Properties

Label 208.10.a.m.1.2
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-141] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3 x^{7} - 135356 x^{6} - 24398 x^{5} + 5213582205 x^{4} + 598076469 x^{3} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{25}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-245.871\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-263.871 q^{3} +2083.78 q^{5} -3949.77 q^{7} +49944.8 q^{9} +32770.7 q^{11} +28561.0 q^{13} -549849. q^{15} +579245. q^{17} +909955. q^{19} +1.04223e6 q^{21} +1.86994e6 q^{23} +2.38902e6 q^{25} -7.98520e6 q^{27} +4.60746e6 q^{29} -2.51506e6 q^{31} -8.64723e6 q^{33} -8.23044e6 q^{35} -1.29721e7 q^{37} -7.53641e6 q^{39} -3.17314e7 q^{41} +2.64551e7 q^{43} +1.04074e8 q^{45} +2.69503e7 q^{47} -2.47530e7 q^{49} -1.52846e8 q^{51} +1.30165e7 q^{53} +6.82869e7 q^{55} -2.40111e8 q^{57} +1.03319e7 q^{59} -1.91110e7 q^{61} -1.97270e8 q^{63} +5.95148e7 q^{65} -1.36252e8 q^{67} -4.93422e8 q^{69} -1.54745e8 q^{71} +3.56526e8 q^{73} -6.30391e8 q^{75} -1.29437e8 q^{77} +1.79298e8 q^{79} +1.12400e9 q^{81} -5.94120e6 q^{83} +1.20702e9 q^{85} -1.21577e9 q^{87} +1.96414e7 q^{89} -1.12809e8 q^{91} +6.63650e8 q^{93} +1.89615e9 q^{95} +9.74665e7 q^{97} +1.63673e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 141 q^{3} + 2051 q^{5} + 2417 q^{7} + 115741 q^{9} + 53118 q^{11} + 228488 q^{13} + 464555 q^{15} + 433095 q^{17} + 434954 q^{19} + 906875 q^{21} + 1124296 q^{23} + 5966065 q^{25} - 7820643 q^{27}+ \cdots + 641626736 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −263.871 −1.88081 −0.940406 0.340052i \(-0.889555\pi\)
−0.940406 + 0.340052i \(0.889555\pi\)
\(4\) 0 0
\(5\) 2083.78 1.49103 0.745516 0.666488i \(-0.232203\pi\)
0.745516 + 0.666488i \(0.232203\pi\)
\(6\) 0 0
\(7\) −3949.77 −0.621771 −0.310885 0.950447i \(-0.600626\pi\)
−0.310885 + 0.950447i \(0.600626\pi\)
\(8\) 0 0
\(9\) 49944.8 2.53746
\(10\) 0 0
\(11\) 32770.7 0.674868 0.337434 0.941349i \(-0.390441\pi\)
0.337434 + 0.941349i \(0.390441\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −549849. −2.80435
\(16\) 0 0
\(17\) 579245. 1.68206 0.841031 0.540987i \(-0.181949\pi\)
0.841031 + 0.540987i \(0.181949\pi\)
\(18\) 0 0
\(19\) 909955. 1.60188 0.800938 0.598747i \(-0.204335\pi\)
0.800938 + 0.598747i \(0.204335\pi\)
\(20\) 0 0
\(21\) 1.04223e6 1.16943
\(22\) 0 0
\(23\) 1.86994e6 1.39332 0.696662 0.717399i \(-0.254668\pi\)
0.696662 + 0.717399i \(0.254668\pi\)
\(24\) 0 0
\(25\) 2.38902e6 1.22318
\(26\) 0 0
\(27\) −7.98520e6 −2.89167
\(28\) 0 0
\(29\) 4.60746e6 1.20968 0.604840 0.796347i \(-0.293237\pi\)
0.604840 + 0.796347i \(0.293237\pi\)
\(30\) 0 0
\(31\) −2.51506e6 −0.489126 −0.244563 0.969633i \(-0.578644\pi\)
−0.244563 + 0.969633i \(0.578644\pi\)
\(32\) 0 0
\(33\) −8.64723e6 −1.26930
\(34\) 0 0
\(35\) −8.23044e6 −0.927080
\(36\) 0 0
\(37\) −1.29721e7 −1.13790 −0.568948 0.822374i \(-0.692649\pi\)
−0.568948 + 0.822374i \(0.692649\pi\)
\(38\) 0 0
\(39\) −7.53641e6 −0.521644
\(40\) 0 0
\(41\) −3.17314e7 −1.75373 −0.876864 0.480739i \(-0.840368\pi\)
−0.876864 + 0.480739i \(0.840368\pi\)
\(42\) 0 0
\(43\) 2.64551e7 1.18005 0.590026 0.807384i \(-0.299117\pi\)
0.590026 + 0.807384i \(0.299117\pi\)
\(44\) 0 0
\(45\) 1.04074e8 3.78343
\(46\) 0 0
\(47\) 2.69503e7 0.805608 0.402804 0.915286i \(-0.368036\pi\)
0.402804 + 0.915286i \(0.368036\pi\)
\(48\) 0 0
\(49\) −2.47530e7 −0.613401
\(50\) 0 0
\(51\) −1.52846e8 −3.16364
\(52\) 0 0
\(53\) 1.30165e7 0.226596 0.113298 0.993561i \(-0.463858\pi\)
0.113298 + 0.993561i \(0.463858\pi\)
\(54\) 0 0
\(55\) 6.82869e7 1.00625
\(56\) 0 0
\(57\) −2.40111e8 −3.01283
\(58\) 0 0
\(59\) 1.03319e7 0.111006 0.0555032 0.998459i \(-0.482324\pi\)
0.0555032 + 0.998459i \(0.482324\pi\)
\(60\) 0 0
\(61\) −1.91110e7 −0.176725 −0.0883627 0.996088i \(-0.528163\pi\)
−0.0883627 + 0.996088i \(0.528163\pi\)
\(62\) 0 0
\(63\) −1.97270e8 −1.57772
\(64\) 0 0
\(65\) 5.95148e7 0.413538
\(66\) 0 0
\(67\) −1.36252e8 −0.826047 −0.413024 0.910720i \(-0.635527\pi\)
−0.413024 + 0.910720i \(0.635527\pi\)
\(68\) 0 0
\(69\) −4.93422e8 −2.62058
\(70\) 0 0
\(71\) −1.54745e8 −0.722692 −0.361346 0.932432i \(-0.617683\pi\)
−0.361346 + 0.932432i \(0.617683\pi\)
\(72\) 0 0
\(73\) 3.56526e8 1.46939 0.734697 0.678395i \(-0.237324\pi\)
0.734697 + 0.678395i \(0.237324\pi\)
