Properties

Label 208.10.a.k.1.6
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 72131x^{4} + 310880x^{3} + 1323158708x^{2} - 12926602192x - 1707532200192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(204.864\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+215.864 q^{3} -1620.37 q^{5} +7157.79 q^{7} +26914.2 q^{9} -36853.5 q^{11} +28561.0 q^{13} -349780. q^{15} +404355. q^{17} +203358. q^{19} +1.54511e6 q^{21} +407597. q^{23} +672480. q^{25} +1.56095e6 q^{27} +225155. q^{29} -4.59794e6 q^{31} -7.95533e6 q^{33} -1.15983e7 q^{35} +1.48411e7 q^{37} +6.16529e6 q^{39} -1.99373e6 q^{41} -1.25478e7 q^{43} -4.36110e7 q^{45} +6.51793e7 q^{47} +1.08804e7 q^{49} +8.72855e7 q^{51} +3.92662e7 q^{53} +5.97163e7 q^{55} +4.38976e7 q^{57} +4.88772e7 q^{59} -4.34425e7 q^{61} +1.92646e8 q^{63} -4.62794e7 q^{65} +5.55762e7 q^{67} +8.79854e7 q^{69} +3.91166e8 q^{71} +3.96635e8 q^{73} +1.45164e8 q^{75} -2.63789e8 q^{77} +1.98103e8 q^{79} -1.92799e8 q^{81} -7.52406e8 q^{83} -6.55205e8 q^{85} +4.86028e7 q^{87} +4.01022e8 q^{89} +2.04434e8 q^{91} -9.92529e8 q^{93} -3.29516e8 q^{95} +8.36965e8 q^{97} -9.91880e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 68 q^{3} - 176 q^{5} + 9664 q^{7} + 26938 q^{9} + 15980 q^{11} + 171366 q^{13} + 10756 q^{15} + 215048 q^{17} + 519868 q^{19} + 384084 q^{21} + 691224 q^{23} - 196082 q^{25} + 1592756 q^{27} - 546932 q^{29}+ \cdots + 1940442636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 215.864 1.53863 0.769315 0.638870i \(-0.220598\pi\)
0.769315 + 0.638870i \(0.220598\pi\)
\(4\) 0 0
\(5\) −1620.37 −1.15944 −0.579722 0.814814i \(-0.696839\pi\)
−0.579722 + 0.814814i \(0.696839\pi\)
\(6\) 0 0
\(7\) 7157.79 1.12678 0.563388 0.826192i \(-0.309497\pi\)
0.563388 + 0.826192i \(0.309497\pi\)
\(8\) 0 0
\(9\) 26914.2 1.36738
\(10\) 0 0
\(11\) −36853.5 −0.758946 −0.379473 0.925203i \(-0.623895\pi\)
−0.379473 + 0.925203i \(0.623895\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 0 0
\(15\) −349780. −1.78395
\(16\) 0 0
\(17\) 404355. 1.17420 0.587100 0.809514i \(-0.300269\pi\)
0.587100 + 0.809514i \(0.300269\pi\)
\(18\) 0 0
\(19\) 203358. 0.357989 0.178995 0.983850i \(-0.442716\pi\)
0.178995 + 0.983850i \(0.442716\pi\)
\(20\) 0 0
\(21\) 1.54511e6 1.73369
\(22\) 0 0
\(23\) 407597. 0.303707 0.151854 0.988403i \(-0.451476\pi\)
0.151854 + 0.988403i \(0.451476\pi\)
\(24\) 0 0
\(25\) 672480. 0.344310
\(26\) 0 0
\(27\) 1.56095e6 0.565265
\(28\) 0 0
\(29\) 225155. 0.0591141 0.0295570 0.999563i \(-0.490590\pi\)
0.0295570 + 0.999563i \(0.490590\pi\)
\(30\) 0 0
\(31\) −4.59794e6 −0.894202 −0.447101 0.894483i \(-0.647544\pi\)
−0.447101 + 0.894483i \(0.647544\pi\)
\(32\) 0 0
\(33\) −7.95533e6 −1.16774
\(34\) 0 0
\(35\) −1.15983e7 −1.30643
\(36\) 0 0
\(37\) 1.48411e7 1.30185 0.650923 0.759144i \(-0.274382\pi\)
0.650923 + 0.759144i \(0.274382\pi\)
\(38\) 0 0
\(39\) 6.16529e6 0.426739
\(40\) 0 0
