Properties

Label 208.10.a.m.1.8
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(270.514\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+252.514 q^{3} +1395.15 q^{5} +11230.7 q^{7} +44080.4 q^{9} +11945.0 q^{11} +28561.0 q^{13} +352296. q^{15} -357016. q^{17} +812674. q^{19} +2.83590e6 q^{21} +875590. q^{23} -6671.05 q^{25} +6.16067e6 q^{27} -3.81480e6 q^{29} -1.70447e6 q^{31} +3.01628e6 q^{33} +1.56685e7 q^{35} -2.01332e7 q^{37} +7.21205e6 q^{39} +7.51492e6 q^{41} +8.77900e6 q^{43} +6.14989e7 q^{45} -5.56456e7 q^{47} +8.57741e7 q^{49} -9.01516e7 q^{51} +1.84201e7 q^{53} +1.66651e7 q^{55} +2.05212e8 q^{57} -9.16484e7 q^{59} -4.97163e7 q^{61} +4.95051e8 q^{63} +3.98470e7 q^{65} -1.84401e8 q^{67} +2.21099e8 q^{69} +1.75076e8 q^{71} -3.00349e8 q^{73} -1.68453e6 q^{75} +1.34150e8 q^{77} -5.38224e8 q^{79} +6.88023e8 q^{81} -3.07653e8 q^{83} -4.98092e8 q^{85} -9.63291e8 q^{87} +4.56635e8 q^{89} +3.20759e8 q^{91} -4.30403e8 q^{93} +1.13381e9 q^{95} -1.45156e9 q^{97} +5.26539e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 141 q^{3} + 2051 q^{5} + 2417 q^{7} + 115741 q^{9} + 53118 q^{11} + 228488 q^{13} + 464555 q^{15} + 433095 q^{17} + 434954 q^{19} + 906875 q^{21} + 1124296 q^{23} + 5966065 q^{25} - 7820643 q^{27}+ \cdots + 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 252.514 1.79986 0.899932 0.436029i \(-0.143616\pi\)
0.899932 + 0.436029i \(0.143616\pi\)
\(4\) 0 0
\(5\) 1395.15 0.998291 0.499145 0.866518i \(-0.333647\pi\)
0.499145 + 0.866518i \(0.333647\pi\)
\(6\) 0 0
\(7\) 11230.7 1.76793 0.883963 0.467557i \(-0.154866\pi\)
0.883963 + 0.467557i \(0.154866\pi\)
\(8\) 0 0
\(9\) 44080.4 2.23951
\(10\) 0 0
\(11\) 11945.0 0.245991 0.122995 0.992407i \(-0.460750\pi\)
0.122995 + 0.992407i \(0.460750\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) 352296. 1.79679
\(16\) 0 0
\(17\) −357016. −1.03673 −0.518367 0.855158i \(-0.673460\pi\)
−0.518367 + 0.855158i \(0.673460\pi\)
\(18\) 0 0
\(19\) 812674. 1.43062 0.715312 0.698806i \(-0.246285\pi\)
0.715312 + 0.698806i \(0.246285\pi\)
\(20\) 0 0
\(21\) 2.83590e6 3.18203
\(22\) 0 0
\(23\) 875590. 0.652417 0.326209 0.945298i \(-0.394229\pi\)
0.326209 + 0.945298i \(0.394229\pi\)
\(24\) 0 0
\(25\) −6671.05 −0.00341558
\(26\) 0 0
\(27\) 6.16067e6 2.23096
\(28\) 0 0
\(29\) −3.81480e6 −1.00157 −0.500785 0.865572i \(-0.666955\pi\)
−0.500785 + 0.865572i \(0.666955\pi\)
\(30\) 0 0
\(31\) −1.70447e6 −0.331484 −0.165742 0.986169i \(-0.553002\pi\)
−0.165742 + 0.986169i \(0.553002\pi\)
\(32\) 0 0
\(33\) 3.01628e6 0.442750
\(34\) 0 0
\(35\) 1.56685e7 1.76490
\(36\) 0 0
\(37\) −2.01332e7 −1.76606 −0.883030 0.469317i \(-0.844500\pi\)
−0.883030 + 0.469317i \(0.844500\pi\)
\(38\) 0 0
\(39\) 7.21205e6 0.499193
\(40\) 0 0
\(41\) 7.51492e6 0.415333 0.207667 0.978200i \(-0.433413\pi\)
0.207667 + 0.978200i \(0.433413\pi\)
\(42\) 0 0
\(43\) 8.77900e6 0.391595 0.195798 0.980644i \(-0.437270\pi\)
0.195798 + 0.980644i \(0.437270\pi\)
\(44\) 0 0
\(45\) 6.14989e7 2.23569
\(46\) 0 0
\(47\) −5.56456e7 −1.66338 −0.831689 0.555242i \(-0.812625\pi\)
−0.831689 + 0.555242i \(0.812625\pi\)
\(48\) 0 0
\(49\) 8.57741e7 2.12556
\(50\) 0 0
\(51\) −9.01516e7 −1.86598
\(52\) 0 0
\(53\) 1.84201e7 0.320664 0.160332 0.987063i \(-0.448744\pi\)
0.160332 + 0.987063i \(0.448744\pi\)
\(54\) 0 0
\(55\) 1.66651e7 0.245570
\(56\) 0 0
\(57\) 2.05212e8 2.57493
\(58\) 0 0
\(59\) −9.16484e7 −0.984670 −0.492335 0.870406i \(-0.663857\pi\)
−0.492335 + 0.870406i \(0.663857\pi\)
\(60\) 0 0
\(61\) −4.97163e7 −0.459742 −0.229871 0.973221i \(-0.573830\pi\)
−0.229871 + 0.973221i \(0.573830\pi\)
\(62\) 0 0
\(63\) 4.95051e8 3.95929
\(64\) 0 0
\(65\) 3.98470e7 0.276876
\(66\) 0 0
\(67\) −1.84401e8 −1.11796 −0.558980 0.829181i \(-0.688807\pi\)
−0.558980 + 0.829181i \(0.688807\pi\)
\(68\) 0 0
\(69\) 2.21099e8 1.17426
\(70\) 0 0
\(71\) 1.75076e8 0.817644 0.408822 0.912614i \(-0.365940\pi\)
0.408822 + 0.912614i \(0.365940\pi\)
\(72\) 0 0
\(73\) −3.00349e8 −1.23787 −0.618933 0.785444i \(-0.712435\pi\)
−0.618933 + 0.785444i \(0.712435\pi\)
\(74\) 0 0
\(75\) −1.68453e6 −0.00614758
\(76\) 0 0
\(77\) 1.34150e8 0.434893
\(78\) 0 0
\(79\) −5.38224e8 −1.55468 −0.777341 0.629080i \(-0.783432\pi\)
−0.777341 + 0.629080i \(0.783432\pi\)
\(80\) 0 0
\(81\) 6.88023e8 1.77591
