Properties

Label 208.10.a.m.1.3
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-109.049\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-127.049 q^{3} +393.414 q^{5} -6601.13 q^{7} -3541.59 q^{9} -55090.9 q^{11} +28561.0 q^{13} -49982.8 q^{15} -229326. q^{17} -370189. q^{19} +838666. q^{21} -1.83233e6 q^{23} -1.79835e6 q^{25} +2.95066e6 q^{27} +1.20415e6 q^{29} -5.78451e6 q^{31} +6.99924e6 q^{33} -2.59698e6 q^{35} -839222. q^{37} -3.62864e6 q^{39} +2.52785e6 q^{41} -1.28588e6 q^{43} -1.39331e6 q^{45} -1.25359e7 q^{47} +3.22131e6 q^{49} +2.91356e7 q^{51} -9.21329e7 q^{53} -2.16735e7 q^{55} +4.70321e7 q^{57} -1.25593e8 q^{59} +1.80842e7 q^{61} +2.33785e7 q^{63} +1.12363e7 q^{65} -2.32656e8 q^{67} +2.32796e8 q^{69} -1.13475e8 q^{71} -5.38049e7 q^{73} +2.28478e8 q^{75} +3.63662e8 q^{77} -5.37073e8 q^{79} -3.05169e8 q^{81} -1.78667e8 q^{83} -9.02201e7 q^{85} -1.52986e8 q^{87} +9.93346e8 q^{89} -1.88535e8 q^{91} +7.34915e8 q^{93} -1.45638e8 q^{95} +1.12190e9 q^{97} +1.95109e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 141 q^{3} + 2051 q^{5} + 2417 q^{7} + 115741 q^{9} + 53118 q^{11} + 228488 q^{13} + 464555 q^{15} + 433095 q^{17} + 434954 q^{19} + 906875 q^{21} + 1124296 q^{23} + 5966065 q^{25} - 7820643 q^{27}+ \cdots + 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −127.049 −0.905576 −0.452788 0.891618i \(-0.649571\pi\)
−0.452788 + 0.891618i \(0.649571\pi\)
\(4\) 0 0
\(5\) 393.414 0.281504 0.140752 0.990045i \(-0.455048\pi\)
0.140752 + 0.990045i \(0.455048\pi\)
\(6\) 0 0
\(7\) −6601.13 −1.03915 −0.519574 0.854426i \(-0.673909\pi\)
−0.519574 + 0.854426i \(0.673909\pi\)
\(8\) 0 0
\(9\) −3541.59 −0.179931
\(10\) 0 0
\(11\) −55090.9 −1.13452 −0.567261 0.823538i \(-0.691997\pi\)
−0.567261 + 0.823538i \(0.691997\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −49982.8 −0.254924
\(16\) 0 0
\(17\) −229326. −0.665937 −0.332969 0.942938i \(-0.608050\pi\)
−0.332969 + 0.942938i \(0.608050\pi\)
\(18\) 0 0
\(19\) −370189. −0.651677 −0.325839 0.945425i \(-0.605647\pi\)
−0.325839 + 0.945425i \(0.605647\pi\)
\(20\) 0 0
\(21\) 838666. 0.941027
\(22\) 0 0
\(23\) −1.83233e6 −1.36530 −0.682651 0.730744i \(-0.739173\pi\)
−0.682651 + 0.730744i \(0.739173\pi\)
\(24\) 0 0
\(25\) −1.79835e6 −0.920755
\(26\) 0 0
\(27\) 2.95066e6 1.06852
\(28\) 0 0
\(29\) 1.20415e6 0.316148 0.158074 0.987427i \(-0.449472\pi\)
0.158074 + 0.987427i \(0.449472\pi\)
\(30\) 0 0
\(31\) −5.78451e6 −1.12496 −0.562482 0.826809i \(-0.690154\pi\)
−0.562482 + 0.826809i \(0.690154\pi\)
\(32\) 0 0
\(33\) 6.99924e6 1.02740
\(34\) 0 0
\(35\) −2.59698e6 −0.292524
\(36\) 0 0
\(37\) −839222. −0.0736154 −0.0368077 0.999322i \(-0.511719\pi\)
−0.0368077 + 0.999322i \(0.511719\pi\)
\(38\) 0 0
\(39\) −3.62864e6 −0.251162
\(40\) 0 0
\(41\) 2.52785e6 0.139709 0.0698545 0.997557i \(-0.477746\pi\)
0.0698545 + 0.997557i \(0.477746\pi\)
\(42\) 0 0
\(43\) −1.28588e6 −0.0573579 −0.0286790 0.999589i \(-0.509130\pi\)
−0.0286790 + 0.999589i \(0.509130\pi\)
\(44\) 0 0
\(45\) −1.39331e6 −0.0506515
\(46\) 0 0
\(47\) −1.25359e7 −0.374728 −0.187364 0.982291i \(-0.559994\pi\)
−0.187364 + 0.982291i \(0.559994\pi\)
\(48\) 0 0
\(49\) 3.22131e6 0.0798271
\(50\) 0 0
\(51\) 2.91356e7 0.603057
\(52\) 0 0
\(53\) −9.21329e7 −1.60389 −0.801943 0.597401i \(-0.796200\pi\)
−0.801943 + 0.597401i \(0.796200\pi\)
\(54\) 0 0
\(55\) −2.16735e7 −0.319373
\(56\) 0 0
\(57\) 4.70321e7 0.590144
\(58\) 0 0
\(59\) −1.25593e8 −1.34937 −0.674686 0.738105i \(-0.735721\pi\)
−0.674686 + 0.738105i \(0.735721\pi\)
\(60\) 0 0
\(61\) 1.80842e7 0.167231 0.0836153 0.996498i \(-0.473353\pi\)
0.0836153 + 0.996498i \(0.473353\pi\)
\(62\) 0 0
\(63\) 2.33785e7 0.186975
\(64\) 0 0
\(65\) 1.12363e7 0.0780752
\(66\) 0 0
\(67\) −2.32656e8 −1.41052 −0.705258 0.708951i \(-0.749169\pi\)
−0.705258 + 0.708951i \(0.749169\pi\)
\(68\) 0 0
\(69\) 2.32796e8 1.23639
\(70\) 0 0
\(71\) −1.13475e8 −0.529955 −0.264978 0.964255i \(-0.585365\pi\)
−0.264978 + 0.964255i \(0.585365\pi\)
\(72\) 0 0
\(73\) −5.38049e7 −0.221753 −0.110876 0.993834i \(-0.535366\pi\)
−0.110876 + 0.993834i \(0.535366\pi\)
\(74\) 0 0
\(75\) 2.28478e8 0.833814
\(76\) 0 0
\(77\) 3.63662e8 1.17894
\(78\) 0 0
\(79\) −5.37073e8 −1.55136 −0.775678 0.631129i \(-0.782592\pi\)
−0.775678 + 0.631129i \(0.782592\pi\)
\(80\) 0 0