\(74\) 0 0
\(75\) −6.30391e8 −2.30056
\(76\) 0 0
\(77\) −1.29437e8 −0.419613
\(78\) 0 0
\(79\) 1.79298e8 0.517909 0.258954 0.965890i \(-0.416622\pi\)
0.258954 + 0.965890i \(0.416622\pi\)
\(80\) 0 0
\(81\) 1.12400e9 2.90123
\(82\) 0 0
\(83\) −5.94120e6 −0.0137411 −0.00687057 0.999976i \(-0.502187\pi\)
−0.00687057 + 0.999976i \(0.502187\pi\)
\(84\) 0 0
\(85\) 1.20702e9 2.50801
\(86\) 0 0
\(87\) −1.21577e9 −2.27518
\(88\) 0 0
\(89\) 1.96414e7 0.0331831 0.0165915 0.999862i \(-0.494719\pi\)
0.0165915 + 0.999862i \(0.494719\pi\)
\(90\) 0 0
\(91\) −1.12809e8 −0.172448
\(92\) 0 0
\(93\) 6.63650e8 0.919954
\(94\) 0 0
\(95\) 1.89615e9 2.38845
\(96\) 0 0
\(97\) 9.74665e7 0.111785 0.0558924 0.998437i \(-0.482200\pi\)
0.0558924 + 0.998437i \(0.482200\pi\)
\(98\) 0 0
\(99\) 1.63673e9 1.71245
\(100\) 0 0
\(101\) 1.47099e9 1.40658 0.703289 0.710904i \(-0.251714\pi\)
0.703289 + 0.710904i \(0.251714\pi\)
\(102\) 0 0
\(103\) −4.40667e8 −0.385783 −0.192892 0.981220i \(-0.561787\pi\)
−0.192892 + 0.981220i \(0.561787\pi\)
\(104\) 0 0
\(105\) 2.17177e9 1.74366
\(106\) 0 0
\(107\) −4.82772e8 −0.356053 −0.178027 0.984026i \(-0.556971\pi\)
−0.178027 + 0.984026i \(0.556971\pi\)
\(108\) 0 0
\(109\) −5.63126e8 −0.382108 −0.191054 0.981579i \(-0.561191\pi\)
−0.191054 + 0.981579i \(0.561191\pi\)
\(110\) 0 0
\(111\) 3.42296e9 2.14017
\(112\) 0 0
\(113\) 1.35162e9 0.779832 0.389916 0.920851i \(-0.372504\pi\)
0.389916 + 0.920851i \(0.372504\pi\)
\(114\) 0 0
\(115\) 3.89654e9 2.07749
\(116\) 0 0
\(117\) 1.42647e9 0.703764
\(118\) 0 0
\(119\) −2.28788e9 −1.04586
\(120\) 0 0
\(121\) −1.28403e9 −0.544554
\(122\) 0 0
\(123\) 8.37299e9 3.29843
\(124\) 0 0
\(125\) 9.08299e8 0.332762
\(126\) 0 0
\(127\) 2.68968e9 0.917452 0.458726 0.888578i \(-0.348306\pi\)
0.458726 + 0.888578i \(0.348306\pi\)
\(128\) 0 0
\(129\) −6.98072e9 −2.21946
\(130\) 0 0
\(131\) −6.37867e9 −1.89238 −0.946192 0.323606i \(-0.895105\pi\)
−0.946192 + 0.323606i \(0.895105\pi\)
\(132\) 0 0
\(133\) −3.59411e9 −0.995999
\(134\) 0 0
\(135\) −1.66394e10 −4.31157
\(136\) 0 0
\(137\) −2.03661e9 −0.493930 −0.246965 0.969024i \(-0.579433\pi\)
−0.246965 + 0.969024i \(0.579433\pi\)
\(138\) 0 0
\(139\) 4.59266e9 1.04351 0.521756 0.853095i \(-0.325277\pi\)
0.521756 + 0.853095i \(0.325277\pi\)
\(140\) 0 0
\(141\) −7.11140e9 −1.51520
\(142\) 0 0
\(143\) 9.35964e8 0.187175
\(144\) 0 0
\(145\) 9.60094e9 1.80367
\(146\) 0 0
\(147\) 6.53158e9 1.15369
\(148\) 0 0
\(149\) 6.68745e9 1.11153 0.555766 0.831339i \(-0.312425\pi\)
0.555766 + 0.831339i \(0.312425\pi\)
\(150\) 0 0
\(151\) 8.31397e8 0.130140 0.0650702 0.997881i \(-0.479273\pi\)
0.0650702 + 0.997881i \(0.479273\pi\)
\(152\) 0 0
\(153\) 2.89302e10 4.26816
\(154\) 0 0
\(155\) −5.24083e9 −0.729302
\(156\) 0 0
\(157\) −2.56685e9 −0.337173 −0.168586 0.985687i \(-0.553920\pi\)
−0.168586 + 0.985687i \(0.553920\pi\)
\(158\) 0 0
\(159\) −3.43467e9 −0.426185
\(160\) 0 0
\(161\) −7.38582e9 −0.866328
\(162\) 0 0
\(163\) 5.82044e9 0.645820 0.322910 0.946430i \(-0.395339\pi\)
0.322910 + 0.946430i \(0.395339\pi\)
\(164\) 0 0
\(165\) −1.80189e10 −1.89257
\(166\) 0 0
\(167\) 1.38231e10 1.37525 0.687624 0.726067i \(-0.258654\pi\)
0.687624 + 0.726067i \(0.258654\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 4.54475e10 4.06469
\(172\) 0 0
\(173\) −8.78199e9 −0.745393 −0.372697 0.927953i \(-0.621567\pi\)
−0.372697 + 0.927953i \(0.621567\pi\)
\(174\) 0 0
\(175\) −9.43605e9 −0.760535
\(176\) 0 0
\(177\) −2.72630e9 −0.208782
\(178\) 0 0
\(179\) 1.53174e9 0.111518 0.0557592 0.998444i \(-0.482242\pi\)
0.0557592 + 0.998444i \(0.482242\pi\)
\(180\) 0 0
\(181\) −2.50217e10 −1.73286 −0.866429 0.499301i \(-0.833590\pi\)
−0.866429 + 0.499301i \(0.833590\pi\)
\(182\) 0 0
\(183\) 5.04283e9 0.332388
\(184\) 0 0
\(185\) −2.70310e10 −1.69664
\(186\) 0 0
\(187\) 1.89823e10 1.13517
\(188\) 0 0
\(189\) 3.15397e10 1.79796
\(190\) 0 0
\(191\) −2.67017e10 −1.45174 −0.725870 0.687832i \(-0.758563\pi\)
−0.725870 + 0.687832i \(0.758563\pi\)
\(192\) 0 0
\(193\) 3.49608e10 1.81373 0.906866 0.421420i \(-0.138468\pi\)
0.906866 + 0.421420i \(0.138468\pi\)
\(194\) 0 0
\(195\) −1.57042e10 −0.777787
\(196\) 0 0
\(197\) −1.40965e10 −0.666828 −0.333414 0.942781i \(-0.608201\pi\)
−0.333414 + 0.942781i \(0.608201\pi\)
\(198\) 0 0