\(41\) −1.99373e6 −0.110189 −0.0550946 0.998481i \(-0.517546\pi\)
−0.0550946 + 0.998481i \(0.517546\pi\)
\(42\) 0 0
\(43\) −1.25478e7 −0.559705 −0.279852 0.960043i \(-0.590286\pi\)
−0.279852 + 0.960043i \(0.590286\pi\)
\(44\) 0 0
\(45\) −4.36110e7 −1.58540
\(46\) 0 0
\(47\) 6.51793e7 1.94836 0.974180 0.225771i \(-0.0724903\pi\)
0.974180 + 0.225771i \(0.0724903\pi\)
\(48\) 0 0
\(49\) 1.08804e7 0.269626
\(50\) 0 0
\(51\) 8.72855e7 1.80666
\(52\) 0 0
\(53\) 3.92662e7 0.683562 0.341781 0.939780i \(-0.388970\pi\)
0.341781 + 0.939780i \(0.388970\pi\)
\(54\) 0 0
\(55\) 5.97163e7 0.879956
\(56\) 0 0
\(57\) 4.38976e7 0.550813
\(58\) 0 0
\(59\) 4.88772e7 0.525137 0.262568 0.964913i \(-0.415431\pi\)
0.262568 + 0.964913i \(0.415431\pi\)
\(60\) 0 0
\(61\) −4.34425e7 −0.401727 −0.200863 0.979619i \(-0.564375\pi\)
−0.200863 + 0.979619i \(0.564375\pi\)
\(62\) 0 0
\(63\) 1.92646e8 1.54073
\(64\) 0 0
\(65\) −4.62794e7 −0.321572
\(66\) 0 0
\(67\) 5.55762e7 0.336940 0.168470 0.985707i \(-0.446117\pi\)
0.168470 + 0.985707i \(0.446117\pi\)
\(68\) 0 0
\(69\) 8.79854e7 0.467293
\(70\) 0 0
\(71\) 3.91166e8 1.82683 0.913415 0.407029i \(-0.133435\pi\)
0.913415 + 0.407029i \(0.133435\pi\)
\(72\) 0 0
\(73\) 3.96635e8 1.63470 0.817350 0.576141i \(-0.195442\pi\)
0.817350 + 0.576141i \(0.195442\pi\)
\(74\) 0 0
\(75\) 1.45164e8 0.529765
\(76\) 0 0
\(77\) −2.63789e8 −0.855163
\(78\) 0 0
\(79\) 1.98103e8 0.572228 0.286114 0.958196i \(-0.407636\pi\)
0.286114 + 0.958196i \(0.407636\pi\)
\(80\) 0 0
\(81\) −1.92799e8 −0.497649
\(82\) 0 0
\(83\) −7.52406e8 −1.74021 −0.870103 0.492870i \(-0.835948\pi\)
−0.870103 + 0.492870i \(0.835948\pi\)
\(84\) 0 0
\(85\) −6.55205e8 −1.36142
\(86\) 0 0
\(87\) 4.86028e7 0.0909547
\(88\) 0 0
\(89\) 4.01022e8 0.677506 0.338753 0.940875i \(-0.389995\pi\)
0.338753 + 0.940875i \(0.389995\pi\)
\(90\) 0 0
\(91\) 2.04434e8 0.312512
\(92\) 0 0
\(93\) −9.92529e8 −1.37585
\(94\) 0 0
\(95\) −3.29516e8 −0.415069
\(96\) 0 0
\(97\) 8.36965e8 0.959919 0.479960 0.877291i \(-0.340651\pi\)
0.479960 + 0.877291i \(0.340651\pi\)
\(98\) 0 0
\(99\) −9.91880e8 −1.03777
\(100\) 0 0
\(101\) 3.16002e8 0.302165 0.151082 0.988521i \(-0.451724\pi\)
0.151082 + 0.988521i \(0.451724\pi\)
\(102\) 0 0
\(103\) −9.30792e8 −0.814864 −0.407432 0.913236i \(-0.633576\pi\)
−0.407432 + 0.913236i \(0.633576\pi\)
\(104\) 0 0
\(105\) −2.50365e9 −2.01012
\(106\) 0 0
\(107\) 1.97923e9 1.45972 0.729860 0.683596i \(-0.239585\pi\)
0.729860 + 0.683596i \(0.239585\pi\)
\(108\) 0 0
\(109\) −1.15201e9 −0.781692 −0.390846 0.920456i \(-0.627817\pi\)
−0.390846 + 0.920456i \(0.627817\pi\)
\(110\) 0 0
\(111\) 3.20366e9 2.00306
\(112\) 0 0
\(113\) −1.48755e9 −0.858262 −0.429131 0.903242i \(-0.641180\pi\)
−0.429131 + 0.903242i \(0.641180\pi\)
\(114\) 0 0
\(115\) −6.60458e8 −0.352132
\(116\) 0 0
\(117\) 7.68696e8 0.379243
\(118\) 0 0
\(119\) 2.89429e9 1.32306
\(120\) 0 0
\(121\) −9.99771e8 −0.424000
\(122\) 0 0
\(123\) −4.30374e8 −0.169540
\(124\) 0 0
