Properties

Label 208.10.a.m
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 18) q^{3} + (\beta_{3} + 2 \beta_1 + 256) q^{5} + (\beta_{4} + 4 \beta_1 + 301) q^{7} + (\beta_{2} - 32 \beta_1 + 14480) q^{9} + ( - \beta_{7} + 2 \beta_{4} + \cdots + 6639) q^{11} + 28561 q^{13}+ \cdots + (785 \beta_{7} - 5950 \beta_{6} + \cdots + 81004739) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 141 q^{3} + 2051 q^{5} + 2417 q^{7} + 115741 q^{9} + 53118 q^{11} + 228488 q^{13} + 464555 q^{15} + 433095 q^{17} + 434954 q^{19} + 906875 q^{21} + 1124296 q^{23} + 5966065 q^{25} - 7820643 q^{27}+ \cdots + 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4\nu - 33839 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 253915866823 \nu^{7} - 39044211581394 \nu^{6} + \cdots + 25\!\cdots\!04 ) / 65\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 128047192432 \nu^{7} + 18240898422141 \nu^{6} + \cdots + 16\!\cdots\!24 ) / 25\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 20167518840415 \nu^{7} + 193965141915267 \nu^{6} + \cdots + 30\!\cdots\!64 ) / 10\!\cdots\!00 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 8045120983423 \nu^{7} - 294583135275621 \nu^{6} + \cdots + 21\!\cdots\!46 ) / 40\!\cdots\!50 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 64477563979993 \nu^{7} + \cdots - 30\!\cdots\!88 ) / 32\!\cdots\!00 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4\beta _1 + 33839 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 38\beta_{7} - \beta_{6} - 52\beta_{5} + 98\beta_{4} + 626\beta_{3} + 14\beta_{2} + 58466\beta _1 + 139767 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 259 \beta_{7} - 8 \beta_{6} - 261 \beta_{5} + 50474 \beta_{4} + 65058 \beta_{3} + 68702 \beta_{2} + \cdots + 1973949600 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2524897 \beta_{7} - 805649 \beta_{6} - 4357988 \beta_{5} + 13555057 \beta_{4} + 56382289 \beta_{3} + \cdots + 24916443019 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 8383266 \beta_{7} - 176233428 \beta_{6} - 163821986 \beta_{5} + 5408963204 \beta_{4} + \cdots + 123939846558045 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 141881037808 \beta_{7} - 103564344341 \beta_{6} - 321123017632 \beta_{5} + 1343743782168 \beta_{4} + \cdots + 29\!\cdots\!63 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−248.659
−245.871
−109.049
−5.30867
6.68300
106.986
227.704
270.514
0 −266.659 0 −2715.88 0 3411.26 0 51423.9 0
1.2 0 −263.871 0 2083.78 0 −3949.77 0 49944.8 0
1.3 0 −127.049 0 393.414 0 −6601.13 0 −3541.59 0
1.4 0 −23.3087 0 −760.329 0 8557.89 0 −19139.7 0
1.5 0 −11.3170 0 2354.21 0 4597.91 0 −19554.9 0
1.6 0 88.9864 0 −1188.35 0 −3819.67 0 −11764.4 0
1.7 0 209.704 0 488.996 0 −11010.2 0 24292.6 0
1.8 0 252.514 0 1395.15 0 11230.7 0 44080.4 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.m 8
4.b odd 2 1 104.10.a.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.10.a.d 8 4.b odd 2 1
208.10.a.m 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 141 T_{3}^{7} - 126662 T_{3}^{6} - 14336666 T_{3}^{5} + 4560292185 T_{3}^{4} + \cdots - 11\!\cdots\!92 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + \cdots - 11\!\cdots\!92 \) Copy content Toggle raw display
$5$ \( T^{8} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 16\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 13\!\cdots\!24 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 53\!\cdots\!68 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 54\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 52\!\cdots\!68 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 12\!\cdots\!68 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots - 83\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 38\!\cdots\!44 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots - 21\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots - 24\!\cdots\!72 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 45\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 24\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 10\!\cdots\!36 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 52\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 43\!\cdots\!64 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots - 10\!\cdots\!32 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 13\!\cdots\!56 \) Copy content Toggle raw display
show more
show less