\(199\) 3.22673e9 0.145856 0.0729279 0.997337i \(-0.476766\pi\)
0.0729279 + 0.997337i \(0.476766\pi\)
\(200\) 0 0
\(201\) 3.59528e10 1.55364
\(202\) 0 0
\(203\) −1.81984e10 −0.752144
\(204\) 0 0
\(205\) −6.61213e10 −2.61486
\(206\) 0 0
\(207\) 9.33937e10 3.53550
\(208\) 0 0
\(209\) 2.98199e10 1.08105
\(210\) 0 0
\(211\) −3.15217e10 −1.09481 −0.547405 0.836868i \(-0.684384\pi\)
−0.547405 + 0.836868i \(0.684384\pi\)
\(212\) 0 0
\(213\) 4.08326e10 1.35925
\(214\) 0 0
\(215\) 5.51266e10 1.75950
\(216\) 0 0
\(217\) 9.93389e9 0.304124
\(218\) 0 0
\(219\) −9.40768e10 −2.76366
\(220\) 0 0
\(221\) 1.65438e10 0.466520
\(222\) 0 0
\(223\) 6.47827e10 1.75423 0.877116 0.480278i \(-0.159464\pi\)
0.877116 + 0.480278i \(0.159464\pi\)
\(224\) 0 0
\(225\) 1.19319e11 3.10376
\(226\) 0 0
\(227\) −4.85549e10 −1.21372 −0.606858 0.794810i \(-0.707570\pi\)
−0.606858 + 0.794810i \(0.707570\pi\)
\(228\) 0 0
\(229\) 2.84348e9 0.0683268 0.0341634 0.999416i \(-0.489123\pi\)
0.0341634 + 0.999416i \(0.489123\pi\)
\(230\) 0 0
\(231\) 3.41545e10 0.789213
\(232\) 0 0
\(233\) 1.80472e10 0.401151 0.200576 0.979678i \(-0.435719\pi\)
0.200576 + 0.979678i \(0.435719\pi\)
\(234\) 0 0
\(235\) 5.61585e10 1.20119
\(236\) 0 0
\(237\) −4.73115e10 −0.974089
\(238\) 0 0
\(239\) −1.19720e9 −0.0237342 −0.0118671 0.999930i \(-0.503778\pi\)
−0.0118671 + 0.999930i \(0.503778\pi\)
\(240\) 0 0
\(241\) 3.46413e10 0.661482 0.330741 0.943722i \(-0.392701\pi\)
0.330741 + 0.943722i \(0.392701\pi\)
\(242\) 0 0
\(243\) −1.39417e11 −2.56501
\(244\) 0 0
\(245\) −5.15797e10 −0.914601
\(246\) 0 0
\(247\) 2.59892e10 0.444280
\(248\) 0 0
\(249\) 1.56771e9 0.0258445
\(250\) 0 0
\(251\) 3.03233e10 0.482219 0.241109 0.970498i \(-0.422489\pi\)
0.241109 + 0.970498i \(0.422489\pi\)
\(252\) 0 0
\(253\) 6.12792e10 0.940310
\(254\) 0 0
\(255\) −3.18497e11 −4.71709
\(256\) 0 0
\(257\) −3.62984e10 −0.519025 −0.259512 0.965740i \(-0.583562\pi\)
−0.259512 + 0.965740i \(0.583562\pi\)
\(258\) 0 0
\(259\) 5.12367e10 0.707510
\(260\) 0 0
\(261\) 2.30119e11 3.06951
\(262\) 0 0
\(263\) 3.15096e10 0.406108 0.203054 0.979167i \(-0.434913\pi\)
0.203054 + 0.979167i \(0.434913\pi\)
\(264\) 0 0
\(265\) 2.71235e10 0.337862
\(266\) 0 0
\(267\) −5.18278e9 −0.0624112
\(268\) 0 0
\(269\) −1.02821e11 −1.19729 −0.598643 0.801016i \(-0.704293\pi\)
−0.598643 + 0.801016i \(0.704293\pi\)
\(270\) 0 0
\(271\) 1.33069e11 1.49870 0.749349 0.662176i \(-0.230367\pi\)
0.749349 + 0.662176i \(0.230367\pi\)
\(272\) 0 0
\(273\) 2.97671e10 0.324343
\(274\) 0 0
\(275\) 7.82897e10 0.825482
\(276\) 0 0
\(277\) 6.79776e10 0.693756 0.346878 0.937910i \(-0.387242\pi\)
0.346878 + 0.937910i \(0.387242\pi\)
\(278\) 0 0
\(279\) −1.25614e11 −1.24114
\(280\) 0 0
\(281\) −1.29384e11 −1.23794 −0.618972 0.785413i \(-0.712451\pi\)
−0.618972 + 0.785413i \(0.712451\pi\)
\(282\) 0 0
\(283\) −9.73902e10 −0.902560 −0.451280 0.892382i \(-0.649032\pi\)
−0.451280 + 0.892382i \(0.649032\pi\)
\(284\) 0 0
\(285\) −5.00338e11 −4.49222
\(286\) 0 0
\(287\) 1.25332e11 1.09042
\(288\) 0 0
\(289\) 2.16937e11 1.82933
\(290\) 0 0
\(291\) −2.57186e10 −0.210246
\(292\) 0 0
\(293\) −1.65663e11 −1.31317 −0.656586 0.754251i \(-0.728000\pi\)
−0.656586 + 0.754251i \(0.728000\pi\)
\(294\) 0 0
\(295\) 2.15295e10 0.165514
\(296\) 0 0
\(297\) −2.61680e11 −1.95149
\(298\) 0 0
\(299\) 5.34073e10 0.386439
\(300\) 0 0
\(301\) −1.04491e11 −0.733722
\(302\) 0 0
\(303\) −3.88152e11 −2.64551
\(304\) 0 0
\(305\) −3.98231e10 −0.263503
\(306\) 0 0
\(307\) −8.62672e9 −0.0554272 −0.0277136 0.999616i \(-0.508823\pi\)
−0.0277136 + 0.999616i \(0.508823\pi\)
\(308\) 0 0
\(309\) 1.16279e11 0.725586
\(310\) 0 0
\(311\) 2.80863e10 0.170244 0.0851221 0.996371i \(-0.472872\pi\)
0.0851221 + 0.996371i \(0.472872\pi\)
\(312\) 0 0
\(313\) −1.34760e11 −0.793619 −0.396810 0.917901i \(-0.629883\pi\)
−0.396810 + 0.917901i \(0.629883\pi\)
\(314\) 0 0
\(315\) −4.11068e11 −2.35243
\(316\) 0 0
\(317\) 1.74096e11 0.968325 0.484162 0.874978i \(-0.339124\pi\)
0.484162 + 0.874978i \(0.339124\pi\)
\(318\) 0 0
\(319\) 1.50990e11 0.816374
\(320\) 0 0
\(321\) 1.27389e11 0.669670
\(322\) 0 0
\(323\) 5.27087e11 2.69445
\(324\) 0 0
\(325\) 6.82327e10 0.339248
\(326\) 0 0
\(327\) 1.48593e11 0.718674
\(328\) 0 0
\(329\) −1.06447e11 −0.500903
\(330\) 0 0
\(331\) 4.58632e10 0.210009 0.105005 0.994472i \(-0.466514\pi\)