\(82\) 0 0
\(83\) −3.07653e8 −0.711558 −0.355779 0.934570i \(-0.615784\pi\)
−0.355779 + 0.934570i \(0.615784\pi\)
\(84\) 0 0
\(85\) −4.98092e8 −1.03496
\(86\) 0 0
\(87\) −9.63291e8 −1.80269
\(88\) 0 0
\(89\) 4.56635e8 0.771462 0.385731 0.922611i \(-0.373949\pi\)
0.385731 + 0.922611i \(0.373949\pi\)
\(90\) 0 0
\(91\) 3.20759e8 0.490334
\(92\) 0 0
\(93\) −4.30403e8 −0.596626
\(94\) 0 0
\(95\) 1.13381e9 1.42818
\(96\) 0 0
\(97\) −1.45156e9 −1.66480 −0.832402 0.554172i \(-0.813035\pi\)
−0.832402 + 0.554172i \(0.813035\pi\)
\(98\) 0 0
\(99\) 5.26539e8 0.550899
\(100\) 0 0
\(101\) 2.02443e9 1.93578 0.967890 0.251372i \(-0.0808818\pi\)
0.967890 + 0.251372i \(0.0808818\pi\)
\(102\) 0 0
\(103\) 1.17562e9 1.02920 0.514598 0.857431i \(-0.327941\pi\)
0.514598 + 0.857431i \(0.327941\pi\)
\(104\) 0 0
\(105\) 3.95652e9 3.17659
\(106\) 0 0
\(107\) −1.79278e9 −1.32221 −0.661105 0.750294i \(-0.729912\pi\)
−0.661105 + 0.750294i \(0.729912\pi\)
\(108\) 0 0
\(109\) −1.47094e9 −0.998100 −0.499050 0.866573i \(-0.666318\pi\)
−0.499050 + 0.866573i \(0.666318\pi\)
\(110\) 0 0
\(111\) −5.08392e9 −3.17867
\(112\) 0 0
\(113\) −1.43367e9 −0.827175 −0.413587 0.910464i \(-0.635724\pi\)
−0.413587 + 0.910464i \(0.635724\pi\)
\(114\) 0 0
\(115\) 1.22158e9 0.651302
\(116\) 0 0
\(117\) 1.25898e9 0.621129
\(118\) 0 0
\(119\) −4.00953e9 −1.83287
\(120\) 0 0
\(121\) −2.21527e9 −0.939489
\(122\) 0 0
\(123\) 1.89762e9 0.747544
\(124\) 0 0
\(125\) −2.73422e9 −1.00170
\(126\) 0 0
\(127\) 6.66749e8 0.227429 0.113714 0.993513i \(-0.463725\pi\)
0.113714 + 0.993513i \(0.463725\pi\)
\(128\) 0 0
\(129\) 2.21682e9 0.704818
\(130\) 0 0
\(131\) −6.41886e7 −0.0190431 −0.00952153 0.999955i \(-0.503031\pi\)
−0.00952153 + 0.999955i \(0.503031\pi\)
\(132\) 0 0
\(133\) 9.12687e9 2.52924
\(134\) 0 0
\(135\) 8.59509e9 2.22714
\(136\) 0 0
\(137\) 6.53226e9 1.58424 0.792119 0.610366i \(-0.208978\pi\)
0.792119 + 0.610366i \(0.208978\pi\)
\(138\) 0 0
\(139\) 3.61791e9 0.822036 0.411018 0.911627i \(-0.365173\pi\)
0.411018 + 0.911627i \(0.365173\pi\)
\(140\) 0 0
\(141\) −1.40513e10 −2.99385
\(142\) 0 0
\(143\) 3.41161e8 0.0682255
\(144\) 0 0
\(145\) −5.32224e9 −0.999857
\(146\) 0 0
\(147\) 2.16592e10 3.82572
\(148\) 0 0
\(149\) 8.85288e9 1.47145 0.735726 0.677279i \(-0.236841\pi\)
0.735726 + 0.677279i \(0.236841\pi\)
\(150\) 0 0
\(151\) −5.05046e9 −0.790560 −0.395280 0.918561i \(-0.629352\pi\)
−0.395280 + 0.918561i \(0.629352\pi\)
\(152\) 0 0
\(153\) −1.57374e10 −2.32178
\(154\) 0 0
\(155\) −2.37800e9 −0.330917
\(156\) 0 0
\(157\) 6.78519e9 0.891278 0.445639 0.895213i \(-0.352976\pi\)
0.445639 + 0.895213i \(0.352976\pi\)
\(158\) 0 0
\(159\) 4.65132e9 0.577151
\(160\) 0 0
\(161\) 9.83345e9 1.15343
\(162\) 0 0
\(163\) 4.06629e9 0.451185 0.225592 0.974222i \(-0.427568\pi\)
0.225592 + 0.974222i \(0.427568\pi\)
\(164\) 0 0
\(165\) 4.20817e9 0.441993
\(166\) 0 0
\(167\) 1.48051e10 1.47294 0.736472 0.676468i \(-0.236490\pi\)
0.736472 + 0.676468i \(0.236490\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 3.58230e10 3.20390
\(172\) 0 0
\(173\) 1.97114e10 1.67306 0.836528 0.547924i \(-0.184582\pi\)
0.836528 + 0.547924i \(0.184582\pi\)
\(174\) 0 0
\(175\) −7.49203e7 −0.00603849
\(176\) 0 0
\(177\) −2.31425e10 −1.77227
\(178\) 0 0
\(179\) 5.20046e9 0.378620 0.189310 0.981917i \(-0.439375\pi\)
0.189310 + 0.981917i \(0.439375\pi\)
\(180\) 0 0
\(181\) 1.03831e10 0.719073 0.359536 0.933131i \(-0.382935\pi\)
0.359536 + 0.933131i \(0.382935\pi\)
\(182\) 0 0
\(183\) −1.25541e10 −0.827474
\(184\) 0 0
\(185\) −2.80889e10 −1.76304
\(186\) 0 0
\(187\) −4.26455e9 −0.255027
\(188\) 0 0
\(189\) 6.91884e10 3.94417
\(190\) 0 0
\(191\) 8.63545e9 0.469499 0.234750 0.972056i \(-0.424573\pi\)
0.234750 + 0.972056i \(0.424573\pi\)
\(192\) 0 0
\(193\) 1.67569e10 0.869331 0.434666 0.900592i \(-0.356867\pi\)
0.434666 + 0.900592i \(0.356867\pi\)
\(194\) 0 0
\(195\) 1.00619e10 0.498339
\(196\) 0 0
\(197\) 1.87783e10 0.888297 0.444149 0.895953i \(-0.353506\pi\)
0.444149 + 0.895953i \(0.353506\pi\)
\(198\) 0 0
\(199\) −3.52425e9 −0.159304 −0.0796521 0.996823i \(-0.525381\pi\)
−0.0796521 + 0.996823i \(0.525381\pi\)
\(200\) 0 0
\(201\) −4.65638e10 −2.01218
\(202\) 0 0
\(203\) −4.28427e10 −1.77070
\(204\) 0 0
\(205\) 1.04845e10 0.414624
\(206\) 0 0