\(125\) 2.07512e9 0.760236
\(126\) 0 0
\(127\) 3.77601e9 1.28800 0.644001 0.765025i \(-0.277273\pi\)
0.644001 + 0.765025i \(0.277273\pi\)
\(128\) 0 0
\(129\) −2.70861e9 −0.861179
\(130\) 0 0
\(131\) −1.19884e9 −0.355665 −0.177832 0.984061i \(-0.556908\pi\)
−0.177832 + 0.984061i \(0.556908\pi\)
\(132\) 0 0
\(133\) 1.45559e9 0.403374
\(134\) 0 0
\(135\) −2.52932e9 −0.655393
\(136\) 0 0
\(137\) 6.95362e9 1.68643 0.843215 0.537577i \(-0.180660\pi\)
0.843215 + 0.537577i \(0.180660\pi\)
\(138\) 0 0
\(139\) −6.14299e9 −1.39577 −0.697883 0.716211i \(-0.745875\pi\)
−0.697883 + 0.716211i \(0.745875\pi\)
\(140\) 0 0
\(141\) 1.40699e10 2.99781
\(142\) 0 0
\(143\) −1.05257e9 −0.210494
\(144\) 0 0
\(145\) −3.64835e8 −0.0685394
\(146\) 0 0
\(147\) 2.34868e9 0.414855
\(148\) 0 0
\(149\) 1.10782e10 1.84133 0.920663 0.390358i \(-0.127649\pi\)
0.920663 + 0.390358i \(0.127649\pi\)
\(150\) 0 0
\(151\) −3.34483e9 −0.523573 −0.261787 0.965126i \(-0.584312\pi\)
−0.261787 + 0.965126i \(0.584312\pi\)
\(152\) 0 0
\(153\) 1.08829e10 1.60558
\(154\) 0 0
\(155\) 7.45037e9 1.03678
\(156\) 0 0
\(157\) 1.33338e9 0.175148 0.0875741 0.996158i \(-0.472089\pi\)
0.0875741 + 0.996158i \(0.472089\pi\)
\(158\) 0 0
\(159\) 8.47616e9 1.05175
\(160\) 0 0
\(161\) 2.91749e9 0.342211
\(162\) 0 0
\(163\) 1.44420e10 1.60245 0.801223 0.598366i \(-0.204183\pi\)
0.801223 + 0.598366i \(0.204183\pi\)
\(164\) 0 0
\(165\) 1.28906e10 1.35393
\(166\) 0 0
\(167\) −1.09420e10 −1.08861 −0.544304 0.838888i \(-0.683206\pi\)
−0.544304 + 0.838888i \(0.683206\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 5.47321e9 0.489508
\(172\) 0 0
\(173\) 1.06493e10 0.903890 0.451945 0.892046i \(-0.350730\pi\)
0.451945 + 0.892046i \(0.350730\pi\)
\(174\) 0 0
\(175\) 4.81347e9 0.387960
\(176\) 0 0
\(177\) 1.05508e10 0.807991
\(178\) 0 0
\(179\) −4.13126e9 −0.300777 −0.150388 0.988627i \(-0.548052\pi\)
−0.150388 + 0.988627i \(0.548052\pi\)
\(180\) 0 0
\(181\) −2.29037e10 −1.58618 −0.793090 0.609105i \(-0.791529\pi\)
−0.793090 + 0.609105i \(0.791529\pi\)
\(182\) 0 0
\(183\) −9.37767e9 −0.618109
\(184\) 0 0
\(185\) −2.40482e10 −1.50942
\(186\) 0 0
\(187\) −1.49019e10 −0.891155
\(188\) 0 0
\(189\) 1.11730e10 0.636927
\(190\) 0 0
\(191\) 2.35516e10 1.28047 0.640237 0.768177i \(-0.278836\pi\)
0.640237 + 0.768177i \(0.278836\pi\)
\(192\) 0 0
\(193\) −3.24440e10 −1.68316 −0.841582 0.540129i \(-0.818375\pi\)
−0.841582 + 0.540129i \(0.818375\pi\)
\(194\) 0 0
\(195\) −9.99006e9 −0.494780
\(196\) 0 0
\(197\) 2.88525e10 1.36485 0.682426 0.730954i \(-0.260925\pi\)
0.682426 + 0.730954i \(0.260925\pi\)
\(198\) 0 0
\(199\) 2.08228e10 0.941239 0.470619 0.882336i \(-0.344030\pi\)
0.470619 + 0.882336i \(0.344030\pi\)
\(200\) 0 0
\(201\) 1.19969e10 0.518426
\(202\) 0 0
\(203\) 1.61161e9 0.0666084
\(204\) 0 0
\(205\) 3.23058e9 0.127758
\(206\) 0 0
\(207\) 1.09701e10 0.415284
\(208\) 0 0
\(209\) −7.49445e9 −0.271695
\(210\) 0 0