\(81\) −3.05169e8 −0.787693
\(82\) 0 0
\(83\) −1.78667e8 −0.413231 −0.206615 0.978422i \(-0.566245\pi\)
−0.206615 + 0.978422i \(0.566245\pi\)
\(84\) 0 0
\(85\) −9.02201e7 −0.187464
\(86\) 0 0
\(87\) −1.52986e8 −0.286296
\(88\) 0 0
\(89\) 9.93346e8 1.67821 0.839104 0.543972i \(-0.183080\pi\)
0.839104 + 0.543972i \(0.183080\pi\)
\(90\) 0 0
\(91\) −1.88535e8 −0.288208
\(92\) 0 0
\(93\) 7.34915e8 1.01874
\(94\) 0 0
\(95\) −1.45638e8 −0.183450
\(96\) 0 0
\(97\) 1.12190e9 1.28672 0.643358 0.765566i \(-0.277541\pi\)
0.643358 + 0.765566i \(0.277541\pi\)
\(98\) 0 0
\(99\) 1.95109e8 0.204136
\(100\) 0 0
\(101\) 1.71691e9 1.64172 0.820862 0.571126i \(-0.193493\pi\)
0.820862 + 0.571126i \(0.193493\pi\)
\(102\) 0 0
\(103\) 1.60945e9 1.40899 0.704497 0.709707i \(-0.251173\pi\)
0.704497 + 0.709707i \(0.251173\pi\)
\(104\) 0 0
\(105\) 3.29943e8 0.264903
\(106\) 0 0
\(107\) 1.93658e9 1.42826 0.714131 0.700012i \(-0.246822\pi\)
0.714131 + 0.700012i \(0.246822\pi\)
\(108\) 0 0
\(109\) 6.89772e8 0.468044 0.234022 0.972231i \(-0.424811\pi\)
0.234022 + 0.972231i \(0.424811\pi\)
\(110\) 0 0
\(111\) 1.06622e8 0.0666644
\(112\) 0 0
\(113\) −1.96773e9 −1.13531 −0.567653 0.823268i \(-0.692149\pi\)
−0.567653 + 0.823268i \(0.692149\pi\)
\(114\) 0 0
\(115\) −7.20866e8 −0.384339
\(116\) 0 0
\(117\) −1.01151e8 −0.0499040
\(118\) 0 0
\(119\) 1.51381e9 0.692007
\(120\) 0 0
\(121\) 6.77062e8 0.287140
\(122\) 0 0
\(123\) −3.21161e8 −0.126517
\(124\) 0 0
\(125\) −1.47588e9 −0.540701
\(126\) 0 0
\(127\) −8.12096e8 −0.277007 −0.138503 0.990362i \(-0.544229\pi\)
−0.138503 + 0.990362i \(0.544229\pi\)
\(128\) 0 0
\(129\) 1.63370e8 0.0519420
\(130\) 0 0
\(131\) 5.70328e9 1.69201 0.846007 0.533173i \(-0.179000\pi\)
0.846007 + 0.533173i \(0.179000\pi\)
\(132\) 0 0
\(133\) 2.44367e9 0.677189
\(134\) 0 0
\(135\) 1.16083e9 0.300792
\(136\) 0 0
\(137\) −7.92802e8 −0.192275 −0.0961374 0.995368i \(-0.530649\pi\)
−0.0961374 + 0.995368i \(0.530649\pi\)
\(138\) 0 0
\(139\) −6.17846e8 −0.140383 −0.0701913 0.997534i \(-0.522361\pi\)
−0.0701913 + 0.997534i \(0.522361\pi\)
\(140\) 0 0
\(141\) 1.59267e9 0.339345
\(142\) 0 0
\(143\) −1.57345e9 −0.314660
\(144\) 0 0
\(145\) 4.73730e8 0.0889970
\(146\) 0 0
\(147\) −4.09264e8 −0.0722896
\(148\) 0 0
\(149\) −2.22284e9 −0.369462 −0.184731 0.982789i \(-0.559141\pi\)
−0.184731 + 0.982789i \(0.559141\pi\)
\(150\) 0 0
\(151\) −6.02833e8 −0.0943627 −0.0471814 0.998886i \(-0.515024\pi\)
−0.0471814 + 0.998886i \(0.515024\pi\)
\(152\) 0 0
\(153\) 8.12179e8 0.119823
\(154\) 0 0
\(155\) −2.27571e9 −0.316682
\(156\) 0 0
\(157\) −4.04266e9 −0.531030 −0.265515 0.964107i \(-0.585542\pi\)
−0.265515 + 0.964107i \(0.585542\pi\)
\(158\) 0 0
\(159\) 1.17054e10 1.45244
\(160\) 0 0
\(161\) 1.20955e10 1.41875
\(162\) 0 0
\(163\) 1.70965e10 1.89698 0.948490 0.316806i \(-0.102611\pi\)
0.948490 + 0.316806i \(0.102611\pi\)
\(164\) 0 0
\(165\) 2.75360e9 0.289216
\(166\) 0 0
\(167\) 4.00765e9 0.398718 0.199359 0.979926i \(-0.436114\pi\)
0.199359 + 0.979926i \(0.436114\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 1.31106e9 0.117257
\(172\) 0 0
\(173\) −1.48580e10 −1.26111 −0.630556 0.776144i \(-0.717173\pi\)
−0.630556 + 0.776144i \(0.717173\pi\)
\(174\) 0 0
\(175\) 1.18711e10 0.956800
\(176\) 0 0
\(177\) 1.59565e10 1.22196
\(178\) 0 0
\(179\) 1.80486e9 0.131403 0.0657015 0.997839i \(-0.479071\pi\)
0.0657015 + 0.997839i \(0.479071\pi\)
\(180\) 0 0
\(181\) −2.12646e10 −1.47266 −0.736331 0.676621i \(-0.763444\pi\)
−0.736331 + 0.676621i \(0.763444\pi\)
\(182\) 0 0
\(183\) −2.29758e9 −0.151440
\(184\) 0 0
\(185\) −3.30162e8 −0.0207231
\(186\) 0 0
\(187\) 1.26338e10 0.755520
\(188\) 0 0
\(189\) −1.94777e10 −1.11035
\(190\) 0 0
\(191\) −3.38980e9 −0.184299 −0.0921497 0.995745i \(-0.529374\pi\)
−0.0921497 + 0.995745i \(0.529374\pi\)
\(192\) 0 0
\(193\) 4.51338e9 0.234150 0.117075 0.993123i \(-0.462648\pi\)
0.117075 + 0.993123i \(0.462648\pi\)
\(194\) 0 0
\(195\) −1.42756e9 −0.0707031
\(196\) 0 0
\(197\) 5.43748e8 0.0257217 0.0128608 0.999917i \(-0.495906\pi\)
0.0128608 + 0.999917i \(0.495906\pi\)
\(198\) 0 0
\(199\) 1.11070e10 0.502064 0.251032 0.967979i \(-0.419230\pi\)
0.251032 + 0.967979i \(0.419230\pi\)
\(200\) 0 0
\(201\) 2.95587e10 1.27733
\(202\) 0 0
\(203\) −7.94877e9 −0.328524
\(204\) 0 0