0.105005 + 0.994472i \(0.466514\pi\)
\(332\) 0 0
\(333\) −6.47888e11 −2.88736
\(334\) 0 0
\(335\) −2.83918e11 −1.23166
\(336\) 0 0
\(337\) 3.52298e11 1.48791 0.743953 0.668232i \(-0.232949\pi\)
0.743953 + 0.668232i \(0.232949\pi\)
\(338\) 0 0
\(339\) −3.56652e11 −1.46672
\(340\) 0 0
\(341\) −8.24202e10 −0.330095
\(342\) 0 0
\(343\) 2.57156e11 1.00317
\(344\) 0 0
\(345\) −1.02818e12 −3.90737
\(346\) 0 0
\(347\) −4.35462e11 −1.61238 −0.806190 0.591656i \(-0.798474\pi\)
−0.806190 + 0.591656i \(0.798474\pi\)
\(348\) 0 0
\(349\) −2.00400e11 −0.723076 −0.361538 0.932357i \(-0.617748\pi\)
−0.361538 + 0.932357i \(0.617748\pi\)
\(350\) 0 0
\(351\) −2.28065e11 −0.802005
\(352\) 0 0
\(353\) 1.94480e11 0.666636 0.333318 0.942814i \(-0.391832\pi\)
0.333318 + 0.942814i \(0.391832\pi\)
\(354\) 0 0
\(355\) −3.22454e11 −1.07756
\(356\) 0 0
\(357\) 6.03705e11 1.96706
\(358\) 0 0
\(359\) 4.20992e10 0.133767 0.0668835 0.997761i \(-0.478694\pi\)
0.0668835 + 0.997761i \(0.478694\pi\)
\(360\) 0 0
\(361\) 5.05331e11 1.56601
\(362\) 0 0
\(363\) 3.38818e11 1.02420
\(364\) 0 0
\(365\) 7.42922e11 2.19091
\(366\) 0 0
\(367\) −2.57309e11 −0.740386 −0.370193 0.928955i \(-0.620708\pi\)
−0.370193 + 0.928955i \(0.620708\pi\)
\(368\) 0 0
\(369\) −1.58482e12 −4.45001
\(370\) 0 0
\(371\) −5.14121e10 −0.140891
\(372\) 0 0
\(373\) 4.45944e11 1.19286 0.596432 0.802664i \(-0.296585\pi\)
0.596432 + 0.802664i \(0.296585\pi\)
\(374\) 0 0
\(375\) −2.39674e11 −0.625863
\(376\) 0 0
\(377\) 1.31594e11 0.335505
\(378\) 0 0
\(379\) −2.95912e11 −0.736691 −0.368346 0.929689i \(-0.620076\pi\)
−0.368346 + 0.929689i \(0.620076\pi\)
\(380\) 0 0
\(381\) −7.09727e11 −1.72556
\(382\) 0 0
\(383\) 1.88160e11 0.446820 0.223410 0.974725i \(-0.428281\pi\)
0.223410 + 0.974725i \(0.428281\pi\)
\(384\) 0 0
\(385\) −2.69717e11 −0.625656
\(386\) 0 0
\(387\) 1.32129e12 2.99433
\(388\) 0 0
\(389\) −8.74755e11 −1.93693 −0.968463 0.249157i \(-0.919846\pi\)
−0.968463 + 0.249157i \(0.919846\pi\)
\(390\) 0 0
\(391\) 1.08315e12 2.34366
\(392\) 0 0
\(393\) 1.68314e12 3.55922
\(394\) 0 0
\(395\) 3.73617e11 0.772218
\(396\) 0 0
\(397\) 2.86756e11 0.579369 0.289684 0.957122i \(-0.406450\pi\)
0.289684 + 0.957122i \(0.406450\pi\)
\(398\) 0 0
\(399\) 9.48381e11 1.87329
\(400\) 0 0
\(401\) −8.12312e11 −1.56882 −0.784410 0.620243i \(-0.787034\pi\)
−0.784410 + 0.620243i \(0.787034\pi\)
\(402\) 0 0
\(403\) −7.18326e10 −0.135659
\(404\) 0 0
\(405\) 2.34216e12 4.32583
\(406\) 0 0
\(407\) −4.25105e11 −0.767929
\(408\) 0 0
\(409\) −2.34879e10 −0.0415039 −0.0207519 0.999785i \(-0.506606\pi\)
−0.0207519 + 0.999785i \(0.506606\pi\)
\(410\) 0 0
\(411\) 5.37402e11 0.928991
\(412\) 0 0
\(413\) −4.08088e10 −0.0690205
\(414\) 0 0
\(415\) −1.23802e10 −0.0204885
\(416\) 0 0
\(417\) −1.21187e12 −1.96265
\(418\) 0 0
\(419\) 1.08173e12 1.71457 0.857285 0.514842i \(-0.172150\pi\)
0.857285 + 0.514842i \(0.172150\pi\)
\(420\) 0 0
\(421\) −5.68516e11 −0.882010 −0.441005 0.897505i \(-0.645378\pi\)
−0.441005 + 0.897505i \(0.645378\pi\)
\(422\) 0 0
\(423\) 1.34603e12 2.04419
\(424\) 0 0
\(425\) 1.38382e12 2.05746
\(426\) 0 0
\(427\) 7.54840e10 0.109883
\(428\) 0 0
\(429\) −2.46973e11 −0.352040
\(430\) 0 0
\(431\) −5.19620e11 −0.725334 −0.362667 0.931919i \(-0.618134\pi\)
−0.362667 + 0.931919i \(0.618134\pi\)
\(432\) 0 0
\(433\) 7.75751e11 1.06054 0.530270 0.847829i \(-0.322091\pi\)
0.530270 + 0.847829i \(0.322091\pi\)
\(434\) 0 0
\(435\) −2.53341e12 −3.39237
\(436\) 0 0
\(437\) 1.70156e12 2.23193
\(438\) 0 0
\(439\) −4.73969e11 −0.609059 −0.304530 0.952503i \(-0.598499\pi\)
−0.304530 + 0.952503i \(0.598499\pi\)
\(440\) 0 0
\(441\) −1.23628e12 −1.55648
\(442\) 0 0
\(443\) −3.20337e11 −0.395175 −0.197588 0.980285i \(-0.563311\pi\)
−0.197588 + 0.980285i \(0.563311\pi\)
\(444\) 0 0
\(445\) 4.09283e10 0.0494770
\(446\) 0 0
\(447\) −1.76462e12 −2.09058
\(448\) 0 0
\(449\) 2.49131e11 0.289281 0.144640 0.989484i \(-0.453797\pi\)
0.144640 + 0.989484i \(0.453797\pi\)
\(450\) 0 0
\(451\) −1.03986e12 −1.18353
\(452\) 0 0
\(453\) −2.19381e11 −0.244770
\(454\) 0 0
\(455\) −2.35070e11 −0.257126
\(456\) 0 0
\(457\) −1.41374e12 −1.51616 −0.758082 0.652159i \(-0.773863\pi\)
−0.758082 + 0.652159i \(0.773863\pi\)
\(458\) 0 0
\(459\) −4.62538e12 −4.86397
\(460\) 0 0
\(461\) 4.34543e11 0.448103 0.224052 0.974577i \(-0.428072\pi\)