\(207\) 3.85963e10 1.46110
\(208\) 0 0
\(209\) 9.70738e9 0.351920
\(210\) 0 0
\(211\) −4.12902e10 −1.43409 −0.717045 0.697027i \(-0.754506\pi\)
−0.717045 + 0.697027i \(0.754506\pi\)
\(212\) 0 0
\(213\) 4.42092e10 1.47165
\(214\) 0 0
\(215\) 1.22481e10 0.390926
\(216\) 0 0
\(217\) −1.91423e10 −0.586038
\(218\) 0 0
\(219\) −7.58424e10 −2.22799
\(220\) 0 0
\(221\) −1.01967e10 −0.287538
\(222\) 0 0
\(223\) 4.75372e10 1.28725 0.643623 0.765343i \(-0.277431\pi\)
0.643623 + 0.765343i \(0.277431\pi\)
\(224\) 0 0
\(225\) −2.94062e8 −0.00764924
\(226\) 0 0
\(227\) 2.67975e10 0.669851 0.334925 0.942245i \(-0.391289\pi\)
0.334925 + 0.942245i \(0.391289\pi\)
\(228\) 0 0
\(229\) −1.48840e9 −0.0357650 −0.0178825 0.999840i \(-0.505692\pi\)
−0.0178825 + 0.999840i \(0.505692\pi\)
\(230\) 0 0
\(231\) 3.38748e10 0.782749
\(232\) 0 0
\(233\) −7.20283e10 −1.60104 −0.800519 0.599307i \(-0.795443\pi\)
−0.800519 + 0.599307i \(0.795443\pi\)
\(234\) 0 0
\(235\) −7.76342e10 −1.66053
\(236\) 0 0
\(237\) −1.35909e11 −2.79822
\(238\) 0 0
\(239\) −4.32647e10 −0.857715 −0.428858 0.903372i \(-0.641084\pi\)
−0.428858 + 0.903372i \(0.641084\pi\)
\(240\) 0 0
\(241\) 6.59730e10 1.25977 0.629883 0.776690i \(-0.283103\pi\)
0.629883 + 0.776690i \(0.283103\pi\)
\(242\) 0 0
\(243\) 5.24750e10 0.965438
\(244\) 0 0
\(245\) 1.19668e11 2.12193
\(246\) 0 0
\(247\) 2.32108e10 0.396784
\(248\) 0 0
\(249\) −7.76868e10 −1.28071
\(250\) 0 0
\(251\) −1.34901e9 −0.0214528 −0.0107264 0.999942i \(-0.503414\pi\)
−0.0107264 + 0.999942i \(0.503414\pi\)
\(252\) 0 0
\(253\) 1.04589e10 0.160488
\(254\) 0 0
\(255\) −1.25775e11 −1.86279
\(256\) 0 0
\(257\) 2.04936e10 0.293034 0.146517 0.989208i \(-0.453194\pi\)
0.146517 + 0.989208i \(0.453194\pi\)
\(258\) 0 0
\(259\) −2.26109e11 −3.12226
\(260\) 0 0
\(261\) −1.68158e11 −2.24303
\(262\) 0 0
\(263\) 2.32322e10 0.299426 0.149713 0.988730i \(-0.452165\pi\)
0.149713 + 0.988730i \(0.452165\pi\)
\(264\) 0 0
\(265\) 2.56988e10 0.320115
\(266\) 0 0
\(267\) 1.15307e11 1.38853
\(268\) 0 0
\(269\) −4.76939e10 −0.555363 −0.277682 0.960673i \(-0.589566\pi\)
−0.277682 + 0.960673i \(0.589566\pi\)
\(270\) 0 0
\(271\) −1.02000e11 −1.14878 −0.574391 0.818581i \(-0.694761\pi\)
−0.574391 + 0.818581i \(0.694761\pi\)
\(272\) 0 0
\(273\) 8.09961e10 0.882536
\(274\) 0 0
\(275\) −7.96856e7 −0.000840200 0
\(276\) 0 0
\(277\) −4.31461e10 −0.440335 −0.220167 0.975462i \(-0.570660\pi\)
−0.220167 + 0.975462i \(0.570660\pi\)
\(278\) 0 0
\(279\) −7.51337e10 −0.742362
\(280\) 0 0
\(281\) 1.21086e11 1.15855 0.579274 0.815133i \(-0.303336\pi\)
0.579274 + 0.815133i \(0.303336\pi\)
\(282\) 0 0
\(283\) 1.93259e11 1.79102 0.895512 0.445038i \(-0.146810\pi\)
0.895512 + 0.445038i \(0.146810\pi\)
\(284\) 0 0
\(285\) 2.86302e11 2.57053
\(286\) 0 0
\(287\) 8.43975e10 0.734279
\(288\) 0 0
\(289\) 8.87263e9 0.0748190
\(290\) 0 0
\(291\) −3.66540e11 −2.99642
\(292\) 0 0
\(293\) 2.21207e11 1.75345 0.876727 0.480988i \(-0.159722\pi\)
0.876727 + 0.480988i \(0.159722\pi\)
\(294\) 0 0
\(295\) −1.27864e11 −0.982987
\(296\) 0 0
\(297\) 7.35891e10 0.548795
\(298\) 0 0
\(299\) 2.50077e10 0.180948
\(300\) 0 0
\(301\) 9.85940e10 0.692311
\(302\) 0 0
\(303\) 5.11197e11 3.48414
\(304\) 0 0
\(305\) −6.93618e10 −0.458956
\(306\) 0 0
\(307\) 5.56848e10 0.357778 0.178889 0.983869i \(-0.442750\pi\)
0.178889 + 0.983869i \(0.442750\pi\)
\(308\) 0 0
\(309\) 2.96860e11 1.85242
\(310\) 0 0
\(311\) −5.64253e9 −0.0342021 −0.0171010 0.999854i \(-0.505444\pi\)
−0.0171010 + 0.999854i \(0.505444\pi\)
\(312\) 0 0
\(313\) −1.20514e11 −0.709723 −0.354862 0.934919i \(-0.615472\pi\)
−0.354862 + 0.934919i \(0.615472\pi\)
\(314\) 0 0
\(315\) 6.90673e11 3.95253
\(316\) 0 0
\(317\) −1.29791e11 −0.721901 −0.360950 0.932585i \(-0.617548\pi\)
−0.360950 + 0.932585i \(0.617548\pi\)
\(318\) 0 0
\(319\) −4.55677e10 −0.246377
\(320\) 0 0
\(321\) −4.52702e11 −2.37980
\(322\) 0 0
\(323\) −2.90138e11 −1.48318
\(324\) 0 0
\(325\) −1.90532e8 −0.000947311 0
\(326\) 0 0
\(327\) −3.71432e11 −1.79645
\(328\) 0 0
\(329\) −6.24937e11 −2.94073
\(330\) 0 0
\(331\) 3.06818e11 1.40493 0.702464 0.711719i \(-0.252083\pi\)
0.702464 + 0.711719i \(0.252083\pi\)
\(332\) 0 0
\(333\) −8.87479e11 −3.95511
\(334\) 0 0
\(335\) −2.57268e11 −1.11605
\(336\) 0 0