\(205\) 9.94493e8 0.0393287
\(206\) 0 0
\(207\) 6.48937e9 0.245661
\(208\) 0 0
\(209\) 2.03941e10 0.739342
\(210\) 0 0
\(211\) 3.97386e9 0.138020 0.0690099 0.997616i \(-0.478016\pi\)
0.0690099 + 0.997616i \(0.478016\pi\)
\(212\) 0 0
\(213\) 1.44169e10 0.479915
\(214\) 0 0
\(215\) −5.05884e8 −0.0161465
\(216\) 0 0
\(217\) 3.81843e10 1.16900
\(218\) 0 0
\(219\) 6.83585e9 0.200814
\(220\) 0 0
\(221\) −6.54978e9 −0.184698
\(222\) 0 0
\(223\) 1.65882e10 0.449187 0.224593 0.974453i \(-0.427895\pi\)
0.224593 + 0.974453i \(0.427895\pi\)
\(224\) 0 0
\(225\) 6.36902e9 0.165673
\(226\) 0 0
\(227\) 1.03298e10 0.258212 0.129106 0.991631i \(-0.458789\pi\)
0.129106 + 0.991631i \(0.458789\pi\)
\(228\) 0 0
\(229\) −5.51827e8 −0.0132600 −0.00663000 0.999978i \(-0.502110\pi\)
−0.00663000 + 0.999978i \(0.502110\pi\)
\(230\) 0 0
\(231\) −4.62029e10 −1.06762
\(232\) 0 0
\(233\) −1.38078e10 −0.306919 −0.153460 0.988155i \(-0.549041\pi\)
−0.153460 + 0.988155i \(0.549041\pi\)
\(234\) 0 0
\(235\) −4.93181e9 −0.105487
\(236\) 0 0
\(237\) 6.82345e10 1.40487
\(238\) 0 0
\(239\) 1.60685e10 0.318556 0.159278 0.987234i \(-0.449083\pi\)
0.159278 + 0.987234i \(0.449083\pi\)
\(240\) 0 0
\(241\) 1.30321e10 0.248850 0.124425 0.992229i \(-0.460291\pi\)
0.124425 + 0.992229i \(0.460291\pi\)
\(242\) 0 0
\(243\) −1.93065e10 −0.355202
\(244\) 0 0
\(245\) 1.26731e9 0.0224717
\(246\) 0 0
\(247\) −1.05730e10 −0.180743
\(248\) 0 0
\(249\) 2.26994e10 0.374212
\(250\) 0 0
\(251\) −1.00894e11 −1.60448 −0.802240 0.597001i \(-0.796359\pi\)
−0.802240 + 0.597001i \(0.796359\pi\)
\(252\) 0 0
\(253\) 1.00945e11 1.54897
\(254\) 0 0
\(255\) 1.14624e10 0.169763
\(256\) 0 0
\(257\) 1.72654e10 0.246876 0.123438 0.992352i \(-0.460608\pi\)
0.123438 + 0.992352i \(0.460608\pi\)
\(258\) 0 0
\(259\) 5.53981e9 0.0764973
\(260\) 0 0
\(261\) −4.26461e9 −0.0568849
\(262\) 0 0
\(263\) −7.95217e10 −1.02491 −0.512454 0.858715i \(-0.671264\pi\)
−0.512454 + 0.858715i \(0.671264\pi\)
\(264\) 0 0
\(265\) −3.62464e10 −0.451501
\(266\) 0 0
\(267\) −1.26203e11 −1.51974
\(268\) 0 0
\(269\) −5.26188e10 −0.612711 −0.306356 0.951917i \(-0.599110\pi\)
−0.306356 + 0.951917i \(0.599110\pi\)
\(270\) 0 0
\(271\) 6.71009e10 0.755730 0.377865 0.925861i \(-0.376658\pi\)
0.377865 + 0.925861i \(0.376658\pi\)
\(272\) 0 0
\(273\) 2.39531e10 0.260994
\(274\) 0 0
\(275\) 9.90728e10 1.04462
\(276\) 0 0
\(277\) 1.61100e8 0.00164413 0.000822064 1.00000i \(-0.499738\pi\)
0.000822064 1.00000i \(0.499738\pi\)
\(278\) 0 0
\(279\) 2.04864e10 0.202416
\(280\) 0 0
\(281\) −1.01446e11 −0.970635 −0.485317 0.874338i \(-0.661296\pi\)
−0.485317 + 0.874338i \(0.661296\pi\)
\(282\) 0 0
\(283\) 8.27056e10 0.766471 0.383235 0.923651i \(-0.374810\pi\)
0.383235 + 0.923651i \(0.374810\pi\)
\(284\) 0 0
\(285\) 1.85031e10 0.166128
\(286\) 0 0
\(287\) −1.66867e10 −0.145178
\(288\) 0 0
\(289\) −6.59974e10 −0.556528
\(290\) 0 0
\(291\) −1.42536e11 −1.16522
\(292\) 0 0
\(293\) −2.01297e11 −1.59563 −0.797817 0.602899i \(-0.794012\pi\)
−0.797817 + 0.602899i \(0.794012\pi\)
\(294\) 0 0
\(295\) −4.94101e10 −0.379854
\(296\) 0 0
\(297\) −1.62554e11 −1.21226
\(298\) 0 0
\(299\) −5.23333e10 −0.378667
\(300\) 0 0
\(301\) 8.48828e9 0.0596033
\(302\) 0 0
\(303\) −2.18131e11 −1.48671
\(304\) 0 0
\(305\) 7.11459e9 0.0470761
\(306\) 0 0
\(307\) −1.04206e11 −0.669527 −0.334764 0.942302i \(-0.608656\pi\)
−0.334764 + 0.942302i \(0.608656\pi\)
\(308\) 0 0
\(309\) −2.04478e11 −1.27595
\(310\) 0 0
\(311\) 2.71489e11 1.64562 0.822811 0.568315i \(-0.192404\pi\)
0.822811 + 0.568315i \(0.192404\pi\)
\(312\) 0 0
\(313\) 3.31671e11 1.95325 0.976625 0.214951i \(-0.0689590\pi\)
0.976625 + 0.214951i \(0.0689590\pi\)
\(314\) 0 0
\(315\) 9.19743e9 0.0526343
\(316\) 0 0
\(317\) −2.92495e11 −1.62686 −0.813432 0.581660i \(-0.802404\pi\)
−0.813432 + 0.581660i \(0.802404\pi\)
\(318\) 0 0
\(319\) −6.63378e10 −0.358677
\(320\) 0 0
\(321\) −2.46040e11 −1.29340
\(322\) 0 0
\(323\) 8.48941e10 0.433976
\(324\) 0 0
\(325\) −5.13627e10 −0.255372
\(326\) 0 0
\(327\) −8.76348e10 −0.423849
\(328\) 0 0
\(329\) 8.27512e10 0.389397
\(330\) 0 0
\(331\) −3.44902e11 −1.57932 −0.789660 0.613545i \(-0.789743\pi\)
−0.789660 + 0.613545i \(0.789743\pi\)
\(332\) 0 0
\(333\) 2.97218e9 0.0132457
\(334\) 0 0
\(335\) −9.15302e10 −0.397066
\(336\) 0 0