\(211\) −2.15144e10 −0.747237 −0.373619 0.927582i \(-0.621883\pi\)
−0.373619 + 0.927582i \(0.621883\pi\)
\(212\) 0 0
\(213\) 8.44385e10 2.81082
\(214\) 0 0
\(215\) 2.03321e10 0.648946
\(216\) 0 0
\(217\) −3.29111e10 −1.00757
\(218\) 0 0
\(219\) 8.56191e10 2.51520
\(220\) 0 0
\(221\) 1.15488e10 0.325665
\(222\) 0 0
\(223\) 3.08256e10 0.834719 0.417359 0.908741i \(-0.362956\pi\)
0.417359 + 0.908741i \(0.362956\pi\)
\(224\) 0 0
\(225\) 1.80992e10 0.470803
\(226\) 0 0
\(227\) −1.14724e10 −0.286772 −0.143386 0.989667i \(-0.545799\pi\)
−0.143386 + 0.989667i \(0.545799\pi\)
\(228\) 0 0
\(229\) −6.87553e10 −1.65214 −0.826069 0.563569i \(-0.809428\pi\)
−0.826069 + 0.563569i \(0.809428\pi\)
\(230\) 0 0
\(231\) −5.69426e10 −1.31578
\(232\) 0 0
\(233\) −7.01353e10 −1.55896 −0.779480 0.626428i \(-0.784516\pi\)
−0.779480 + 0.626428i \(0.784516\pi\)
\(234\) 0 0
\(235\) −1.05615e11 −2.25901
\(236\) 0 0
\(237\) 4.27633e10 0.880448
\(238\) 0 0
\(239\) 7.46237e10 1.47940 0.739701 0.672936i \(-0.234967\pi\)
0.739701 + 0.672936i \(0.234967\pi\)
\(240\) 0 0
\(241\) 6.10136e9 0.116506 0.0582532 0.998302i \(-0.481447\pi\)
0.0582532 + 0.998302i \(0.481447\pi\)
\(242\) 0 0
\(243\) −7.23426e10 −1.33096
\(244\) 0 0
\(245\) −1.76303e10 −0.312617
\(246\) 0 0
\(247\) 5.80811e9 0.0992884
\(248\) 0 0
\(249\) −1.62417e11 −2.67753
\(250\) 0 0
\(251\) 9.05484e10 1.43996 0.719978 0.693997i \(-0.244152\pi\)
0.719978 + 0.693997i \(0.244152\pi\)
\(252\) 0 0
\(253\) −1.50213e10 −0.230498
\(254\) 0 0
\(255\) −1.41435e11 −2.09472
\(256\) 0 0
\(257\) 1.84543e10 0.263876 0.131938 0.991258i \(-0.457880\pi\)
0.131938 + 0.991258i \(0.457880\pi\)
\(258\) 0 0
\(259\) 1.06230e11 1.46689
\(260\) 0 0
\(261\) 6.05987e9 0.0808315
\(262\) 0 0
\(263\) −6.18309e10 −0.796901 −0.398451 0.917190i \(-0.630452\pi\)
−0.398451 + 0.917190i \(0.630452\pi\)
\(264\) 0 0
\(265\) −6.36259e10 −0.792552
\(266\) 0 0
\(267\) 8.65662e10 1.04243
\(268\) 0 0
\(269\) −1.86476e10 −0.217139 −0.108569 0.994089i \(-0.534627\pi\)
−0.108569 + 0.994089i \(0.534627\pi\)
\(270\) 0 0
\(271\) 3.30066e10 0.371740 0.185870 0.982574i \(-0.440490\pi\)
0.185870 + 0.982574i \(0.440490\pi\)
\(272\) 0 0
\(273\) 4.41298e10 0.480840
\(274\) 0 0
\(275\) −2.47832e10 −0.261313
\(276\) 0 0
\(277\) 1.13027e11 1.15352 0.576759 0.816915i \(-0.304317\pi\)
0.576759 + 0.816915i \(0.304317\pi\)
\(278\) 0 0
\(279\) −1.23750e11 −1.22272
\(280\) 0 0
\(281\) −1.14491e11 −1.09545 −0.547726 0.836658i \(-0.684506\pi\)
−0.547726 + 0.836658i \(0.684506\pi\)
\(282\) 0 0
\(283\) 6.05468e10 0.561116 0.280558 0.959837i \(-0.409481\pi\)
0.280558 + 0.959837i \(0.409481\pi\)
\(284\) 0 0
\(285\) −7.11305e10 −0.638637
\(286\) 0 0
\(287\) −1.42707e10 −0.124159
\(288\) 0 0
\(289\) 4.49148e10 0.378747
\(290\) 0 0
\(291\) 1.80670e11 1.47696
\(292\) 0 0
\(293\) 1.48131e9 0.0117420 0.00587100 0.999983i \(-0.498131\pi\)
0.00587100 + 0.999983i \(0.498131\pi\)
\(294\) 0 0
\(295\) −7.91992e10 −0.608866
