\(916\) 0 0
\(917\) 3.34126e13i 1.56044i
\(918\) 0 0
\(919\) −1.34997e13 −0.624314 −0.312157 0.950031i \(-0.601051\pi\)
−0.312157 + 0.950031i \(0.601051\pi\)
\(920\) 0 0
\(921\) 1.66816e13i 0.763958i
\(922\) 0 0
\(923\) −2.49675e13 1.68791e12i −1.13232 0.0765494i
\(924\) 0 0
\(925\) 4.10099e11i 0.0184184i
\(926\) 0 0
\(927\) 4.83454e12 0.215029
\(928\) 0 0
\(929\) 2.57332e13i 1.13351i −0.823888 0.566753i \(-0.808199\pi\)
0.823888 0.566753i \(-0.191801\pi\)
\(930\) 0 0
\(931\) 2.53950e13i 1.10783i
\(932\) 0 0
\(933\) 1.39978e13 0.604772
\(934\) 0 0
\(935\) 7.27415e12 0.311265
\(936\) 0 0
\(937\) 4.16059e13 1.76330 0.881652 0.471900i \(-0.156432\pi\)
0.881652 + 0.471900i \(0.156432\pi\)
\(938\) 0 0
\(939\) 3.23789e13 1.35915
\(940\) 0 0
\(941\) 4.56087e12i 0.189625i −0.995495 0.0948123i \(-0.969775\pi\)
0.995495 0.0948123i \(-0.0302251\pi\)
\(942\) 0 0
\(943\) 2.55317e13i 1.05142i
\(944\) 0 0
\(945\) −8.92927e12 −0.364228
\(946\) 0 0
\(947\) 2.64086e13i 1.06702i −0.845795 0.533508i \(-0.820874\pi\)
0.845795 0.533508i \(-0.179126\pi\)
\(948\) 0 0
\(949\) −1.68009e13 1.13581e12i −0.672409 0.0454577i
\(950\) 0 0
\(951\) 1.04827e12i 0.0415587i
\(952\) 0 0
\(953\) −5.77362e12 −0.226741 −0.113370 0.993553i \(-0.536165\pi\)
−0.113370 + 0.993553i \(0.536165\pi\)
\(954\) 0 0
\(955\) 7.11858e12i 0.276935i
\(956\) 0 0
\(957\) 5.80755e13i 2.23815i
\(958\) 0 0
\(959\) −2.84914e13 −1.08775
\(960\) 0 0
\(961\) 2.20298e13 0.833211
\(962\) 0 0
\(963\) −1.41350e13 −0.529636
\(964\) 0 0
\(965\) 6.66394e12 0.247376
\(966\) 0 0
\(967\) 1.21724e13i 0.447669i 0.974627 + 0.223834i \(0.0718574\pi\)
−0.974627 + 0.223834i \(0.928143\pi\)
\(968\) 0 0
\(969\) 1.36634e13i 0.497854i
\(970\) 0 0
\(971\) 3.82669e13 1.38146 0.690728 0.723115i \(-0.257290\pi\)
0.690728 + 0.723115i \(0.257290\pi\)
\(972\) 0 0
\(973\) 7.03859e13i 2.51755i
\(974\) 0 0
\(975\) −1.53144e12 + 2.26530e13i −0.0542724 + 0.802796i
\(976\) 0 0
\(977\) 4.96320e13i 1.74275i −0.490614 0.871377i \(-0.663227\pi\)
0.490614 0.871377i \(-0.336773\pi\)
\(978\) 0 0
\(979\) −3.57312e13 −1.24316
\(980\) 0 0
\(981\) 1.61975e13i 0.558390i
\(982\) 0 0
\(983\) 2.22486e13i 0.759997i −0.924987 0.379998i \(-0.875925\pi\)
0.924987 0.379998i \(-0.124075\pi\)
\(984\) 0 0
\(985\) −5.26459e12 −0.178198
\(986\) 0 0
\(987\) 7.07559e12 0.237320
\(988\) 0 0
\(989\) 2.11083e13 0.701568
\(990\) 0 0
\(991\) −4.38186e13 −1.44320 −0.721601 0.692310i \(-0.756593\pi\)
−0.721601 + 0.692310i \(0.756593\pi\)
\(992\) 0 0
\(993\) 6.15963e12i 0.201040i
\(994\) 0 0
\(995\) 6.84114e12i 0.221271i
\(996\) 0 0
\(997\) −6.60845e12 −0.211822 −0.105911 0.994376i \(-0.533776\pi\)
−0.105911 + 0.994376i \(0.533776\pi\)
\(998\) 0 0
\(999\) 6.58214e11i 0.0209085i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.f.d.129.12 32
4.3 odd 2 104.10.f.a.25.21 32
13.12 even 2 inner 208.10.f.d.129.11 32
52.51 odd 2 104.10.f.a.25.22 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.21 32 4.3 odd 2
104.10.f.a.25.22 yes 32 52.51 odd 2
208.10.f.d.129.11 32 13.12 even 2 inner
208.10.f.d.129.12 32 1.1 even 1 trivial