\(337\) −3.97412e11 −1.67844 −0.839221 0.543791i \(-0.816989\pi\)
−0.839221 + 0.543791i \(0.816989\pi\)
\(338\) 0 0
\(339\) 2.49998e11 1.02811
\(340\) 0 0
\(341\) 3.18674e11 1.27630
\(342\) 0 0
\(343\) 2.45115e11 0.956195
\(344\) 0 0
\(345\) 9.15851e10 0.348048
\(346\) 0 0
\(347\) −2.53853e11 −0.939940 −0.469970 0.882682i \(-0.655735\pi\)
−0.469970 + 0.882682i \(0.655735\pi\)
\(348\) 0 0
\(349\) −1.65473e11 −0.597053 −0.298526 0.954401i \(-0.596495\pi\)
−0.298526 + 0.954401i \(0.596495\pi\)
\(350\) 0 0
\(351\) 8.42737e10 0.296354
\(352\) 0 0
\(353\) −6.87614e10 −0.235699 −0.117850 0.993031i \(-0.537600\pi\)
−0.117850 + 0.993031i \(0.537600\pi\)
\(354\) 0 0
\(355\) −4.46428e10 −0.149185
\(356\) 0 0
\(357\) −1.92328e11 −0.626665
\(358\) 0 0
\(359\) 3.28858e11 1.04492 0.522461 0.852663i \(-0.325014\pi\)
0.522461 + 0.852663i \(0.325014\pi\)
\(360\) 0 0
\(361\) −1.85648e11 −0.575316
\(362\) 0 0
\(363\) −8.60199e10 −0.260027
\(364\) 0 0
\(365\) −2.11676e10 −0.0624243
\(366\) 0 0
\(367\) −2.96263e11 −0.852472 −0.426236 0.904612i \(-0.640161\pi\)
−0.426236 + 0.904612i \(0.640161\pi\)
\(368\) 0 0
\(369\) −8.95262e9 −0.0251380
\(370\) 0 0
\(371\) 6.08181e11 1.66667
\(372\) 0 0
\(373\) 4.74369e11 1.26890 0.634448 0.772965i \(-0.281227\pi\)
0.634448 + 0.772965i \(0.281227\pi\)
\(374\) 0 0
\(375\) 1.87509e11 0.489646
\(376\) 0 0
\(377\) 3.43918e10 0.0876837
\(378\) 0 0
\(379\) 9.65146e10 0.240279 0.120140 0.992757i \(-0.461666\pi\)
0.120140 + 0.992757i \(0.461666\pi\)
\(380\) 0 0
\(381\) 1.03176e11 0.250851
\(382\) 0 0
\(383\) −8.69705e10 −0.206527 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(384\) 0 0
\(385\) 1.43070e11 0.331875
\(386\) 0 0
\(387\) 4.55407e9 0.0103205
\(388\) 0 0
\(389\) −2.50943e10 −0.0555651 −0.0277826 0.999614i \(-0.508845\pi\)
−0.0277826 + 0.999614i \(0.508845\pi\)
\(390\) 0 0
\(391\) 4.20202e11 0.909206
\(392\) 0 0
\(393\) −7.24595e11 −1.53225
\(394\) 0 0
\(395\) −2.11292e11 −0.436713
\(396\) 0 0
\(397\) −8.58270e11 −1.73407 −0.867035 0.498247i \(-0.833977\pi\)
−0.867035 + 0.498247i \(0.833977\pi\)
\(398\) 0 0
\(399\) −3.10465e11 −0.613246
\(400\) 0 0
\(401\) 8.65573e10 0.167168 0.0835842 0.996501i \(-0.473363\pi\)
0.0835842 + 0.996501i \(0.473363\pi\)
\(402\) 0 0
\(403\) −1.65211e11 −0.312009
\(404\) 0 0
\(405\) −1.20058e11 −0.221739
\(406\) 0 0
\(407\) 4.62335e10 0.0835183
\(408\) 0 0
\(409\) 2.18678e11 0.386412 0.193206 0.981158i \(-0.438111\pi\)
0.193206 + 0.981158i \(0.438111\pi\)
\(410\) 0 0
\(411\) 1.00725e11 0.174119
\(412\) 0 0
\(413\) 8.29056e11 1.40220
\(414\) 0 0
\(415\) −7.02900e10 −0.116326
\(416\) 0 0
\(417\) 7.84966e10 0.127127
\(418\) 0 0
\(419\) −8.33942e11 −1.32182 −0.660910 0.750465i \(-0.729830\pi\)
−0.660910 + 0.750465i \(0.729830\pi\)
\(420\) 0 0
\(421\) 2.17094e11 0.336805 0.168403 0.985718i \(-0.446139\pi\)
0.168403 + 0.985718i \(0.446139\pi\)
\(422\) 0 0
\(423\) 4.43971e10 0.0674253
\(424\) 0 0
\(425\) 4.12409e11 0.613165
\(426\) 0 0
\(427\) −1.19376e11 −0.173777
\(428\) 0 0
\(429\) 1.99905e11 0.284948
\(430\) 0 0
\(431\) 8.80280e11 1.22878 0.614388 0.789004i \(-0.289403\pi\)
0.614388 + 0.789004i \(0.289403\pi\)
\(432\) 0 0
\(433\) 1.70204e11 0.232689 0.116344 0.993209i \(-0.462882\pi\)
0.116344 + 0.993209i \(0.462882\pi\)
\(434\) 0 0
\(435\) −6.01869e10 −0.0805936
\(436\) 0 0
\(437\) 6.78310e11 0.889737
\(438\) 0 0
\(439\) 2.76051e11 0.354731 0.177366 0.984145i \(-0.443242\pi\)
0.177366 + 0.984145i \(0.443242\pi\)
\(440\) 0 0
\(441\) −1.14086e10 −0.0143634
\(442\) 0 0
\(443\) 5.01079e11 0.618144 0.309072 0.951039i \(-0.399982\pi\)
0.309072 + 0.951039i \(0.399982\pi\)
\(444\) 0 0
\(445\) 3.90796e11 0.472422
\(446\) 0 0
\(447\) 2.82409e11 0.334576
\(448\) 0 0
\(449\) −5.79974e11 −0.673441 −0.336721 0.941605i \(-0.609318\pi\)
−0.336721 + 0.941605i \(0.609318\pi\)
\(450\) 0 0
\(451\) −1.39262e11 −0.158503
\(452\) 0 0
\(453\) 7.65892e10 0.0854527
\(454\) 0 0
\(455\) −7.41723e10 −0.0811317
\(456\) 0 0
\(457\) 1.35952e12 1.45802 0.729011 0.684502i \(-0.239980\pi\)
0.729011 + 0.684502i \(0.239980\pi\)
\(458\) 0 0
\(459\) −6.76663e11 −0.711566
\(460\) 0 0
\(461\) 9.28421e11 0.957394 0.478697 0.877980i \(-0.341109\pi\)
0.478697 + 0.877980i \(0.341109\pi\)
\(462\) 0 0
\(463\) −1.52150e12 −1.53871 −0.769357 0.638819i \(-0.779423\pi\)