\(337\) 1.02414e11 0.432539 0.216270 0.976334i \(-0.430611\pi\)
0.216270 + 0.976334i \(0.430611\pi\)
\(338\) 0 0
\(339\) −3.62023e11 −1.48880
\(340\) 0 0
\(341\) −2.03599e10 −0.0815418
\(342\) 0 0
\(343\) 5.10102e11 1.98991
\(344\) 0 0
\(345\) 3.08467e11 1.17226
\(346\) 0 0
\(347\) −3.10216e11 −1.14863 −0.574317 0.818633i \(-0.694732\pi\)
−0.574317 + 0.818633i \(0.694732\pi\)
\(348\) 0 0
\(349\) −3.98911e11 −1.43933 −0.719667 0.694319i \(-0.755706\pi\)
−0.719667 + 0.694319i \(0.755706\pi\)
\(350\) 0 0
\(351\) 1.75955e11 0.618756
\(352\) 0 0
\(353\) −1.11096e11 −0.380815 −0.190407 0.981705i \(-0.560981\pi\)
−0.190407 + 0.981705i \(0.560981\pi\)
\(354\) 0 0
\(355\) 2.44258e11 0.816246
\(356\) 0 0
\(357\) −1.01246e12 −3.29892
\(358\) 0 0
\(359\) −2.78159e11 −0.883829 −0.441914 0.897057i \(-0.645700\pi\)
−0.441914 + 0.897057i \(0.645700\pi\)
\(360\) 0 0
\(361\) 3.37752e11 1.04668
\(362\) 0 0
\(363\) −5.59386e11 −1.69095
\(364\) 0 0
\(365\) −4.19033e11 −1.23575
\(366\) 0 0
\(367\) −2.28585e11 −0.657733 −0.328867 0.944376i \(-0.606667\pi\)
−0.328867 + 0.944376i \(0.606667\pi\)
\(368\) 0 0
\(369\) 3.31260e11 0.930145
\(370\) 0 0
\(371\) 2.06869e11 0.566909
\(372\) 0 0
\(373\) 5.79749e11 1.55078 0.775390 0.631482i \(-0.217553\pi\)
0.775390 + 0.631482i \(0.217553\pi\)
\(374\) 0 0
\(375\) −6.90428e11 −1.80293
\(376\) 0 0
\(377\) −1.08955e11 −0.277785
\(378\) 0 0
\(379\) −6.30593e11 −1.56990 −0.784952 0.619557i \(-0.787312\pi\)
−0.784952 + 0.619557i \(0.787312\pi\)
\(380\) 0 0
\(381\) 1.68363e11 0.409341
\(382\) 0 0
\(383\) 5.07531e11 1.20523 0.602613 0.798034i \(-0.294126\pi\)
0.602613 + 0.798034i \(0.294126\pi\)
\(384\) 0 0
\(385\) 1.87160e11 0.434150
\(386\) 0 0
\(387\) 3.86982e11 0.876983
\(388\) 0 0
\(389\) 3.19286e11 0.706979 0.353490 0.935438i \(-0.384995\pi\)
0.353490 + 0.935438i \(0.384995\pi\)
\(390\) 0 0
\(391\) −3.12600e11 −0.676384
\(392\) 0 0
\(393\) −1.62085e10 −0.0342749
\(394\) 0 0
\(395\) −7.50906e11 −1.55202
\(396\) 0 0
\(397\) −2.65511e11 −0.536445 −0.268222 0.963357i \(-0.586436\pi\)
−0.268222 + 0.963357i \(0.586436\pi\)
\(398\) 0 0
\(399\) 2.30466e12 4.55228
\(400\) 0 0
\(401\) −3.57381e11 −0.690210 −0.345105 0.938564i \(-0.612157\pi\)
−0.345105 + 0.938564i \(0.612157\pi\)
\(402\) 0 0
\(403\) −4.86814e10 −0.0919370
\(404\) 0 0
\(405\) 9.59898e11 1.77287
\(406\) 0 0
\(407\) −2.40491e11 −0.434434
\(408\) 0 0
\(409\) −6.53884e11 −1.15544 −0.577718 0.816236i \(-0.696057\pi\)
−0.577718 + 0.816236i \(0.696057\pi\)
\(410\) 0 0
\(411\) 1.64949e12 2.85142
\(412\) 0 0
\(413\) −1.02927e12 −1.74082
\(414\) 0 0
\(415\) −4.29224e11 −0.710342
\(416\) 0 0
\(417\) 9.13572e11 1.47955
\(418\) 0 0
\(419\) −5.63993e11 −0.893945 −0.446972 0.894548i \(-0.647498\pi\)
−0.446972 + 0.894548i \(0.647498\pi\)
\(420\) 0 0
\(421\) 1.02848e12 1.59561 0.797806 0.602914i \(-0.205994\pi\)
0.797806 + 0.602914i \(0.205994\pi\)
\(422\) 0 0
\(423\) −2.45288e12 −3.72516
\(424\) 0 0
\(425\) 2.38167e9 0.00354105
\(426\) 0 0
\(427\) −5.58346e11 −0.812790
\(428\) 0 0
\(429\) 8.61479e10 0.122797
\(430\) 0 0
\(431\) 8.40771e11 1.17363 0.586813 0.809722i \(-0.300382\pi\)
0.586813 + 0.809722i \(0.300382\pi\)
\(432\) 0 0
\(433\) −7.90716e11 −1.08100 −0.540499 0.841344i \(-0.681765\pi\)
−0.540499 + 0.841344i \(0.681765\pi\)
\(434\) 0 0
\(435\) −1.34394e12 −1.79961
\(436\) 0 0
\(437\) 7.11569e11 0.933363
\(438\) 0 0
\(439\) 4.11309e11 0.528540 0.264270 0.964449i \(-0.414869\pi\)
0.264270 + 0.964449i \(0.414869\pi\)
\(440\) 0 0
\(441\) 3.78095e12 4.76023
\(442\) 0 0
\(443\) 2.28836e11 0.282298 0.141149 0.989988i \(-0.454920\pi\)
0.141149 + 0.989988i \(0.454920\pi\)
\(444\) 0 0
\(445\) 6.37077e11 0.770143
\(446\) 0 0
\(447\) 2.23548e12 2.64842
\(448\) 0 0
\(449\) −9.73693e10 −0.113061 −0.0565306 0.998401i \(-0.518004\pi\)
−0.0565306 + 0.998401i \(0.518004\pi\)
\(450\) 0 0
\(451\) 8.97656e10 0.102168
\(452\) 0 0
\(453\) −1.27531e12 −1.42290
\(454\) 0 0
\(455\) 4.47508e11 0.489496
\(456\) 0 0
\(457\) −5.00855e10 −0.0537142 −0.0268571 0.999639i \(-0.508550\pi\)
−0.0268571 + 0.999639i \(0.508550\pi\)
\(458\) 0 0
\(459\) −2.19946e12 −2.31291
\(460\) 0 0
\(461\) −4.96407e11 −0.511899 −0.255949 0.966690i \(-0.582388\pi\)
−0.255949 + 0.966690i \(0.582388\pi\)
\(462\) 0 0
\(463\) −9.05832e11 −0.916080 −0.458040 0.888932i \(-0.651448\pi\)