\(296\) 0 0
\(297\) −5.75264e10 −0.429006
\(298\) 0 0
\(299\) 1.16414e10 0.0842333
\(300\) 0 0
\(301\) −8.98145e10 −0.630663
\(302\) 0 0
\(303\) 6.82134e10 0.464920
\(304\) 0 0
\(305\) 7.03931e10 0.465780
\(306\) 0 0
\(307\) 7.86742e9 0.0505486 0.0252743 0.999681i \(-0.491954\pi\)
0.0252743 + 0.999681i \(0.491954\pi\)
\(308\) 0 0
\(309\) −2.00924e11 −1.25377
\(310\) 0 0
\(311\) 3.06616e11 1.85855 0.929273 0.369392i \(-0.120434\pi\)
0.929273 + 0.369392i \(0.120434\pi\)
\(312\) 0 0
\(313\) −1.81818e10 −0.107075 −0.0535373 0.998566i \(-0.517050\pi\)
−0.0535373 + 0.998566i \(0.517050\pi\)
\(314\) 0 0
\(315\) −3.12158e11 −1.78639
\(316\) 0 0
\(317\) −2.08655e11 −1.16055 −0.580274 0.814422i \(-0.697054\pi\)
−0.580274 + 0.814422i \(0.697054\pi\)
\(318\) 0 0
\(319\) −8.29774e9 −0.0448644
\(320\) 0 0
\(321\) 4.27244e11 2.24597
\(322\) 0 0
\(323\) 8.22288e10 0.420351
\(324\) 0 0
\(325\) 1.92067e10 0.0954943
\(326\) 0 0
\(327\) −2.48676e11 −1.20273
\(328\) 0 0
\(329\) 4.66540e11 2.19537
\(330\) 0 0
\(331\) −2.72957e11 −1.24988 −0.624940 0.780673i \(-0.714877\pi\)
−0.624940 + 0.780673i \(0.714877\pi\)
\(332\) 0 0
\(333\) 3.99437e11 1.78012
\(334\) 0 0
\(335\) −9.00541e10 −0.390663
\(336\) 0 0
\(337\) −5.94975e10 −0.251283 −0.125642 0.992076i \(-0.540099\pi\)
−0.125642 + 0.992076i \(0.540099\pi\)
\(338\) 0 0
\(339\) −3.21109e11 −1.32055
\(340\) 0 0
\(341\) 1.69450e11 0.678652
\(342\) 0 0
\(343\) −2.10963e11 −0.822968
\(344\) 0 0
\(345\) −1.42569e11 −0.541800
\(346\) 0 0
\(347\) −1.95210e11 −0.722802 −0.361401 0.932411i \(-0.617701\pi\)
−0.361401 + 0.932411i \(0.617701\pi\)
\(348\) 0 0
\(349\) −3.30681e11 −1.19315 −0.596574 0.802558i \(-0.703472\pi\)
−0.596574 + 0.802558i \(0.703472\pi\)
\(350\) 0 0
\(351\) 4.45823e10 0.156776
\(352\) 0 0
\(353\) −3.51178e11 −1.20376 −0.601882 0.798585i \(-0.705582\pi\)
−0.601882 + 0.798585i \(0.705582\pi\)
\(354\) 0 0
\(355\) −6.33834e11 −2.11811
\(356\) 0 0
\(357\) 6.24772e11 2.03570
\(358\) 0 0
\(359\) −8.92940e10 −0.283725 −0.141862 0.989886i \(-0.545309\pi\)
−0.141862 + 0.989886i \(0.545309\pi\)
\(360\) 0 0
\(361\) −2.81333e11 −0.871844
\(362\) 0 0
\(363\) −2.15814e11 −0.652380
\(364\) 0 0
\(365\) −6.42696e11 −1.89534
\(366\) 0 0
\(367\) 1.88824e9 0.00543324 0.00271662 0.999996i \(-0.499135\pi\)
0.00271662 + 0.999996i \(0.499135\pi\)
\(368\) 0 0
\(369\) −5.36596e10 −0.150671
\(370\) 0 0
\(371\) 2.81060e11 0.770222
\(372\) 0 0
\(373\) −3.13470e11 −0.838506 −0.419253 0.907869i \(-0.637708\pi\)
−0.419253 + 0.907869i \(0.637708\pi\)
\(374\) 0 0
\(375\) 4.47944e11 1.16972
\(376\) 0 0
\(377\) 6.43066e9 0.0163953
\(378\) 0 0
\(379\) −1.88477e11 −0.469226 −0.234613 0.972089i \(-0.575382\pi\)
−0.234613 + 0.972089i \(0.575382\pi\)
\(380\) 0 0
\(381\) 8.15104e11 1.98176
\(382\) 0 0
\(383\) −1.42773e11 −0.339039 −0.169520 0.985527i \(-0.554222\pi\)
−0.169520 + 0.985527i \(0.554222\pi\)
\(384\) 0 0
\(385\) 4.27437e11 0.991514