−0.769357 + 0.638819i \(0.779423\pi\)
\(464\) 0 0
\(465\) 2.89126e11 0.286780
\(466\) 0 0
\(467\) −8.06341e11 −0.784500 −0.392250 0.919859i \(-0.628303\pi\)
−0.392250 + 0.919859i \(0.628303\pi\)
\(468\) 0 0
\(469\) 1.53579e12 1.46573
\(470\) 0 0
\(471\) 5.13616e11 0.480888
\(472\) 0 0
\(473\) 7.08405e10 0.0650738
\(474\) 0 0
\(475\) 6.65730e11 0.600036
\(476\) 0 0
\(477\) 3.26297e11 0.288589
\(478\) 0 0
\(479\) −8.16554e10 −0.0708721 −0.0354360 0.999372i \(-0.511282\pi\)
−0.0354360 + 0.999372i \(0.511282\pi\)
\(480\) 0 0
\(481\) −2.39690e10 −0.0204173
\(482\) 0 0
\(483\) −1.53672e12 −1.28479
\(484\) 0 0
\(485\) 4.41372e11 0.362216
\(486\) 0 0
\(487\) −2.93731e11 −0.236630 −0.118315 0.992976i \(-0.537749\pi\)
−0.118315 + 0.992976i \(0.537749\pi\)
\(488\) 0 0
\(489\) −2.17209e12 −1.71786
\(490\) 0 0
\(491\) 8.52285e10 0.0661787 0.0330894 0.999452i \(-0.489465\pi\)
0.0330894 + 0.999452i \(0.489465\pi\)
\(492\) 0 0
\(493\) −2.76143e11 −0.210535
\(494\) 0 0
\(495\) 7.67588e10 0.0574652
\(496\) 0 0
\(497\) 7.49066e11 0.550702
\(498\) 0 0
\(499\) −1.87390e12 −1.35299 −0.676495 0.736448i \(-0.736502\pi\)
−0.676495 + 0.736448i \(0.736502\pi\)
\(500\) 0 0
\(501\) −5.09168e11 −0.361070
\(502\) 0 0
\(503\) 2.29233e12 1.59669 0.798346 0.602199i \(-0.205709\pi\)
0.798346 + 0.602199i \(0.205709\pi\)
\(504\) 0 0
\(505\) 6.75455e11 0.462152
\(506\) 0 0
\(507\) −1.03638e11 −0.0696597
\(508\) 0 0
\(509\) 5.51785e11 0.364368 0.182184 0.983264i \(-0.441683\pi\)
0.182184 + 0.983264i \(0.441683\pi\)
\(510\) 0 0
\(511\) 3.55173e11 0.230434
\(512\) 0 0
\(513\) −1.09230e12 −0.696329
\(514\) 0 0
\(515\) 6.33179e11 0.396638
\(516\) 0 0
\(517\) 6.90615e11 0.425137
\(518\) 0 0
\(519\) 1.88769e12 1.14203
\(520\) 0 0
\(521\) −2.10966e12 −1.25442 −0.627210 0.778850i \(-0.715803\pi\)
−0.627210 + 0.778850i \(0.715803\pi\)
\(522\) 0 0
\(523\) 1.93741e12 1.13231 0.566153 0.824300i \(-0.308431\pi\)
0.566153 + 0.824300i \(0.308431\pi\)
\(524\) 0 0
\(525\) −1.50822e12 −0.866456
\(526\) 0 0
\(527\) 1.32654e12 0.749156
\(528\) 0 0
\(529\) 1.55629e12 0.864052
\(530\) 0 0
\(531\) 4.44799e11 0.242794
\(532\) 0 0
\(533\) 7.21980e10 0.0387483
\(534\) 0 0
\(535\) 7.61877e11 0.402062
\(536\) 0 0
\(537\) −2.29306e11 −0.118995
\(538\) 0 0
\(539\) −1.77465e11 −0.0905657
\(540\) 0 0
\(541\) −2.25790e12 −1.13323 −0.566614 0.823983i \(-0.691747\pi\)
−0.566614 + 0.823983i \(0.691747\pi\)
\(542\) 0 0
\(543\) 2.70164e12 1.33361
\(544\) 0 0
\(545\) 2.71366e11 0.131756
\(546\) 0 0
\(547\) −1.90541e12 −0.910007 −0.455003 0.890490i \(-0.650362\pi\)
−0.455003 + 0.890490i \(0.650362\pi\)
\(548\) 0 0
\(549\) −6.40469e10 −0.0300900
\(550\) 0 0
\(551\) −4.45764e11 −0.206026
\(552\) 0 0
\(553\) 3.54529e12 1.61209
\(554\) 0 0
\(555\) 4.19467e10 0.0187663
\(556\) 0 0
\(557\) 2.62651e12 1.15620 0.578098 0.815968i \(-0.303795\pi\)
0.578098 + 0.815968i \(0.303795\pi\)
\(558\) 0 0
\(559\) −3.67261e10 −0.0159082
\(560\) 0 0
\(561\) −1.60511e12 −0.684181
\(562\) 0 0
\(563\) 1.43306e12 0.601141 0.300570 0.953760i \(-0.402823\pi\)
0.300570 + 0.953760i \(0.402823\pi\)
\(564\) 0 0
\(565\) −7.74134e11 −0.319594
\(566\) 0 0
\(567\) 2.01446e12 0.818529
\(568\) 0 0
\(569\) −7.00796e11 −0.280276 −0.140138 0.990132i \(-0.544755\pi\)
−0.140138 + 0.990132i \(0.544755\pi\)
\(570\) 0 0
\(571\) −2.44640e12 −0.963084 −0.481542 0.876423i \(-0.659923\pi\)
−0.481542 + 0.876423i \(0.659923\pi\)
\(572\) 0 0
\(573\) 4.30670e11 0.166897
\(574\) 0 0
\(575\) 3.29518e12 1.25711
\(576\) 0 0
\(577\) 3.67506e12 1.38030 0.690150 0.723666i \(-0.257545\pi\)
0.690150 + 0.723666i \(0.257545\pi\)
\(578\) 0 0
\(579\) −5.73420e11 −0.212041
\(580\) 0 0
\(581\) 1.17940e12 0.429407
\(582\) 0 0
\(583\) 5.07569e12 1.81964
\(584\) 0 0
\(585\) −3.97944e10 −0.0140482
\(586\) 0 0
\(587\) 5.17892e11 0.180039 0.0900197 0.995940i \(-0.471307\pi\)
0.0900197 + 0.995940i \(0.471307\pi\)
\(588\) 0 0
\(589\) 2.14136e12 0.733114
\(590\) 0 0
\(591\) −6.90825e10 −0.0232929
\(592\) 0 0
\(593\) −3.70659e12 −1.23092 −0.615459 0.788169i \(-0.711029\pi\)
−0.615459 + 0.788169i \(0.711029\pi\)
\(594\) 0 0
\(595\) 5.95555e11 0.194803
\(596\) 0 0
\(597\) −1.41114e12 −0.454657
\(598\) 0 0
\(599\) 8.24633e11 0.261722 0.130861 0.991401i \(-0.458226\pi\)
0.130861 + 0.991401i \(0.458226\pi\)
\(600\) 0 0