−0.458040 + 0.888932i \(0.651448\pi\)
\(464\) 0 0
\(465\) −6.00478e11 −0.595606
\(466\) 0 0
\(467\) −3.32492e11 −0.323486 −0.161743 0.986833i \(-0.551712\pi\)
−0.161743 + 0.986833i \(0.551712\pi\)
\(468\) 0 0
\(469\) −2.07094e12 −1.97647
\(470\) 0 0
\(471\) 1.71336e12 1.60418
\(472\) 0 0
\(473\) 1.04865e11 0.0963287
\(474\) 0 0
\(475\) −5.42139e9 −0.00488641
\(476\) 0 0
\(477\) 8.11963e11 0.718130
\(478\) 0 0
\(479\) −4.39783e11 −0.381706 −0.190853 0.981619i \(-0.561125\pi\)
−0.190853 + 0.981619i \(0.561125\pi\)
\(480\) 0 0
\(481\) −5.75025e11 −0.489817
\(482\) 0 0
\(483\) 2.48308e12 2.07601
\(484\) 0 0
\(485\) −2.02515e12 −1.66196
\(486\) 0 0
\(487\) 1.54739e12 1.24657 0.623287 0.781993i \(-0.285797\pi\)
0.623287 + 0.781993i \(0.285797\pi\)
\(488\) 0 0
\(489\) 1.02680e12 0.812072
\(490\) 0 0
\(491\) 1.17406e12 0.911638 0.455819 0.890072i \(-0.349346\pi\)
0.455819 + 0.890072i \(0.349346\pi\)
\(492\) 0 0
\(493\) 1.36195e12 1.03836
\(494\) 0 0
\(495\) 7.34603e11 0.549958
\(496\) 0 0
\(497\) 1.96622e12 1.44553
\(498\) 0 0
\(499\) 1.52477e12 1.10091 0.550455 0.834865i \(-0.314454\pi\)
0.550455 + 0.834865i \(0.314454\pi\)
\(500\) 0 0
\(501\) 3.73849e12 2.65110
\(502\) 0 0
\(503\) −1.45642e12 −1.01445 −0.507224 0.861814i \(-0.669328\pi\)
−0.507224 + 0.861814i \(0.669328\pi\)
\(504\) 0 0
\(505\) 2.82439e12 1.93247
\(506\) 0 0
\(507\) 2.05983e11 0.138451
\(508\) 0 0
\(509\) −1.34729e12 −0.889677 −0.444838 0.895611i \(-0.646739\pi\)
−0.444838 + 0.895611i \(0.646739\pi\)
\(510\) 0 0
\(511\) −3.37312e12 −2.18846
\(512\) 0 0
\(513\) 5.00662e12 3.19166
\(514\) 0 0
\(515\) 1.64017e12 1.02744
\(516\) 0 0
\(517\) −6.64686e11 −0.409175
\(518\) 0 0
\(519\) 4.97741e12 3.01128
\(520\) 0 0
\(521\) 1.69421e12 1.00739 0.503694 0.863882i \(-0.331974\pi\)
0.503694 + 0.863882i \(0.331974\pi\)
\(522\) 0 0
\(523\) 1.40302e12 0.819983 0.409992 0.912089i \(-0.365532\pi\)
0.409992 + 0.912089i \(0.365532\pi\)
\(524\) 0 0
\(525\) −1.89184e10 −0.0108685
\(526\) 0 0
\(527\) 6.08524e11 0.343661
\(528\) 0 0
\(529\) −1.03450e12 −0.574352
\(530\) 0 0
\(531\) −4.03989e12 −2.20518
\(532\) 0 0
\(533\) 2.14634e11 0.115193
\(534\) 0 0
\(535\) −2.50120e12 −1.31995
\(536\) 0 0
\(537\) 1.31319e12 0.681465
\(538\) 0 0
\(539\) 1.02457e12 0.522868
\(540\) 0 0
\(541\) 2.57026e12 1.29000 0.645000 0.764183i \(-0.276857\pi\)
0.645000 + 0.764183i \(0.276857\pi\)
\(542\) 0 0
\(543\) 2.62187e12 1.29423
\(544\) 0 0
\(545\) −2.05218e12 −0.996394
\(546\) 0 0
\(547\) −2.34041e12 −1.11776 −0.558882 0.829247i \(-0.688769\pi\)
−0.558882 + 0.829247i \(0.688769\pi\)
\(548\) 0 0
\(549\) −2.19151e12 −1.02960
\(550\) 0 0
\(551\) −3.10019e12 −1.43287
\(552\) 0 0
\(553\) −6.04461e12 −2.74856
\(554\) 0 0
\(555\) −7.09285e12 −3.17324
\(556\) 0 0
\(557\) −3.29174e12 −1.44903 −0.724514 0.689260i \(-0.757936\pi\)
−0.724514 + 0.689260i \(0.757936\pi\)
\(558\) 0 0
\(559\) 2.50737e11 0.108609
\(560\) 0 0
\(561\) −1.07686e12 −0.459014
\(562\) 0 0
\(563\) 1.31650e12 0.552248 0.276124 0.961122i \(-0.410950\pi\)
0.276124 + 0.961122i \(0.410950\pi\)
\(564\) 0 0
\(565\) −2.00020e12 −0.825761
\(566\) 0 0
\(567\) 7.72696e12 3.13968
\(568\) 0 0
\(569\) −3.81990e12 −1.52773 −0.763866 0.645375i \(-0.776701\pi\)
−0.763866 + 0.645375i \(0.776701\pi\)
\(570\) 0 0
\(571\) −1.53477e12 −0.604199 −0.302100 0.953276i \(-0.597687\pi\)
−0.302100 + 0.953276i \(0.597687\pi\)
\(572\) 0 0
\(573\) 2.18057e12 0.845035
\(574\) 0 0
\(575\) −5.84110e9 −0.00222838
\(576\) 0 0
\(577\) −3.14093e12 −1.17969 −0.589844 0.807517i \(-0.700811\pi\)
−0.589844 + 0.807517i \(0.700811\pi\)
\(578\) 0 0
\(579\) 4.23135e12 1.56468
\(580\) 0 0
\(581\) −3.45515e12 −1.25798
\(582\) 0 0
\(583\) 2.20027e11 0.0788802
\(584\) 0 0
\(585\) 1.75647e12 0.620068
\(586\) 0 0
\(587\) 1.66414e12 0.578521 0.289261 0.957250i \(-0.406591\pi\)
0.289261 + 0.957250i \(0.406591\pi\)
\(588\) 0 0
\(589\) −1.38518e12 −0.474228
\(590\) 0 0
\(591\) 4.74179e12 1.59882
\(592\) 0 0
\(593\) 1.27000e12 0.421752 0.210876 0.977513i \(-0.432368\pi\)
0.210876 + 0.977513i \(0.432368\pi\)
\(594\) 0 0
\(595\) −5.59391e12 −1.82974
\(596\) 0 0
\(597\) −8.89922e11 −0.286726
\(598\) 0 0
\(599\) 2.20905e12 0.701107 0.350553 0.936543i \(-0.385994\pi\)
0.350553 + 0.936543i \(0.385994\pi\)
\(600\) 0 0