\(386\) 0 0
\(387\) −3.37713e11 −0.765330
\(388\) 0 0
\(389\) −6.20809e11 −1.37463 −0.687313 0.726361i \(-0.741210\pi\)
−0.687313 + 0.726361i \(0.741210\pi\)
\(390\) 0 0
\(391\) 1.64814e11 0.356613
\(392\) 0 0
\(393\) −2.58786e11 −0.547236
\(394\) 0 0
\(395\) −3.21001e11 −0.663467
\(396\) 0 0
\(397\) −7.62298e11 −1.54017 −0.770083 0.637944i \(-0.779785\pi\)
−0.770083 + 0.637944i \(0.779785\pi\)
\(398\) 0 0
\(399\) 3.14210e11 0.620644
\(400\) 0 0
\(401\) 2.58145e11 0.498555 0.249278 0.968432i \(-0.419807\pi\)
0.249278 + 0.968432i \(0.419807\pi\)
\(402\) 0 0
\(403\) −1.31322e11 −0.248007
\(404\) 0 0
\(405\) 3.12407e11 0.576996
\(406\) 0 0
\(407\) −5.46947e11 −0.988031
\(408\) 0 0
\(409\) −4.36915e11 −0.772045 −0.386022 0.922489i \(-0.626151\pi\)
−0.386022 + 0.922489i \(0.626151\pi\)
\(410\) 0 0
\(411\) 1.50103e12 2.59479
\(412\) 0 0
\(413\) 3.49853e11 0.591712
\(414\) 0 0
\(415\) 1.21918e12 2.01767
\(416\) 0 0
\(417\) −1.32605e12 −2.14757
\(418\) 0 0
\(419\) −8.89457e11 −1.40981 −0.704907 0.709300i \(-0.749011\pi\)
−0.704907 + 0.709300i \(0.749011\pi\)
\(420\) 0 0
\(421\) −8.42824e11 −1.30758 −0.653788 0.756677i \(-0.726821\pi\)
−0.653788 + 0.756677i \(0.726821\pi\)
\(422\) 0 0
\(423\) 1.75425e12 2.66415
\(424\) 0 0
\(425\) 2.71920e11 0.404289
\(426\) 0 0
\(427\) −3.10953e11 −0.452657
\(428\) 0 0
\(429\) −2.27212e11 −0.323872
\(430\) 0 0
\(431\) −9.19676e11 −1.28377 −0.641885 0.766801i \(-0.721847\pi\)
−0.641885 + 0.766801i \(0.721847\pi\)
\(432\) 0 0
\(433\) 7.71243e11 1.05438 0.527188 0.849748i \(-0.323246\pi\)
0.527188 + 0.849748i \(0.323246\pi\)
\(434\) 0 0
\(435\) −7.87547e10 −0.105457
\(436\) 0 0
\(437\) 8.28881e10 0.108724
\(438\) 0 0
\(439\) −1.05055e12 −1.34998 −0.674989 0.737827i \(-0.735852\pi\)
−0.674989 + 0.737827i \(0.735852\pi\)
\(440\) 0 0
\(441\) 2.92837e11 0.368682
\(442\) 0 0
\(443\) −1.29133e12 −1.59302 −0.796511 0.604624i \(-0.793323\pi\)
−0.796511 + 0.604624i \(0.793323\pi\)
\(444\) 0 0
\(445\) −6.49805e11 −0.785530
\(446\) 0 0
\(447\) 2.39138e12 2.83312
\(448\) 0 0
\(449\) 3.14592e11 0.365291 0.182645 0.983179i \(-0.441534\pi\)
0.182645 + 0.983179i \(0.441534\pi\)
\(450\) 0 0
\(451\) 7.34758e10 0.0836276
\(452\) 0 0
\(453\) −7.22027e11 −0.805586
\(454\) 0 0
\(455\) −3.31259e11 −0.362340
\(456\) 0 0
\(457\) 6.24863e11 0.670134 0.335067 0.942194i \(-0.391241\pi\)
0.335067 + 0.942194i \(0.391241\pi\)
\(458\) 0 0
\(459\) 6.31177e11 0.663734
\(460\) 0 0
\(461\) 1.12501e12 1.16012 0.580060 0.814573i \(-0.303029\pi\)
0.580060 + 0.814573i \(0.303029\pi\)
\(462\) 0 0
\(463\) 1.70497e12 1.72426 0.862130 0.506687i \(-0.169130\pi\)
0.862130 + 0.506687i \(0.169130\pi\)
\(464\) 0 0
\(465\) 1.60827e12 1.59522
\(466\) 0 0
\(467\) −4.05226e11 −0.394249 −0.197125 0.980378i \(-0.563160\pi\)
−0.197125 + 0.980378i \(0.563160\pi\)
\(468\) 0 0
\(469\) 3.97803e11 0.379656
\(470\) 0 0
\(471\) 2.87828e11 0.269488
\(472\) 0 0
\(473\) 4.62429e11 0.424786