\(601\) 1.63144e12 0.510077 0.255038 0.966931i \(-0.417912\pi\)
0.255038 + 0.966931i \(0.417912\pi\)
\(602\) 0 0
\(603\) 8.23972e11 0.253796
\(604\) 0 0
\(605\) 2.66366e11 0.0808312
\(606\) 0 0
\(607\) 8.25132e11 0.246703 0.123351 0.992363i \(-0.460636\pi\)
0.123351 + 0.992363i \(0.460636\pi\)
\(608\) 0 0
\(609\) 1.00988e12 0.297504
\(610\) 0 0
\(611\) −3.58038e11 −0.103931
\(612\) 0 0
\(613\) −6.84543e12 −1.95807 −0.979036 0.203685i \(-0.934708\pi\)
−0.979036 + 0.203685i \(0.934708\pi\)
\(614\) 0 0
\(615\) −1.26349e11 −0.0356151
\(616\) 0 0
\(617\) −4.51738e12 −1.25488 −0.627441 0.778664i \(-0.715898\pi\)
−0.627441 + 0.778664i \(0.715898\pi\)
\(618\) 0 0
\(619\) −5.18691e12 −1.42004 −0.710020 0.704181i \(-0.751314\pi\)
−0.710020 + 0.704181i \(0.751314\pi\)
\(620\) 0 0
\(621\) −5.40659e12 −1.45885
\(622\) 0 0
\(623\) −6.55721e12 −1.74390
\(624\) 0 0
\(625\) 2.93177e12 0.768546
\(626\) 0 0
\(627\) −2.59104e12 −0.669531
\(628\) 0 0
\(629\) 1.92455e11 0.0490233
\(630\) 0 0
\(631\) −2.56557e12 −0.644245 −0.322123 0.946698i \(-0.604396\pi\)
−0.322123 + 0.946698i \(0.604396\pi\)
\(632\) 0 0
\(633\) −5.04874e11 −0.124987
\(634\) 0 0
\(635\) −3.19490e11 −0.0779786
\(636\) 0 0
\(637\) 9.20039e10 0.0221401
\(638\) 0 0
\(639\) 4.01883e11 0.0953556
\(640\) 0 0
\(641\) −6.90157e12 −1.61468 −0.807341 0.590085i \(-0.799094\pi\)
−0.807341 + 0.590085i \(0.799094\pi\)
\(642\) 0 0
\(643\) −2.57207e12 −0.593381 −0.296690 0.954974i \(-0.595883\pi\)
−0.296690 + 0.954974i \(0.595883\pi\)
\(644\) 0 0
\(645\) 6.42720e10 0.0146219
\(646\) 0 0
\(647\) 5.68315e12 1.27503 0.637514 0.770439i \(-0.279963\pi\)
0.637514 + 0.770439i \(0.279963\pi\)
\(648\) 0 0
\(649\) 6.91904e12 1.53089
\(650\) 0 0
\(651\) −4.85127e12 −1.05862
\(652\) 0 0
\(653\) −2.44912e12 −0.527109 −0.263555 0.964644i \(-0.584895\pi\)
−0.263555 + 0.964644i \(0.584895\pi\)
\(654\) 0 0
\(655\) 2.24375e12 0.476309
\(656\) 0 0
\(657\) 1.90555e11 0.0399003
\(658\) 0 0
\(659\) 9.46263e11 0.195446 0.0977231 0.995214i \(-0.468844\pi\)
0.0977231 + 0.995214i \(0.468844\pi\)
\(660\) 0 0
\(661\) −3.98418e11 −0.0811768 −0.0405884 0.999176i \(-0.512923\pi\)
−0.0405884 + 0.999176i \(0.512923\pi\)
\(662\) 0 0
\(663\) 8.32142e11 0.167258
\(664\) 0 0
\(665\) 9.61374e11 0.190632
\(666\) 0 0
\(667\) −2.20641e12 −0.431638
\(668\) 0 0
\(669\) −2.10751e12 −0.406773
\(670\) 0 0
\(671\) −9.96277e11 −0.189727
\(672\) 0 0
\(673\) 1.52054e12 0.285712 0.142856 0.989743i \(-0.454371\pi\)
0.142856 + 0.989743i \(0.454371\pi\)
\(674\) 0 0
\(675\) −5.30632e12 −0.983844
\(676\) 0 0
\(677\) 1.72963e11 0.0316450 0.0158225 0.999875i \(-0.494963\pi\)
0.0158225 + 0.999875i \(0.494963\pi\)
\(678\) 0 0
\(679\) −7.40583e12 −1.33709
\(680\) 0 0
\(681\) −1.31239e12 −0.233831
\(682\) 0 0
\(683\) −1.41533e11 −0.0248865 −0.0124432 0.999923i \(-0.503961\pi\)
−0.0124432 + 0.999923i \(0.503961\pi\)
\(684\) 0 0
\(685\) −3.11900e11 −0.0541262
\(686\) 0 0
\(687\) 7.01090e10 0.0120079
\(688\) 0 0
\(689\) −2.63141e12 −0.444838
\(690\) 0 0
\(691\) −3.45405e12 −0.576339 −0.288169 0.957579i \(-0.593047\pi\)
−0.288169 + 0.957579i \(0.593047\pi\)
\(692\) 0 0
\(693\) −1.28794e12 −0.212128
\(694\) 0 0
\(695\) −2.43069e11 −0.0395183
\(696\) 0 0
\(697\) −5.79702e11 −0.0930374
\(698\) 0 0
\(699\) 1.75427e12 0.277939
\(700\) 0 0
\(701\) −8.53804e12 −1.33545 −0.667724 0.744409i \(-0.732732\pi\)
−0.667724 + 0.744409i \(0.732732\pi\)
\(702\) 0 0
\(703\) 3.10671e11 0.0479735
\(704\) 0 0
\(705\) 6.26580e11 0.0955269
\(706\) 0 0
\(707\) −1.13335e13 −1.70599
\(708\) 0 0
\(709\) −1.16700e12 −0.173445 −0.0867227 0.996232i \(-0.527639\pi\)
−0.0867227 + 0.996232i \(0.527639\pi\)
\(710\) 0 0
\(711\) 1.90209e12 0.279138
\(712\) 0 0
\(713\) 1.05991e13 1.53592
\(714\) 0 0
\(715\) −6.19018e11 −0.0885781
\(716\) 0 0
\(717\) −2.04149e12 −0.288477
\(718\) 0 0
\(719\) 7.92647e12 1.10611 0.553057 0.833144i \(-0.313461\pi\)
0.553057 + 0.833144i \(0.313461\pi\)
\(720\) 0 0
\(721\) −1.06242e13 −1.46415
\(722\) 0 0
\(723\) −1.65571e12 −0.225353
\(724\) 0 0
\(725\) −2.16549e12 −0.291095
\(726\) 0 0
\(727\) −1.43334e13 −1.90302 −0.951511 0.307615i \(-0.900469\pi\)
−0.951511 + 0.307615i \(0.900469\pi\)
\(728\) 0 0
\(729\) 8.45950e12 1.10936
\(730\) 0 0
\(731\) 2.94886e11 0.0381968
\(732\) 0 0
\(733\) 1.23061e13 1.57453 0.787266 0.616613i \(-0.211496\pi\)