\(601\) 2.43469e12 0.761218 0.380609 0.924736i \(-0.375714\pi\)
0.380609 + 0.924736i \(0.375714\pi\)
\(602\) 0 0
\(603\) −8.12846e12 −2.50369
\(604\) 0 0
\(605\) −3.09064e12 −0.937883
\(606\) 0 0
\(607\) −2.89583e11 −0.0865814 −0.0432907 0.999063i \(-0.513784\pi\)
−0.0432907 + 0.999063i \(0.513784\pi\)
\(608\) 0 0
\(609\) −1.08184e13 −3.18702
\(610\) 0 0
\(611\) −1.58929e12 −0.461338
\(612\) 0 0
\(613\) 1.65691e12 0.473944 0.236972 0.971517i \(-0.423845\pi\)
0.236972 + 0.971517i \(0.423845\pi\)
\(614\) 0 0
\(615\) 2.64748e12 0.746266
\(616\) 0 0
\(617\) 4.15316e12 1.15371 0.576854 0.816847i \(-0.304280\pi\)
0.576854 + 0.816847i \(0.304280\pi\)
\(618\) 0 0
\(619\) −2.15564e12 −0.590157 −0.295079 0.955473i \(-0.595346\pi\)
−0.295079 + 0.955473i \(0.595346\pi\)
\(620\) 0 0
\(621\) 5.39422e12 1.45552
\(622\) 0 0
\(623\) 5.12832e12 1.36389
\(624\) 0 0
\(625\) −3.80162e12 −0.996573
\(626\) 0 0
\(627\) 2.45125e12 0.633408
\(628\) 0 0
\(629\) 7.18788e12 1.83094
\(630\) 0 0
\(631\) 1.01169e12 0.254049 0.127024 0.991900i \(-0.459457\pi\)
0.127024 + 0.991900i \(0.459457\pi\)
\(632\) 0 0
\(633\) −1.04264e13 −2.58117
\(634\) 0 0
\(635\) 9.30217e11 0.227040
\(636\) 0 0
\(637\) 2.44979e12 0.589525
\(638\) 0 0
\(639\) 7.71741e12 1.83112
\(640\) 0 0
\(641\) −1.91146e12 −0.447201 −0.223601 0.974681i \(-0.571781\pi\)
−0.223601 + 0.974681i \(0.571781\pi\)
\(642\) 0 0
\(643\) −1.76778e12 −0.407831 −0.203915 0.978989i \(-0.565367\pi\)
−0.203915 + 0.978989i \(0.565367\pi\)
\(644\) 0 0
\(645\) 3.09281e12 0.703614
\(646\) 0 0
\(647\) 1.06872e12 0.239769 0.119885 0.992788i \(-0.461748\pi\)
0.119885 + 0.992788i \(0.461748\pi\)
\(648\) 0 0
\(649\) −1.09474e12 −0.242220
\(650\) 0 0
\(651\) −4.83371e12 −1.05479
\(652\) 0 0
\(653\) 3.97859e12 0.856287 0.428144 0.903711i \(-0.359168\pi\)
0.428144 + 0.903711i \(0.359168\pi\)
\(654\) 0 0
\(655\) −8.95529e10 −0.0190105
\(656\) 0 0
\(657\) −1.32395e13 −2.77222
\(658\) 0 0
\(659\) −4.17558e12 −0.862447 −0.431224 0.902245i \(-0.641918\pi\)
−0.431224 + 0.902245i \(0.641918\pi\)
\(660\) 0 0
\(661\) −1.40927e12 −0.287137 −0.143568 0.989640i \(-0.545858\pi\)
−0.143568 + 0.989640i \(0.545858\pi\)
\(662\) 0 0
\(663\) −2.57482e12 −0.517530
\(664\) 0 0
\(665\) 1.27334e13 2.52491
\(666\) 0 0
\(667\) −3.34020e12 −0.653441
\(668\) 0 0
\(669\) 1.20038e13 2.31687
\(670\) 0 0
\(671\) −5.93860e11 −0.113092
\(672\) 0 0
\(673\) 1.88918e12 0.354982 0.177491 0.984122i \(-0.443202\pi\)
0.177491 + 0.984122i \(0.443202\pi\)
\(674\) 0 0
\(675\) −4.10982e10 −0.00762001
\(676\) 0 0
\(677\) −1.84519e12 −0.337591 −0.168796 0.985651i \(-0.553988\pi\)
−0.168796 + 0.985651i \(0.553988\pi\)
\(678\) 0 0
\(679\) −1.63020e13 −2.94325
\(680\) 0 0
\(681\) 6.76675e12 1.20564
\(682\) 0 0
\(683\) −1.42232e12 −0.250094 −0.125047 0.992151i \(-0.539908\pi\)
−0.125047 + 0.992151i \(0.539908\pi\)
\(684\) 0 0
\(685\) 9.11350e12 1.58153
\(686\) 0 0
\(687\) −3.75841e11 −0.0643722
\(688\) 0 0
\(689\) 5.26095e11 0.0889361
\(690\) 0 0
\(691\) −4.24814e11 −0.0708838 −0.0354419 0.999372i \(-0.511284\pi\)
−0.0354419 + 0.999372i \(0.511284\pi\)
\(692\) 0 0
\(693\) 5.91338e12 0.973949
\(694\) 0 0
\(695\) 5.04753e12 0.820631
\(696\) 0 0
\(697\) −2.68295e12 −0.430591
\(698\) 0 0
\(699\) −1.81882e13 −2.88165
\(700\) 0 0
\(701\) −3.72982e12 −0.583387 −0.291694 0.956512i \(-0.594219\pi\)
−0.291694 + 0.956512i \(0.594219\pi\)
\(702\) 0 0
\(703\) −1.63617e13 −2.52657
\(704\) 0 0
\(705\) −1.96037e13 −2.98874
\(706\) 0 0
\(707\) 2.27357e13 3.42232
\(708\) 0 0
\(709\) 4.10258e12 0.609746 0.304873 0.952393i \(-0.401386\pi\)
0.304873 + 0.952393i \(0.401386\pi\)
\(710\) 0 0
\(711\) −2.37251e13 −3.48173
\(712\) 0 0
\(713\) −1.49242e12 −0.216266
\(714\) 0 0
\(715\) 4.75972e11 0.0681089
\(716\) 0 0
\(717\) −1.09249e13 −1.54377
\(718\) 0 0
\(719\) 2.13034e12 0.297282 0.148641 0.988891i \(-0.452510\pi\)
0.148641 + 0.988891i \(0.452510\pi\)
\(720\) 0 0
\(721\) 1.32030e13 1.81954
\(722\) 0 0
\(723\) 1.66591e13 2.26741
\(724\) 0 0
\(725\) 2.54487e10 0.00342094
\(726\) 0 0
\(727\) 1.17072e13 1.55435 0.777175 0.629284i \(-0.216652\pi\)
0.777175 + 0.629284i \(0.216652\pi\)
\(728\) 0 0
\(729\) −2.91681e11 −0.0382503
\(730\) 0 0
\(731\) −3.13425e12 −0.405980
\(732\) 0 0
\(733\) 1.06511e13 1.36278 0.681391 0.731919i \(-0.261375\pi\)