0.224052 + 0.974577i \(0.428072\pi\)
\(462\) 0 0
\(463\) 3.63064e11 0.367171 0.183586 0.983004i \(-0.441230\pi\)
0.183586 + 0.983004i \(0.441230\pi\)
\(464\) 0 0
\(465\) 1.38290e12 1.37168
\(466\) 0 0
\(467\) −1.59471e12 −1.55152 −0.775759 0.631029i \(-0.782633\pi\)
−0.775759 + 0.631029i \(0.782633\pi\)
\(468\) 0 0
\(469\) 5.38162e11 0.513612
\(470\) 0 0
\(471\) 6.77317e11 0.634159
\(472\) 0 0
\(473\) 8.66952e11 0.796379
\(474\) 0 0
\(475\) 2.17390e12 1.95938
\(476\) 0 0
\(477\) 6.50106e11 0.574978
\(478\) 0 0
\(479\) 1.56758e11 0.136057 0.0680284 0.997683i \(-0.478329\pi\)
0.0680284 + 0.997683i \(0.478329\pi\)
\(480\) 0 0
\(481\) −3.70496e11 −0.315595
\(482\) 0 0
\(483\) 1.94890e12 1.62940
\(484\) 0 0
\(485\) 2.03099e11 0.166675
\(486\) 0 0
\(487\) −1.81741e12 −1.46411 −0.732053 0.681247i \(-0.761438\pi\)
−0.732053 + 0.681247i \(0.761438\pi\)
\(488\) 0 0
\(489\) −1.53584e12 −1.21467
\(490\) 0 0
\(491\) 1.94840e12 1.51290 0.756452 0.654049i \(-0.226931\pi\)
0.756452 + 0.654049i \(0.226931\pi\)
\(492\) 0 0
\(493\) 2.66885e12 2.03476
\(494\) 0 0
\(495\) 3.41058e12 2.55331
\(496\) 0 0
\(497\) 6.11205e11 0.449349
\(498\) 0 0
\(499\) −1.10980e11 −0.0801292 −0.0400646 0.999197i \(-0.512756\pi\)
−0.0400646 + 0.999197i \(0.512756\pi\)
\(500\) 0 0
\(501\) −3.64751e12 −2.58659
\(502\) 0 0
\(503\) 6.74950e11 0.470128 0.235064 0.971980i \(-0.424470\pi\)
0.235064 + 0.971980i \(0.424470\pi\)
\(504\) 0 0
\(505\) 3.06522e12 2.09725
\(506\) 0 0
\(507\) −2.15247e11 −0.144678
\(508\) 0 0
\(509\) −8.30695e11 −0.548544 −0.274272 0.961652i \(-0.588437\pi\)
−0.274272 + 0.961652i \(0.588437\pi\)
\(510\) 0 0
\(511\) −1.40819e12 −0.913627
\(512\) 0 0
\(513\) −7.26617e12 −4.63210
\(514\) 0 0
\(515\) −9.18254e11 −0.575215
\(516\) 0 0
\(517\) 8.83181e11 0.543678
\(518\) 0 0
\(519\) 2.31731e12 1.40195
\(520\) 0 0
\(521\) 2.67978e12 1.59341 0.796707 0.604366i \(-0.206573\pi\)
0.796707 + 0.604366i \(0.206573\pi\)
\(522\) 0 0
\(523\) −4.75935e11 −0.278157 −0.139079 0.990281i \(-0.544414\pi\)
−0.139079 + 0.990281i \(0.544414\pi\)
\(524\) 0 0
\(525\) 2.48990e12 1.43042
\(526\) 0 0
\(527\) −1.45683e12 −0.822740
\(528\) 0 0
\(529\) 1.69552e12 0.941354
\(530\) 0 0
\(531\) 5.16027e11 0.281674
\(532\) 0 0
\(533\) −9.06281e11 −0.486396
\(534\) 0 0
\(535\) −1.00599e12 −0.530887
\(536\) 0 0
\(537\) −4.04181e11 −0.209745
\(538\) 0 0
\(539\) −8.11172e11 −0.413965
\(540\) 0 0
\(541\) −9.61621e11 −0.482632 −0.241316 0.970447i \(-0.577579\pi\)
−0.241316 + 0.970447i \(0.577579\pi\)
\(542\) 0 0
\(543\) 6.60249e12 3.25918
\(544\) 0 0
\(545\) −1.17343e12 −0.569736
\(546\) 0 0
\(547\) 1.17774e12 0.562478 0.281239 0.959638i \(-0.409255\pi\)
0.281239 + 0.959638i \(0.409255\pi\)
\(548\) 0 0
\(549\) −9.54495e11 −0.448433
\(550\) 0 0
\(551\) 4.19259e12 1.93776
\(552\) 0 0
\(553\) −7.08185e11 −0.322020
\(554\) 0 0
\(555\) 7.13269e12 3.19106
\(556\) 0 0
\(557\) 1.32941e12 0.585209 0.292604 0.956234i \(-0.405478\pi\)
0.292604 + 0.956234i \(0.405478\pi\)
\(558\) 0 0
\(559\) 7.55584e11 0.327288
\(560\) 0 0
\(561\) −5.00886e12 −2.13504
\(562\) 0 0
\(563\) 1.68082e12 0.705070 0.352535 0.935799i \(-0.385320\pi\)
0.352535 + 0.935799i \(0.385320\pi\)
\(564\) 0 0
\(565\) 2.81647e12 1.16275
\(566\) 0 0
\(567\) −4.43953e12 −1.80390
\(568\) 0 0
\(569\) 4.32025e12 1.72784 0.863920 0.503629i \(-0.168002\pi\)
0.863920 + 0.503629i \(0.168002\pi\)
\(570\) 0 0
\(571\) −3.55664e12 −1.40016 −0.700080 0.714065i \(-0.746852\pi\)
−0.700080 + 0.714065i \(0.746852\pi\)
\(572\) 0 0
\(573\) 7.04580e12 2.73045
\(574\) 0 0
\(575\) 4.46731e12 1.70428
\(576\) 0 0
\(577\) −2.69342e11 −0.101161 −0.0505805 0.998720i \(-0.516107\pi\)
−0.0505805 + 0.998720i \(0.516107\pi\)
\(578\) 0 0
\(579\) −9.22512e12 −3.41129
\(580\) 0 0
\(581\) 2.34664e10 0.00854384
\(582\) 0 0
\(583\) 4.26560e11 0.152923
\(584\) 0 0
\(585\) 2.97246e12 1.04933
\(586\) 0 0
\(587\) 4.42348e12 1.53777 0.768887 0.639384i \(-0.220811\pi\)
0.768887 + 0.639384i \(0.220811\pi\)
\(588\) 0 0
\(589\) −2.28859e12 −0.783519
\(590\) 0 0
\(591\) 3.71966e12 1.25418
\(592\) 0 0
\(593\) −1.58173e12 −0.525274 −0.262637 0.964895i \(-0.584592\pi\)
−0.262637 + 0.964895i \(0.584592\pi\)
\(594\) 0 0
\(595\) −4.76744e12 −1.55941
\(596\) 0 0
\(597\) −8.51439e11 −0.274327
\(598\) 0 0
\(599\) 1.14211e12 0.362483 0.181242 0.983439i \(-0.441988\pi\)