0.787266 + 0.616613i \(0.211496\pi\)
\(734\) 0 0
\(735\) −1.61010e11 −0.0203498
\(736\) 0 0
\(737\) 1.28172e13 1.60026
\(738\) 0 0
\(739\) −1.24191e13 −1.53175 −0.765876 0.642988i \(-0.777695\pi\)
−0.765876 + 0.642988i \(0.777695\pi\)
\(740\) 0 0
\(741\) 1.34328e12 0.163676
\(742\) 0 0
\(743\) 5.23605e12 0.630310 0.315155 0.949040i \(-0.397943\pi\)
0.315155 + 0.949040i \(0.397943\pi\)
\(744\) 0 0
\(745\) −8.74497e11 −0.104005
\(746\) 0 0
\(747\) 6.32764e11 0.0743531
\(748\) 0 0
\(749\) −1.27836e13 −1.48417
\(750\) 0 0
\(751\) 1.07482e13 1.23298 0.616491 0.787362i \(-0.288554\pi\)
0.616491 + 0.787362i \(0.288554\pi\)
\(752\) 0 0
\(753\) 1.28185e13 1.45298
\(754\) 0 0
\(755\) −2.37163e11 −0.0265635
\(756\) 0 0
\(757\) −4.80201e12 −0.531486 −0.265743 0.964044i \(-0.585617\pi\)
−0.265743 + 0.964044i \(0.585617\pi\)
\(758\) 0 0
\(759\) −1.28249e13 −1.40271
\(760\) 0 0
\(761\) −6.81874e12 −0.737010 −0.368505 0.929626i \(-0.620130\pi\)
−0.368505 + 0.929626i \(0.620130\pi\)
\(762\) 0 0
\(763\) −4.55328e12 −0.486366
\(764\) 0 0
\(765\) 3.19523e11 0.0337307
\(766\) 0 0
\(767\) −3.58706e12 −0.374248
\(768\) 0 0
\(769\) −2.29037e12 −0.236177 −0.118088 0.993003i \(-0.537677\pi\)
−0.118088 + 0.993003i \(0.537677\pi\)
\(770\) 0 0
\(771\) −2.19356e12 −0.223565
\(772\) 0 0
\(773\) 3.12369e12 0.314674 0.157337 0.987545i \(-0.449709\pi\)
0.157337 + 0.987545i \(0.449709\pi\)
\(774\) 0 0
\(775\) 1.04026e13 1.03582
\(776\) 0 0
\(777\) −7.03827e11 −0.0692741
\(778\) 0 0
\(779\) −9.35784e11 −0.0910452
\(780\) 0 0
\(781\) 6.25146e12 0.601246
\(782\) 0 0
\(783\) 3.55304e12 0.337810
\(784\) 0 0
\(785\) −1.59044e12 −0.149487
\(786\) 0 0
\(787\) −1.60343e13 −1.48993 −0.744963 0.667106i \(-0.767533\pi\)
−0.744963 + 0.667106i \(0.767533\pi\)
\(788\) 0 0
\(789\) 1.01031e13 0.928133
\(790\) 0 0
\(791\) 1.29893e13 1.17975
\(792\) 0 0
\(793\) 5.16504e11 0.0463814
\(794\) 0 0
\(795\) 4.60506e12 0.408868
\(796\) 0 0
\(797\) 1.66365e13 1.46050 0.730248 0.683182i \(-0.239404\pi\)
0.730248 + 0.683182i \(0.239404\pi\)
\(798\) 0 0
\(799\) 2.87481e12 0.249545
\(800\) 0 0
\(801\) −3.51802e12 −0.301962
\(802\) 0 0
\(803\) 2.96416e12 0.251583
\(804\) 0 0
\(805\) 4.75853e12 0.399384
\(806\) 0 0
\(807\) 6.68516e12 0.554857
\(808\) 0 0
\(809\) −2.02416e13 −1.66141 −0.830705 0.556713i \(-0.812062\pi\)
−0.830705 + 0.556713i \(0.812062\pi\)
\(810\) 0 0
\(811\) −4.06322e12 −0.329820 −0.164910 0.986309i \(-0.552733\pi\)
−0.164910 + 0.986309i \(0.552733\pi\)
\(812\) 0 0
\(813\) −8.52510e12 −0.684372
\(814\) 0 0
\(815\) 6.72600e12 0.534008
\(816\) 0 0
\(817\) 4.76020e11 0.0373789
\(818\) 0 0
\(819\) 6.67713e11 0.0518576
\(820\) 0 0
\(821\) 1.32353e13 1.01669 0.508345 0.861154i \(-0.330258\pi\)
0.508345 + 0.861154i \(0.330258\pi\)
\(822\) 0 0
\(823\) 7.48381e12 0.568622 0.284311 0.958732i \(-0.408235\pi\)
0.284311 + 0.958732i \(0.408235\pi\)
\(824\) 0 0
\(825\) −1.25871e13 −0.945981
\(826\) 0 0
\(827\) 1.17986e13 0.877112 0.438556 0.898704i \(-0.355490\pi\)
0.438556 + 0.898704i \(0.355490\pi\)
\(828\) 0 0
\(829\) −7.42428e12 −0.545958 −0.272979 0.962020i \(-0.588009\pi\)
−0.272979 + 0.962020i \(0.588009\pi\)
\(830\) 0 0
\(831\) −2.04675e10 −0.00148888
\(832\) 0 0
\(833\) −7.38731e11 −0.0531599
\(834\) 0 0
\(835\) 1.57667e12 0.112241
\(836\) 0 0
\(837\) −1.70681e13 −1.20204
\(838\) 0 0
\(839\) 2.76973e13 1.92978 0.964892 0.262645i \(-0.0845949\pi\)
0.964892 + 0.262645i \(0.0845949\pi\)
\(840\) 0 0
\(841\) −1.30572e13 −0.900050
\(842\) 0 0
\(843\) 1.28886e13 0.878984
\(844\) 0 0
\(845\) 3.20920e11 0.0216542
\(846\) 0 0
\(847\) −4.46937e12 −0.298381
\(848\) 0 0
\(849\) −1.05076e13 −0.694098
\(850\) 0 0
\(851\) 1.53773e12 0.100507
\(852\) 0 0
\(853\) −1.03384e13 −0.668626 −0.334313 0.942462i \(-0.608504\pi\)
−0.334313 + 0.942462i \(0.608504\pi\)
\(854\) 0 0
\(855\) 5.15789e11 0.0330084
\(856\) 0 0
\(857\) 1.12259e13 0.710895 0.355448 0.934696i \(-0.384328\pi\)
0.355448 + 0.934696i \(0.384328\pi\)
\(858\) 0 0
\(859\) 2.01153e13 1.26054 0.630271 0.776375i \(-0.282944\pi\)
0.630271 + 0.776375i \(0.282944\pi\)
\(860\) 0 0
\(861\) 2.12002e12 0.131470
\(862\) 0 0
\(863\) −2.51003e13 −1.54039 −0.770193 0.637811i \(-0.779840\pi\)
−0.770193 + 0.637811i \(0.779840\pi\)
\(864\) 0 0
\(865\) −5.84535e12 −0.355008
\(866\) 0 0