\(474\) 0 0
\(475\) 1.36754e11 0.123259
\(476\) 0 0
\(477\) 1.05682e12 0.934690
\(478\) 0 0
\(479\) −3.36752e11 −0.292281 −0.146141 0.989264i \(-0.546685\pi\)
−0.146141 + 0.989264i \(0.546685\pi\)
\(480\) 0 0
\(481\) 4.23878e11 0.361067
\(482\) 0 0
\(483\) 6.29781e11 0.526535
\(484\) 0 0
\(485\) −1.35619e12 −1.11297
\(486\) 0 0
\(487\) 8.16038e11 0.657401 0.328700 0.944434i \(-0.393389\pi\)
0.328700 + 0.944434i \(0.393389\pi\)
\(488\) 0 0
\(489\) 3.11751e12 2.46557
\(490\) 0 0
\(491\) 1.56401e12 1.21443 0.607216 0.794537i \(-0.292286\pi\)
0.607216 + 0.794537i \(0.292286\pi\)
\(492\) 0 0
\(493\) 9.10425e10 0.0694118
\(494\) 0 0
\(495\) 1.60721e12 1.20324
\(496\) 0 0
\(497\) 2.79988e12 2.05843
\(498\) 0 0
\(499\) 5.13160e11 0.370510 0.185255 0.982690i \(-0.440689\pi\)
0.185255 + 0.982690i \(0.440689\pi\)
\(500\) 0 0
\(501\) −2.36198e12 −1.67497
\(502\) 0 0
\(503\) −1.60303e11 −0.111657 −0.0558286 0.998440i \(-0.517780\pi\)
−0.0558286 + 0.998440i \(0.517780\pi\)
\(504\) 0 0
\(505\) −5.12041e11 −0.350343
\(506\) 0 0
\(507\) 1.76087e11 0.118356
\(508\) 0 0
\(509\) 1.09792e12 0.725006 0.362503 0.931983i \(-0.381922\pi\)
0.362503 + 0.931983i \(0.381922\pi\)
\(510\) 0 0
\(511\) 2.83903e12 1.84194
\(512\) 0 0
\(513\) 3.17432e11 0.202359
\(514\) 0 0
\(515\) 1.50823e12 0.944789
\(516\) 0 0
\(517\) −2.40208e12 −1.47870
\(518\) 0 0
\(519\) 2.29881e12 1.39075
\(520\) 0 0
\(521\) −2.96365e12 −1.76221 −0.881103 0.472925i \(-0.843198\pi\)
−0.881103 + 0.472925i \(0.843198\pi\)
\(522\) 0 0
\(523\) 1.79812e12 1.05090 0.525449 0.850825i \(-0.323897\pi\)
0.525449 + 0.850825i \(0.323897\pi\)
\(524\) 0 0
\(525\) 1.03905e12 0.596927
\(526\) 0 0
\(527\) −1.85920e12 −1.04997
\(528\) 0 0
\(529\) −1.63502e12 −0.907762
\(530\) 0 0
\(531\) 1.31549e12 0.718062
\(532\) 0 0
\(533\) −5.69429e10 −0.0305610
\(534\) 0 0
\(535\) −3.20709e12 −1.69246
\(536\) 0 0
\(537\) −8.91790e11 −0.462784
\(538\) 0 0
\(539\) −4.00980e11 −0.204632
\(540\) 0 0
\(541\) 2.96375e12 1.48749 0.743745 0.668464i \(-0.233048\pi\)
0.743745 + 0.668464i \(0.233048\pi\)
\(542\) 0 0
\(543\) −4.94408e12 −2.44054
\(544\) 0 0
\(545\) 1.86668e12 0.906328
\(546\) 0 0
\(547\) 2.09308e10 0.00999639 0.00499820 0.999988i \(-0.498409\pi\)
0.00499820 + 0.999988i \(0.498409\pi\)
\(548\) 0 0
\(549\) −1.16922e12 −0.549314
\(550\) 0 0
\(551\) 4.57871e10 0.0211622
\(552\) 0 0
\(553\) 1.41798e12 0.644774
\(554\) 0 0
\(555\) −5.19113e12 −2.32243
\(556\) 0 0
\(557\) −5.61630e11 −0.247231 −0.123615 0.992330i \(-0.539449\pi\)
−0.123615 + 0.992330i \(0.539449\pi\)
\(558\) 0 0
\(559\) −3.58377e11 −0.155234
\(560\) 0 0
\(561\) −3.21677e12 −1.37116
\(562\) 0 0
\(563\) −2.05243e12 −0.860956 −0.430478 0.902601i \(-0.641655\pi\)
−0.430478 + 0.902601i \(0.641655\pi\)
\(564\) 0 0
\(565\) 2.41039e12 0.995106
\(566\) 0 0
\(567\) −1.38002e12 −0.560739
\(568\) 0 0
\(569\) −5.17268e11 −0.206876 −0.103438 0.994636i \(-0.532984\pi\)
−0.103438 + 0.994636i \(0.532984\pi\)