0.181242 + 0.983439i \(0.441988\pi\)
\(600\) 0 0
\(601\) 1.17993e12 0.368912 0.184456 0.982841i \(-0.440948\pi\)
0.184456 + 0.982841i \(0.440948\pi\)
\(602\) 0 0
\(603\) −6.80505e12 −2.09606
\(604\) 0 0
\(605\) −2.67563e12 −0.811947
\(606\) 0 0
\(607\) 2.74076e11 0.0819449 0.0409725 0.999160i \(-0.486954\pi\)
0.0409725 + 0.999160i \(0.486954\pi\)
\(608\) 0 0
\(609\) 4.80203e12 1.41464
\(610\) 0 0
\(611\) 7.69728e11 0.223435
\(612\) 0 0
\(613\) 6.77624e12 1.93828 0.969140 0.246510i \(-0.0792837\pi\)
0.969140 + 0.246510i \(0.0792837\pi\)
\(614\) 0 0
\(615\) 1.74475e13 4.91807
\(616\) 0 0
\(617\) 1.71098e12 0.475294 0.237647 0.971352i \(-0.423624\pi\)
0.237647 + 0.971352i \(0.423624\pi\)
\(618\) 0 0
\(619\) −2.18576e12 −0.598405 −0.299202 0.954190i \(-0.596721\pi\)
−0.299202 + 0.954190i \(0.596721\pi\)
\(620\) 0 0
\(621\) −1.49318e13 −4.02904
\(622\) 0 0
\(623\) −7.75788e10 −0.0206323
\(624\) 0 0
\(625\) −2.77335e12 −0.727017
\(626\) 0 0
\(627\) −7.86859e12 −2.03326
\(628\) 0 0
\(629\) −7.51402e12 −1.91401
\(630\) 0 0
\(631\) 1.23842e12 0.310982 0.155491 0.987837i \(-0.450304\pi\)
0.155491 + 0.987837i \(0.450304\pi\)
\(632\) 0 0
\(633\) 8.31765e12 2.05913
\(634\) 0 0
\(635\) 5.60469e12 1.36795
\(636\) 0 0
\(637\) −7.06969e11 −0.170127
\(638\) 0 0
\(639\) −7.72869e12 −1.83380
\(640\) 0 0
\(641\) −3.62933e12 −0.849114 −0.424557 0.905401i \(-0.639570\pi\)
−0.424557 + 0.905401i \(0.639570\pi\)
\(642\) 0 0
\(643\) −5.17653e12 −1.19423 −0.597117 0.802154i \(-0.703687\pi\)
−0.597117 + 0.802154i \(0.703687\pi\)
\(644\) 0 0
\(645\) −1.45463e13 −3.30928
\(646\) 0 0
\(647\) 4.97055e12 1.11515 0.557577 0.830125i \(-0.311731\pi\)
0.557577 + 0.830125i \(0.311731\pi\)
\(648\) 0 0
\(649\) 3.38585e11 0.0749146
\(650\) 0 0
\(651\) −2.62126e12 −0.572000
\(652\) 0 0
\(653\) −6.97363e12 −1.50089 −0.750446 0.660932i \(-0.770161\pi\)
−0.750446 + 0.660932i \(0.770161\pi\)
\(654\) 0 0
\(655\) −1.32917e13 −2.82160
\(656\) 0 0
\(657\) 1.78066e13 3.72853
\(658\) 0 0
\(659\) −4.81270e12 −0.994041 −0.497021 0.867739i \(-0.665573\pi\)
−0.497021 + 0.867739i \(0.665573\pi\)
\(660\) 0 0
\(661\) −5.92381e11 −0.120697 −0.0603483 0.998177i \(-0.519221\pi\)
−0.0603483 + 0.998177i \(0.519221\pi\)
\(662\) 0 0
\(663\) −4.36543e12 −0.877437
\(664\) 0 0
\(665\) −7.48934e12 −1.48507
\(666\) 0 0
\(667\) 8.61568e12 1.68548
\(668\) 0 0
\(669\) −1.70943e13 −3.29938
\(670\) 0 0
\(671\) −6.26281e11 −0.119266
\(672\) 0 0
\(673\) 1.89498e12 0.356071 0.178035 0.984024i \(-0.443026\pi\)
0.178035 + 0.984024i \(0.443026\pi\)
\(674\) 0 0
\(675\) −1.90768e13 −3.53702
\(676\) 0 0
\(677\) 8.77240e12 1.60498 0.802490 0.596666i \(-0.203508\pi\)
0.802490 + 0.596666i \(0.203508\pi\)
\(678\) 0 0
\(679\) −3.84970e11 −0.0695045
\(680\) 0 0
\(681\) 1.28122e13 2.28277
\(682\) 0 0
\(683\) −4.82174e12 −0.847834 −0.423917 0.905701i \(-0.639345\pi\)
−0.423917 + 0.905701i \(0.639345\pi\)
\(684\) 0 0
\(685\) −4.24385e12 −0.736466
\(686\) 0 0
\(687\) −7.50312e11 −0.128510
\(688\) 0 0
\(689\) 3.71764e11 0.0628465
\(690\) 0 0
\(691\) 4.81233e12 0.802979 0.401490 0.915864i \(-0.368493\pi\)
0.401490 + 0.915864i \(0.368493\pi\)
\(692\) 0 0
\(693\) −6.46468e12 −1.06475
\(694\) 0 0
\(695\) 9.57009e12 1.55591
\(696\) 0 0
\(697\) −1.83803e13 −2.94988
\(698\) 0 0
\(699\) −4.76213e12 −0.754490
\(700\) 0 0
\(701\) 6.29438e12 0.984515 0.492257 0.870450i \(-0.336172\pi\)
0.492257 + 0.870450i \(0.336172\pi\)
\(702\) 0 0
\(703\) −1.18040e13 −1.82277
\(704\) 0 0
\(705\) −1.48186e13 −2.25921
\(706\) 0 0
\(707\) −5.81007e12 −0.874569
\(708\) 0 0
\(709\) 1.16594e13 1.73288 0.866439 0.499283i \(-0.166403\pi\)
0.866439 + 0.499283i \(0.166403\pi\)
\(710\) 0 0
\(711\) 8.95499e12 1.31417
\(712\) 0 0
\(713\) −4.70301e12 −0.681511
\(714\) 0 0
\(715\) 1.95034e12 0.279083
\(716\) 0 0
\(717\) 3.15905e11 0.0446396
\(718\) 0 0
\(719\) −1.07333e13 −1.49779 −0.748896 0.662688i \(-0.769416\pi\)
−0.748896 + 0.662688i \(0.769416\pi\)
\(720\) 0 0
\(721\) 1.74053e12 0.239869
\(722\) 0 0
\(723\) −9.14083e12 −1.24412
\(724\) 0 0
\(725\) 1.10073e13 1.47965
\(726\) 0 0
\(727\) −1.21526e13 −1.61348 −0.806741 0.590905i \(-0.798771\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(728\) 0 0
\(729\) 1.46645e13 1.92306
\(730\) 0 0
\(731\) 1.53240e13 1.98492
\(732\) 0 0