0.681391 + 0.731919i \(0.261375\pi\)
\(734\) 0 0
\(735\) 3.02179e13 3.81919
\(736\) 0 0
\(737\) −2.20267e12 −0.275008
\(738\) 0 0
\(739\) −9.91154e12 −1.22248 −0.611239 0.791446i \(-0.709329\pi\)
−0.611239 + 0.791446i \(0.709329\pi\)
\(740\) 0 0
\(741\) 5.86105e12 0.714157
\(742\) 0 0
\(743\) 5.37923e12 0.647546 0.323773 0.946135i \(-0.395049\pi\)
0.323773 + 0.946135i \(0.395049\pi\)
\(744\) 0 0
\(745\) 1.23511e13 1.46894
\(746\) 0 0
\(747\) −1.35615e13 −1.59354
\(748\) 0 0
\(749\) −2.01341e13 −2.33757
\(750\) 0 0
\(751\) 1.28935e13 1.47908 0.739542 0.673111i \(-0.235042\pi\)
0.739542 + 0.673111i \(0.235042\pi\)
\(752\) 0 0
\(753\) −3.40645e11 −0.0386122
\(754\) 0 0
\(755\) −7.04617e12 −0.789208
\(756\) 0 0
\(757\) −1.15892e12 −0.128269 −0.0641344 0.997941i \(-0.520429\pi\)
−0.0641344 + 0.997941i \(0.520429\pi\)
\(758\) 0 0
\(759\) 2.64102e12 0.288858
\(760\) 0 0
\(761\) 1.08521e13 1.17296 0.586481 0.809963i \(-0.300513\pi\)
0.586481 + 0.809963i \(0.300513\pi\)
\(762\) 0 0
\(763\) −1.65196e13 −1.76457
\(764\) 0 0
\(765\) −2.19561e13 −2.31781
\(766\) 0 0
\(767\) −2.61757e12 −0.273098
\(768\) 0 0
\(769\) 1.44473e12 0.148977 0.0744885 0.997222i \(-0.476268\pi\)
0.0744885 + 0.997222i \(0.476268\pi\)
\(770\) 0 0
\(771\) 5.17492e12 0.527422
\(772\) 0 0
\(773\) −3.75524e11 −0.0378295 −0.0189147 0.999821i \(-0.506021\pi\)
−0.0189147 + 0.999821i \(0.506021\pi\)
\(774\) 0 0
\(775\) 1.13706e10 0.00113221
\(776\) 0 0
\(777\) −5.70958e13 −5.61965
\(778\) 0 0
\(779\) 6.10718e12 0.594186
\(780\) 0 0
\(781\) 2.09128e12 0.201133
\(782\) 0 0
\(783\) −2.35018e13 −2.23446
\(784\) 0 0
\(785\) 9.46638e12 0.889755
\(786\) 0 0
\(787\) −8.84811e12 −0.822175 −0.411088 0.911596i \(-0.634851\pi\)
−0.411088 + 0.911596i \(0.634851\pi\)
\(788\) 0 0
\(789\) 5.86645e12 0.538926
\(790\) 0 0
\(791\) −1.61011e13 −1.46238
\(792\) 0 0
\(793\) −1.41995e12 −0.127510
\(794\) 0 0
\(795\) 6.48931e12 0.576165
\(796\) 0 0
\(797\) 3.16529e12 0.277876 0.138938 0.990301i \(-0.455631\pi\)
0.138938 + 0.990301i \(0.455631\pi\)
\(798\) 0 0
\(799\) 1.98664e13 1.72448
\(800\) 0 0
\(801\) 2.01286e13 1.72770
\(802\) 0 0
\(803\) −3.58767e12 −0.304503
\(804\) 0 0
\(805\) 1.37192e13 1.15145
\(806\) 0 0
\(807\) −1.20434e13 −0.999579
\(808\) 0 0
\(809\) 1.83262e13 1.50420 0.752099 0.659050i \(-0.229041\pi\)
0.752099 + 0.659050i \(0.229041\pi\)
\(810\) 0 0
\(811\) −1.29703e12 −0.105283 −0.0526414 0.998613i \(-0.516764\pi\)
−0.0526414 + 0.998613i \(0.516764\pi\)
\(812\) 0 0
\(813\) −2.57564e13 −2.06765
\(814\) 0 0
\(815\) 5.67310e12 0.450413
\(816\) 0 0
\(817\) 7.13447e12 0.560225
\(818\) 0 0
\(819\) 1.41392e13 1.09811
\(820\) 0 0
\(821\) −7.29992e12 −0.560756 −0.280378 0.959890i \(-0.590460\pi\)
−0.280378 + 0.959890i \(0.590460\pi\)
\(822\) 0 0
\(823\) −2.12216e13 −1.61243 −0.806213 0.591625i \(-0.798487\pi\)
−0.806213 + 0.591625i \(0.798487\pi\)
\(824\) 0 0
\(825\) −2.01217e10 −0.00151225
\(826\) 0 0
\(827\) −2.55292e13 −1.89785 −0.948925 0.315501i \(-0.897828\pi\)
−0.948925 + 0.315501i \(0.897828\pi\)
\(828\) 0 0
\(829\) −1.95149e13 −1.43506 −0.717531 0.696526i \(-0.754728\pi\)
−0.717531 + 0.696526i \(0.754728\pi\)
\(830\) 0 0
\(831\) −1.08950e13 −0.792543
\(832\) 0 0
\(833\) −3.06227e13 −2.20364
\(834\) 0 0
\(835\) 2.06554e13 1.47043
\(836\) 0 0
\(837\) −1.05007e13 −0.739526
\(838\) 0 0
\(839\) 1.43041e13 0.996626 0.498313 0.866997i \(-0.333953\pi\)
0.498313 + 0.866997i \(0.333953\pi\)
\(840\) 0 0
\(841\) 4.55685e10 0.00314111
\(842\) 0 0
\(843\) 3.05758e13 2.08523
\(844\) 0 0
\(845\) 1.13807e12 0.0767916
\(846\) 0 0
\(847\) −2.48789e13 −1.66095
\(848\) 0 0
\(849\) 4.88007e13 3.22360
\(850\) 0 0
\(851\) −1.76284e13 −1.15221
\(852\) 0 0
\(853\) 2.57693e11 0.0166660 0.00833300 0.999965i \(-0.497347\pi\)
0.00833300 + 0.999965i \(0.497347\pi\)
\(854\) 0 0
\(855\) 4.99786e13 3.19842
\(856\) 0 0
\(857\) 2.11761e13 1.34101 0.670507 0.741904i \(-0.266077\pi\)
0.670507 + 0.741904i \(0.266077\pi\)
\(858\) 0 0
\(859\) −9.07036e12 −0.568401 −0.284201 0.958765i \(-0.591728\pi\)
−0.284201 + 0.958765i \(0.591728\pi\)
\(860\) 0 0
\(861\) 2.13116e13 1.32160
\(862\) 0 0
\(863\) −4.14464e12 −0.254354 −0.127177 0.991880i \(-0.540592\pi\)
−0.127177 + 0.991880i \(0.540592\pi\)
\(864\) 0 0
\(865\) 2.75005e13 1.67020
\(866\) 0 0
