Properties

Label 2-208-1.1-c9-0-24
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11.3·3-s + 2.35e3·5-s + 4.59e3·7-s − 1.95e4·9-s − 3.29e4·11-s + 2.85e4·13-s − 2.66e4·15-s + 4.29e5·17-s − 8.23e5·19-s − 5.20e4·21-s + 1.28e6·23-s + 3.58e6·25-s + 4.44e5·27-s − 3.75e6·29-s + 9.62e6·31-s + 3.73e5·33-s + 1.08e7·35-s + 1.56e7·37-s − 3.23e5·39-s + 2.86e7·41-s − 2.19e7·43-s − 4.60e7·45-s − 4.95e7·47-s − 1.92e7·49-s − 4.86e6·51-s + 9.82e7·53-s − 7.76e7·55-s + ⋯
L(s)  = 1  − 0.0806·3-s + 1.68·5-s + 0.723·7-s − 0.993·9-s − 0.679·11-s + 0.277·13-s − 0.135·15-s + 1.24·17-s − 1.44·19-s − 0.0583·21-s + 0.953·23-s + 1.83·25-s + 0.160·27-s − 0.985·29-s + 1.87·31-s + 0.0547·33-s + 1.21·35-s + 1.37·37-s − 0.0223·39-s + 1.58·41-s − 0.978·43-s − 1.67·45-s − 1.47·47-s − 0.476·49-s − 0.100·51-s + 1.71·53-s − 1.14·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(3.214491646\)
\(L(\frac12)\) \(\approx\) \(3.214491646\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 + 11.3T + 1.96e4T^{2} \)
5 \( 1 - 2.35e3T + 1.95e6T^{2} \)
7 \( 1 - 4.59e3T + 4.03e7T^{2} \)
11 \( 1 + 3.29e4T + 2.35e9T^{2} \)
17 \( 1 - 4.29e5T + 1.18e11T^{2} \)
19 \( 1 + 8.23e5T + 3.22e11T^{2} \)
23 \( 1 - 1.28e6T + 1.80e12T^{2} \)
29 \( 1 + 3.75e6T + 1.45e13T^{2} \)
31 \( 1 - 9.62e6T + 2.64e13T^{2} \)
37 \( 1 - 1.56e7T + 1.29e14T^{2} \)
41 \( 1 - 2.86e7T + 3.27e14T^{2} \)
43 \( 1 + 2.19e7T + 5.02e14T^{2} \)
47 \( 1 + 4.95e7T + 1.11e15T^{2} \)
53 \( 1 - 9.82e7T + 3.29e15T^{2} \)
59 \( 1 - 2.59e7T + 8.66e15T^{2} \)
61 \( 1 + 8.44e7T + 1.16e16T^{2} \)
67 \( 1 - 1.61e8T + 2.72e16T^{2} \)
71 \( 1 + 3.46e8T + 4.58e16T^{2} \)
73 \( 1 - 2.95e7T + 5.88e16T^{2} \)
79 \( 1 - 1.92e8T + 1.19e17T^{2} \)
83 \( 1 + 2.36e8T + 1.86e17T^{2} \)
89 \( 1 - 1.08e9T + 3.50e17T^{2} \)
97 \( 1 - 5.84e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.65556466346740543846243359979, −9.847296601837300957330312455446, −8.796891264516418713750447032353, −7.920057568939417187189657195692, −6.35085895074001406082597422723, −5.67065324646705674581508728896, −4.78636658447451188791066434032, −2.92524122774672490615087352229, −2.04660457241438441615986370400, −0.876925618477993061076923479268, 0.876925618477993061076923479268, 2.04660457241438441615986370400, 2.92524122774672490615087352229, 4.78636658447451188791066434032, 5.67065324646705674581508728896, 6.35085895074001406082597422723, 7.920057568939417187189657195692, 8.796891264516418713750447032353, 9.847296601837300957330312455446, 10.65556466346740543846243359979

Graph of the $Z$-function along the critical line