\(733\) −8.72020e11 −0.111573 −0.0557864 0.998443i \(-0.517767\pi\)
−0.0557864 + 0.998443i \(0.517767\pi\)
\(734\) 0 0
\(735\) 1.36104e13 1.72019
\(736\) 0 0
\(737\) −4.46506e12 −0.557473
\(738\) 0 0
\(739\) 1.55060e13 1.91250 0.956249 0.292555i \(-0.0945055\pi\)
0.956249 + 0.292555i \(0.0945055\pi\)
\(740\) 0 0
\(741\) −6.85780e12 −0.835608
\(742\) 0 0
\(743\) 1.23691e13 1.48898 0.744489 0.667635i \(-0.232693\pi\)
0.744489 + 0.667635i \(0.232693\pi\)
\(744\) 0 0
\(745\) 1.39352e13 1.65733
\(746\) 0 0
\(747\) −2.96732e11 −0.0348676
\(748\) 0 0
\(749\) 1.90684e12 0.221383
\(750\) 0 0
\(751\) −2.33911e12 −0.268331 −0.134166 0.990959i \(-0.542835\pi\)
−0.134166 + 0.990959i \(0.542835\pi\)
\(752\) 0 0
\(753\) −8.00142e12 −0.906964
\(754\) 0 0
\(755\) 1.73245e12 0.194044
\(756\) 0 0
\(757\) 5.52717e12 0.611747 0.305873 0.952072i \(-0.401052\pi\)
0.305873 + 0.952072i \(0.401052\pi\)
\(758\) 0 0
\(759\) −1.61698e13 −1.76855
\(760\) 0 0
\(761\) 1.59834e12 0.172758 0.0863792 0.996262i \(-0.472470\pi\)
0.0863792 + 0.996262i \(0.472470\pi\)
\(762\) 0 0
\(763\) 2.22422e12 0.237584
\(764\) 0 0
\(765\) 6.02843e13 6.36396
\(766\) 0 0
\(767\) 2.95091e11 0.0307876
\(768\) 0 0
\(769\) 1.00249e13 1.03374 0.516871 0.856063i \(-0.327097\pi\)
0.516871 + 0.856063i \(0.327097\pi\)
\(770\) 0 0
\(771\) 9.57808e12 0.976189
\(772\) 0 0
\(773\) −1.50388e12 −0.151498 −0.0757488 0.997127i \(-0.524135\pi\)
−0.0757488 + 0.997127i \(0.524135\pi\)
\(774\) 0 0
\(775\) −6.00851e12 −0.598287
\(776\) 0 0
\(777\) −1.35199e13 −1.33069
\(778\) 0 0
\(779\) −2.88742e13 −2.80925
\(780\) 0 0
\(781\) −5.07109e12 −0.487721
\(782\) 0 0
\(783\) −3.67915e13 −3.49800
\(784\) 0 0
\(785\) −5.34876e12 −0.502735
\(786\) 0 0
\(787\) 5.75786e11 0.0535026 0.0267513 0.999642i \(-0.491484\pi\)
0.0267513 + 0.999642i \(0.491484\pi\)
\(788\) 0 0
\(789\) −8.31446e12 −0.763814
\(790\) 0 0
\(791\) −5.33857e12 −0.484876
\(792\) 0 0
\(793\) −5.45829e11 −0.0490148
\(794\) 0 0
\(795\) −7.15711e12 −0.635456
\(796\) 0 0
\(797\) −6.01490e11 −0.0528039 −0.0264020 0.999651i \(-0.508405\pi\)
−0.0264020 + 0.999651i \(0.508405\pi\)
\(798\) 0 0
\(799\) 1.56108e13 1.35508
\(800\) 0 0
\(801\) 9.80984e11 0.0842007
\(802\) 0 0
\(803\) 1.16836e13 0.991647
\(804\) 0 0
\(805\) −1.53904e13 −1.29172
\(806\) 0 0
\(807\) 2.71315e13 2.25187
\(808\) 0 0
\(809\) −5.58387e12 −0.458318 −0.229159 0.973389i \(-0.573598\pi\)
−0.229159 + 0.973389i \(0.573598\pi\)
\(810\) 0 0
\(811\) −3.37482e12 −0.273941 −0.136970 0.990575i \(-0.543737\pi\)
−0.136970 + 0.990575i \(0.543737\pi\)
\(812\) 0 0
\(813\) −3.51129e13 −2.81877
\(814\) 0 0
\(815\) 1.21285e13 0.962938
\(816\) 0 0
\(817\) 2.40730e13 1.89030
\(818\) 0 0
\(819\) −5.63423e12 −0.437580
\(820\) 0 0
\(821\) −2.07928e13 −1.59724 −0.798619 0.601837i \(-0.794436\pi\)
−0.798619 + 0.601837i \(0.794436\pi\)
\(822\) 0 0
\(823\) 6.58431e12 0.500278 0.250139 0.968210i \(-0.419524\pi\)
0.250139 + 0.968210i \(0.419524\pi\)
\(824\) 0 0
\(825\) −2.06584e13 −1.55258
\(826\) 0 0
\(827\) 1.95004e13 1.44967 0.724836 0.688922i \(-0.241916\pi\)
0.724836 + 0.688922i \(0.241916\pi\)
\(828\) 0 0
\(829\) −1.71623e13 −1.26206 −0.631028 0.775760i \(-0.717367\pi\)
−0.631028 + 0.775760i \(0.717367\pi\)
\(830\) 0 0
\(831\) −1.79373e13 −1.30482
\(832\) 0 0
\(833\) −1.43380e13 −1.03178
\(834\) 0 0
\(835\) 2.88043e13 2.05054
\(836\) 0 0
\(837\) 2.00832e13 1.41439
\(838\) 0 0
\(839\) 2.54842e12 0.177559 0.0887794 0.996051i \(-0.471703\pi\)
0.0887794 + 0.996051i \(0.471703\pi\)
\(840\) 0 0
\(841\) 6.72156e12 0.463328
\(842\) 0 0
\(843\) 3.41406e13 2.32834
\(844\) 0 0
\(845\) 1.69980e12 0.114695
\(846\) 0 0
\(847\) 5.07161e12 0.338587
\(848\) 0 0
\(849\) 2.56984e13 1.69755
\(850\) 0 0
\(851\) −2.42570e13 −1.58546
\(852\) 0 0
\(853\) 2.70146e13 1.74714 0.873571 0.486696i \(-0.161798\pi\)
0.873571 + 0.486696i \(0.161798\pi\)
\(854\) 0 0
\(855\) 9.47026e13 6.06058
\(856\) 0 0
\(857\) 5.73061e12 0.362900 0.181450 0.983400i \(-0.441921\pi\)
0.181450 + 0.983400i \(0.441921\pi\)
\(858\) 0 0
\(859\) 5.52068e11 0.0345958 0.0172979 0.999850i \(-0.494494\pi\)
0.0172979 + 0.999850i \(0.494494\pi\)
\(860\) 0 0
\(861\) −3.30714e13 −2.05087
\(862\) 0 0
\(863\) 1.84299e13 1.13103 0.565515 0.824738i \(-0.308678\pi\)
0.565515 + 0.824738i \(0.308678\pi\)
\(864\) 0 0
\(865\) −1.82997e13 −1.11140