\(867\) 2.24046e12 0.134664
\(868\) 0 0
\(869\) −6.42908e12 −0.382437
\(870\) 0 0
\(871\) −5.26667e12 −0.310066
\(872\) 0 0
\(873\) −6.39854e13 −3.72835
\(874\) 0 0
\(875\) −3.07071e13 −1.77093
\(876\) 0 0
\(877\) 4.96197e11 0.0283241 0.0141620 0.999900i \(-0.495492\pi\)
0.0141620 + 0.999900i \(0.495492\pi\)
\(878\) 0 0
\(879\) 5.58579e13 3.15598
\(880\) 0 0
\(881\) 1.32510e13 0.741067 0.370533 0.928819i \(-0.379175\pi\)
0.370533 + 0.928819i \(0.379175\pi\)
\(882\) 0 0
\(883\) 3.05486e13 1.69110 0.845548 0.533899i \(-0.179274\pi\)
0.845548 + 0.533899i \(0.179274\pi\)
\(884\) 0 0
\(885\) −3.22874e13 −1.76924
\(886\) 0 0
\(887\) 2.55124e13 1.38387 0.691933 0.721961i \(-0.256759\pi\)
0.691933 + 0.721961i \(0.256759\pi\)
\(888\) 0 0
\(889\) 7.48803e12 0.402077
\(890\) 0 0
\(891\) 8.21843e12 0.436857
\(892\) 0 0
\(893\) −4.52218e13 −2.37967
\(894\) 0 0
\(895\) 7.25545e12 0.377973
\(896\) 0 0
\(897\) 6.31480e12 0.325682
\(898\) 0 0
\(899\) 6.50222e12 0.332004
\(900\) 0 0
\(901\) −6.57626e12 −0.332443
\(902\) 0 0
\(903\) 2.48964e13 1.24607
\(904\) 0 0
\(905\) 1.44860e13 0.717844
\(906\) 0 0
\(907\) −2.27135e13 −1.11443 −0.557213 0.830370i \(-0.688129\pi\)
−0.557213 + 0.830370i \(0.688129\pi\)
\(908\) 0 0
\(909\) 8.92375e13 4.33521
\(910\) 0 0
\(911\) 1.11760e12 0.0537595 0.0268798 0.999639i \(-0.491443\pi\)
0.0268798 + 0.999639i \(0.491443\pi\)
\(912\) 0 0
\(913\) −3.67491e12 −0.175037
\(914\) 0 0
\(915\) −1.75148e13 −0.826059
\(916\) 0 0
\(917\) −7.20880e11 −0.0336667
\(918\) 0 0
\(919\) 2.65728e13 1.22890 0.614452 0.788954i \(-0.289377\pi\)
0.614452 + 0.788954i \(0.289377\pi\)
\(920\) 0 0
\(921\) 1.40612e13 0.643953
\(922\) 0 0
\(923\) 5.00035e12 0.226774
\(924\) 0 0
\(925\) 1.34310e11 0.00603211
\(926\) 0 0
\(927\) 5.18216e13 2.30490
\(928\) 0 0
\(929\) −6.66310e11 −0.0293498 −0.0146749 0.999892i \(-0.504671\pi\)
−0.0146749 + 0.999892i \(0.504671\pi\)
\(930\) 0 0
\(931\) 6.97064e13 3.04088
\(932\) 0 0
\(933\) −1.42482e12 −0.0615591
\(934\) 0 0
\(935\) −5.94970e12 −0.254591
\(936\) 0 0
\(937\) 2.81754e13 1.19410 0.597051 0.802203i \(-0.296339\pi\)
0.597051 + 0.802203i \(0.296339\pi\)
\(938\) 0 0
\(939\) −3.04315e13 −1.27741
\(940\) 0 0
\(941\) −3.37670e12 −0.140391 −0.0701956 0.997533i \(-0.522362\pi\)
−0.0701956 + 0.997533i \(0.522362\pi\)
\(942\) 0 0
\(943\) 6.57998e12 0.270971
\(944\) 0 0
\(945\) 9.65285e13 3.93743
\(946\) 0 0
\(947\) 3.50923e13 1.41787 0.708937 0.705272i \(-0.249175\pi\)
0.708937 + 0.705272i \(0.249175\pi\)
\(948\) 0 0
\(949\) −8.57827e12 −0.343322
\(950\) 0 0
\(951\) −3.27740e13 −1.29932
\(952\) 0 0
\(953\) −8.80454e12 −0.345771 −0.172886 0.984942i \(-0.555309\pi\)
−0.172886 + 0.984942i \(0.555309\pi\)
\(954\) 0 0
\(955\) 1.20478e13 0.468697
\(956\) 0 0
\(957\) −1.15065e13 −0.443445
\(958\) 0 0
\(959\) 7.33615e13 2.80082
\(960\) 0 0
\(961\) −2.35344e13 −0.890119
\(962\) 0 0
\(963\) −7.90264e13 −2.96111
\(964\) 0 0
\(965\) 2.33784e13 0.867845
\(966\) 0 0
\(967\) −7.25751e12 −0.266912 −0.133456 0.991055i \(-0.542608\pi\)
−0.133456 + 0.991055i \(0.542608\pi\)
\(968\) 0 0
\(969\) −7.32639e13 −2.66952
\(970\) 0 0
\(971\) −7.54291e12 −0.272303 −0.136151 0.990688i \(-0.543473\pi\)
−0.136151 + 0.990688i \(0.543473\pi\)
\(972\) 0 0
\(973\) 4.06315e13 1.45330
\(974\) 0 0
\(975\) −4.81120e10 −0.00170503
\(976\) 0 0
\(977\) 6.09261e12 0.213933 0.106966 0.994263i \(-0.465886\pi\)
0.106966 + 0.994263i \(0.465886\pi\)
\(978\) 0 0
\(979\) 5.45450e12 0.189772
\(980\) 0 0
\(981\) −6.48393e13 −2.23526
\(982\) 0 0
\(983\) 4.00886e13 1.36940 0.684700 0.728825i \(-0.259933\pi\)
0.684700 + 0.728825i \(0.259933\pi\)
\(984\) 0 0
\(985\) 2.61986e13 0.886779
\(986\) 0 0
\(987\) −1.57805e14 −5.29291
\(988\) 0 0
\(989\) 7.68681e12 0.255483
\(990\) 0 0
\(991\) 1.09696e13 0.361294 0.180647 0.983548i \(-0.442181\pi\)
0.180647 + 0.983548i \(0.442181\pi\)
\(992\) 0 0
\(993\) 7.74758e13 2.52868
\(994\) 0 0
\(995\) −4.91686e12 −0.159032
\(996\) 0 0
\(997\) 2.19450e13 0.703407 0.351703 0.936111i \(-0.385603\pi\)
0.351703 + 0.936111i \(0.385603\pi\)
\(998\) 0 0
\(999\) −1.24034e14 −3.94000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.m.1.8 8
4.3 odd 2 104.10.a.d.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.1 8 4.3 odd 2
208.10.a.m.1.8 8 1.1 even 1 trivial