\(867\) 8.38490e12 0.503978
\(868\) 0 0
\(869\) 2.95878e13 1.76005
\(870\) 0 0
\(871\) −6.64489e12 −0.391207
\(872\) 0 0
\(873\) −3.97332e12 −0.231520
\(874\) 0 0
\(875\) 9.74250e12 0.561868
\(876\) 0 0
\(877\) 2.73527e13 1.56135 0.780677 0.624934i \(-0.214874\pi\)
0.780677 + 0.624934i \(0.214874\pi\)
\(878\) 0 0
\(879\) 2.55746e13 1.44497
\(880\) 0 0
\(881\) −1.27163e13 −0.711164 −0.355582 0.934645i \(-0.615717\pi\)
−0.355582 + 0.934645i \(0.615717\pi\)
\(882\) 0 0
\(883\) −2.49170e13 −1.37935 −0.689673 0.724121i \(-0.742246\pi\)
−0.689673 + 0.724121i \(0.742246\pi\)
\(884\) 0 0
\(885\) 6.27749e12 0.343987
\(886\) 0 0
\(887\) 3.04068e13 1.64936 0.824679 0.565602i \(-0.191356\pi\)
0.824679 + 0.565602i \(0.191356\pi\)
\(888\) 0 0
\(889\) 5.36075e12 0.287851
\(890\) 0 0
\(891\) 1.68120e13 0.893655
\(892\) 0 0
\(893\) 4.64066e12 0.244202
\(894\) 0 0
\(895\) 7.10058e11 0.0369905
\(896\) 0 0
\(897\) 6.64888e12 0.342912
\(898\) 0 0
\(899\) −6.96543e12 −0.355655
\(900\) 0 0
\(901\) 2.11285e13 1.06809
\(902\) 0 0
\(903\) −1.07843e12 −0.0539753
\(904\) 0 0
\(905\) −8.36579e12 −0.414561
\(906\) 0 0
\(907\) 1.73147e13 0.849538 0.424769 0.905302i \(-0.360355\pi\)
0.424769 + 0.905302i \(0.360355\pi\)
\(908\) 0 0
\(909\) −6.08057e12 −0.295398
\(910\) 0 0
\(911\) −3.93024e12 −0.189054 −0.0945271 0.995522i \(-0.530134\pi\)
−0.0945271 + 0.995522i \(0.530134\pi\)
\(912\) 0 0
\(913\) 9.84292e12 0.468819
\(914\) 0 0
\(915\) −9.03901e11 −0.0426310
\(916\) 0 0
\(917\) −3.76481e13 −1.75825
\(918\) 0 0
\(919\) −2.25315e13 −1.04200 −0.521002 0.853555i \(-0.674442\pi\)
−0.521002 + 0.853555i \(0.674442\pi\)
\(920\) 0 0
\(921\) 1.32392e13 0.606308
\(922\) 0 0
\(923\) −3.24097e12 −0.146983
\(924\) 0 0
\(925\) 1.50921e12 0.0677818
\(926\) 0 0
\(927\) −5.70000e12 −0.253522
\(928\) 0 0
\(929\) −4.28132e12 −0.188585 −0.0942925 0.995545i \(-0.530059\pi\)
−0.0942925 + 0.995545i \(0.530059\pi\)
\(930\) 0 0
\(931\) −1.19250e12 −0.0520216
\(932\) 0 0
\(933\) −3.44923e13 −1.49024
\(934\) 0 0
\(935\) 4.97031e12 0.212682
\(936\) 0 0
\(937\) 4.29988e13 1.82233 0.911167 0.412038i \(-0.135183\pi\)
0.911167 + 0.412038i \(0.135183\pi\)
\(938\) 0 0
\(939\) −4.21384e13 −1.76882
\(940\) 0 0
\(941\) 3.11345e13 1.29446 0.647231 0.762294i \(-0.275927\pi\)
0.647231 + 0.762294i \(0.275927\pi\)
\(942\) 0 0
\(943\) −4.63187e12 −0.190745
\(944\) 0 0
\(945\) −7.66279e12 −0.312568
\(946\) 0 0
\(947\) 1.90723e13 0.770599 0.385299 0.922792i \(-0.374098\pi\)
0.385299 + 0.922792i \(0.374098\pi\)
\(948\) 0 0
\(949\) −1.53672e12 −0.0615031
\(950\) 0 0
\(951\) 3.71611e13 1.47325
\(952\) 0 0
\(953\) −2.95033e13 −1.15865 −0.579325 0.815097i \(-0.696684\pi\)
−0.579325 + 0.815097i \(0.696684\pi\)
\(954\) 0 0
\(955\) −1.33360e12 −0.0518811
\(956\) 0 0
\(957\) 8.42815e12 0.324809
\(958\) 0 0
\(959\) 5.23339e12 0.199802
\(960\) 0 0
\(961\) 7.02091e12 0.265545
\(962\) 0 0
\(963\) −6.85856e12 −0.256989
\(964\) 0 0
\(965\) 1.77563e12 0.0659142
\(966\) 0 0
\(967\) 8.45368e12 0.310904 0.155452 0.987843i \(-0.450317\pi\)
0.155452 + 0.987843i \(0.450317\pi\)
\(968\) 0 0
\(969\) −1.07857e13 −0.392999
\(970\) 0 0
\(971\) −3.62956e13 −1.31029 −0.655145 0.755503i \(-0.727393\pi\)
−0.655145 + 0.755503i \(0.727393\pi\)
\(972\) 0 0
\(973\) 4.07848e12 0.145878
\(974\) 0 0
\(975\) 6.52557e12 0.231258
\(976\) 0 0
\(977\) 2.90066e12 0.101852 0.0509261 0.998702i \(-0.483783\pi\)
0.0509261 + 0.998702i \(0.483783\pi\)
\(978\) 0 0
\(979\) −5.47244e13 −1.90396
\(980\) 0 0
\(981\) −2.44289e12 −0.0842158
\(982\) 0 0
\(983\) 2.46610e13 0.842403 0.421202 0.906967i \(-0.361608\pi\)
0.421202 + 0.906967i \(0.361608\pi\)
\(984\) 0 0
\(985\) 2.13918e11 0.00724076
\(986\) 0 0
\(987\) −1.05134e13 −0.352629
\(988\) 0 0
\(989\) 2.35616e12 0.0783109
\(990\) 0 0
\(991\) −5.76916e13 −1.90012 −0.950060 0.312067i \(-0.898979\pi\)
−0.950060 + 0.312067i \(0.898979\pi\)
\(992\) 0 0
\(993\) 4.38194e13 1.43019
\(994\) 0 0
\(995\) 4.36966e12 0.141333
\(996\) 0 0
\(997\) 5.52453e13 1.77079 0.885395 0.464839i \(-0.153888\pi\)
0.885395 + 0.464839i \(0.153888\pi\)
\(998\) 0 0
\(999\) −2.47626e12 −0.0786594
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.m.1.3 8
4.3 odd 2 104.10.a.d.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.6 8 4.3 odd 2
208.10.a.m.1.3 8 1.1 even 1 trivial