\(866\) 0 0
\(867\) −5.72432e13 −3.44063
\(868\) 0 0
\(869\) 5.87572e12 0.349520
\(870\) 0 0
\(871\) −3.89148e12 −0.229104
\(872\) 0 0
\(873\) 4.86794e12 0.283649
\(874\) 0 0
\(875\) −3.58757e12 −0.206902
\(876\) 0 0
\(877\) 3.17878e13 1.81452 0.907262 0.420566i \(-0.138169\pi\)
0.907262 + 0.420566i \(0.138169\pi\)
\(878\) 0 0
\(879\) 4.37137e13 2.46983
\(880\) 0 0
\(881\) −6.66509e12 −0.372747 −0.186374 0.982479i \(-0.559674\pi\)
−0.186374 + 0.982479i \(0.559674\pi\)
\(882\) 0 0
\(883\) −2.99853e13 −1.65992 −0.829958 0.557827i \(-0.811635\pi\)
−0.829958 + 0.557827i \(0.811635\pi\)
\(884\) 0 0
\(885\) −5.68100e12 −0.311301
\(886\) 0 0
\(887\) −3.32734e13 −1.80485 −0.902426 0.430846i \(-0.858215\pi\)
−0.902426 + 0.430846i \(0.858215\pi\)
\(888\) 0 0
\(889\) −1.06236e13 −0.570445
\(890\) 0 0
\(891\) 3.68342e13 1.95795
\(892\) 0 0
\(893\) 2.45236e13 1.29048
\(894\) 0 0
\(895\) 3.19181e12 0.166277
\(896\) 0 0
\(897\) −1.40926e13 −0.726819
\(898\) 0 0
\(899\) −1.15880e13 −0.591686
\(900\) 0 0
\(901\) 7.53974e12 0.381149
\(902\) 0 0
\(903\) 2.75722e13 1.37999
\(904\) 0 0
\(905\) −5.21397e13 −2.58375
\(906\) 0 0
\(907\) −3.58423e13 −1.75858 −0.879291 0.476285i \(-0.841983\pi\)
−0.879291 + 0.476285i \(0.841983\pi\)
\(908\) 0 0
\(909\) 7.34683e13 3.56913
\(910\) 0 0
\(911\) 2.69078e13 1.29433 0.647165 0.762350i \(-0.275954\pi\)
0.647165 + 0.762350i \(0.275954\pi\)
\(912\) 0 0
\(913\) −1.94697e11 −0.00927345
\(914\) 0 0
\(915\) 1.05082e13 0.495600
\(916\) 0 0
\(917\) 2.51943e13 1.17663
\(918\) 0 0
\(919\) 1.20738e12 0.0558371 0.0279185 0.999610i \(-0.491112\pi\)
0.0279185 + 0.999610i \(0.491112\pi\)
\(920\) 0 0
\(921\) 2.27634e12 0.104248
\(922\) 0 0
\(923\) −4.41966e12 −0.200439
\(924\) 0 0
\(925\) −3.09905e13 −1.39185
\(926\) 0 0
\(927\) −2.20090e13 −0.978908
\(928\) 0 0
\(929\) 8.86037e12 0.390285 0.195142 0.980775i \(-0.437483\pi\)
0.195142 + 0.980775i \(0.437483\pi\)
\(930\) 0 0
\(931\) −2.25241e13 −0.982593
\(932\) 0 0
\(933\) −7.41114e12 −0.320197
\(934\) 0 0
\(935\) 3.95548e13 1.69257
\(936\) 0 0
\(937\) 7.06949e12 0.299612 0.149806 0.988715i \(-0.452135\pi\)
0.149806 + 0.988715i \(0.452135\pi\)
\(938\) 0 0
\(939\) 3.55593e13 1.49265
\(940\) 0 0
\(941\) −2.86185e11 −0.0118985 −0.00594926 0.999982i \(-0.501894\pi\)
−0.00594926 + 0.999982i \(0.501894\pi\)
\(942\) 0 0
\(943\) −5.93358e13 −2.44351
\(944\) 0 0
\(945\) 6.57217e13 2.68081
\(946\) 0 0
\(947\) −2.95493e13 −1.19391 −0.596956 0.802274i \(-0.703623\pi\)
−0.596956 + 0.802274i \(0.703623\pi\)
\(948\) 0 0
\(949\) 1.01827e13 0.407537
\(950\) 0 0
\(951\) −4.59387e13 −1.82124
\(952\) 0 0
\(953\) −1.03130e13 −0.405011 −0.202506 0.979281i \(-0.564908\pi\)
−0.202506 + 0.979281i \(0.564908\pi\)
\(954\) 0 0
\(955\) −5.56405e13 −2.16459
\(956\) 0 0
\(957\) −3.98418e13 −1.53545
\(958\) 0 0
\(959\) 8.04414e12 0.307111
\(960\) 0 0
\(961\) −2.01141e13 −0.760756
\(962\) 0 0
\(963\) −2.41119e13 −0.903470
\(964\) 0 0
\(965\) 7.28505e13 2.70433
\(966\) 0 0
\(967\) −2.97329e13 −1.09350 −0.546749 0.837297i \(-0.684135\pi\)
−0.546749 + 0.837297i \(0.684135\pi\)
\(968\) 0 0
\(969\) −1.39083e14 −5.06776
\(970\) 0 0
\(971\) 4.08487e13 1.47466 0.737330 0.675533i \(-0.236086\pi\)
0.737330 + 0.675533i \(0.236086\pi\)
\(972\) 0 0
\(973\) −1.81399e13 −0.648825
\(974\) 0 0
\(975\) −1.80046e13 −0.638062
\(976\) 0 0
\(977\) 4.86216e13 1.70727 0.853637 0.520868i \(-0.174391\pi\)
0.853637 + 0.520868i \(0.174391\pi\)
\(978\) 0 0
\(979\) 6.43661e11 0.0223942
\(980\) 0 0
\(981\) −2.81252e13 −0.969584
\(982\) 0 0
\(983\) −2.27031e13 −0.775521 −0.387760 0.921760i \(-0.626751\pi\)
−0.387760 + 0.921760i \(0.626751\pi\)
\(984\) 0 0
\(985\) −2.93740e13 −0.994262
\(986\) 0 0
\(987\) 2.80884e13 0.942105
\(988\) 0 0
\(989\) 4.94694e13 1.64420
\(990\) 0 0
\(991\) 1.87834e13 0.618647 0.309323 0.950957i \(-0.399897\pi\)
0.309323 + 0.950957i \(0.399897\pi\)
\(992\) 0 0
\(993\) −1.21020e13 −0.394988
\(994\) 0 0
\(995\) 6.72379e12 0.217476
\(996\) 0 0
\(997\) 4.05828e13 1.30081 0.650405 0.759587i \(-0.274599\pi\)
0.650405 + 0.759587i \(0.274599\pi\)
\(998\) 0 0
\(999\) 1.03585e14 3.29042
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.m.1.2 8
4.3 odd 2 104.10.a.d.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.d.1.7 8 4.3 odd 2
208.10.a.m.1.2 8 1.1 even 1 trivial