\(570\) 0 0
\(571\) 1.09701e12 0.431866 0.215933 0.976408i \(-0.430721\pi\)
0.215933 + 0.976408i \(0.430721\pi\)
\(572\) 0 0
\(573\) 5.08395e12 1.97018
\(574\) 0 0
\(575\) 2.74101e11 0.104569
\(576\) 0 0
\(577\) 2.16240e12 0.812165 0.406083 0.913836i \(-0.366894\pi\)
0.406083 + 0.913836i \(0.366894\pi\)
\(578\) 0 0
\(579\) −7.00348e12 −2.58977
\(580\) 0 0
\(581\) −5.38557e12 −1.96082
\(582\) 0 0
\(583\) −1.44710e12 −0.518787
\(584\) 0 0
\(585\) −1.24557e12 −0.439711
\(586\) 0 0
\(587\) −1.08800e12 −0.378232 −0.189116 0.981955i \(-0.560562\pi\)
−0.189116 + 0.981955i \(0.560562\pi\)
\(588\) 0 0
\(589\) −9.35028e11 −0.320115
\(590\) 0 0
\(591\) 6.22821e12 2.10000
\(592\) 0 0
\(593\) −1.99045e12 −0.661006 −0.330503 0.943805i \(-0.607218\pi\)
−0.330503 + 0.943805i \(0.607218\pi\)
\(594\) 0 0
\(595\) −4.68982e12 −1.53402
\(596\) 0 0
\(597\) 4.49488e12 1.44822
\(598\) 0 0
\(599\) −4.13617e12 −1.31274 −0.656369 0.754440i \(-0.727909\pi\)
−0.656369 + 0.754440i \(0.727909\pi\)
\(600\) 0 0
\(601\) −1.36781e11 −0.0427652 −0.0213826 0.999771i \(-0.506807\pi\)
−0.0213826 + 0.999771i \(0.506807\pi\)
\(602\) 0 0
\(603\) 1.49579e12 0.460725
\(604\) 0 0
\(605\) 1.62000e12 0.491605
\(606\) 0 0
\(607\) 1.15852e12 0.346381 0.173190 0.984888i \(-0.444592\pi\)
0.173190 + 0.984888i \(0.444592\pi\)
\(608\) 0 0
\(609\) 3.47889e11 0.102486
\(610\) 0 0
\(611\) 1.86159e12 0.540378
\(612\) 0 0
\(613\) −1.63345e12 −0.467232 −0.233616 0.972329i \(-0.575056\pi\)
−0.233616 + 0.972329i \(0.575056\pi\)
\(614\) 0 0
\(615\) 6.97366e11 0.196572
\(616\) 0 0
\(617\) −2.32758e11 −0.0646578 −0.0323289 0.999477i \(-0.510292\pi\)
−0.0323289 + 0.999477i \(0.510292\pi\)
\(618\) 0 0
\(619\) −5.19753e12 −1.42295 −0.711475 0.702712i \(-0.751972\pi\)
−0.711475 + 0.702712i \(0.751972\pi\)
\(620\) 0 0
\(621\) 6.36238e11 0.171675
\(622\) 0 0
\(623\) 2.87043e12 0.763398
\(624\) 0 0
\(625\) −4.67591e12 −1.22576
\(626\) 0 0
\(627\) −1.61778e12 −0.418038
\(628\) 0 0
\(629\) 6.00108e12 1.52863
\(630\) 0 0
\(631\) −1.04604e12 −0.262674 −0.131337 0.991338i \(-0.541927\pi\)
−0.131337 + 0.991338i \(0.541927\pi\)
\(632\) 0 0
\(633\) −4.64418e12 −1.14972
\(634\) 0 0
\(635\) −6.11854e12 −1.49337
\(636\) 0 0
\(637\) 3.10755e11 0.0747809
\(638\) 0 0
\(639\) 1.05279e13 2.49797
\(640\) 0 0
\(641\) 1.85450e12 0.433877 0.216938 0.976185i \(-0.430393\pi\)
0.216938 + 0.976185i \(0.430393\pi\)
\(642\) 0 0
\(643\) 5.85750e12 1.35134 0.675668 0.737206i \(-0.263855\pi\)
0.675668 + 0.737206i \(0.263855\pi\)
\(644\) 0 0
\(645\) 4.38896e12 0.998488
\(646\) 0 0
\(647\) 5.85418e12 1.31340 0.656699 0.754153i \(-0.271952\pi\)
0.656699 + 0.754153i \(0.271952\pi\)
\(648\) 0 0
\(649\) −1.80129e12 −0.398550
\(650\) 0 0
\(651\) −7.10432e12 −1.55027
\(652\) 0 0
\(653\) 1.18302e12 0.254614 0.127307 0.991863i \(-0.459367\pi\)
0.127307 + 0.991863i \(0.459367\pi\)
\(654\) 0 0
\(655\) 1.94257e12 0.412373
\(656\) 0 0
\(657\) 1.06751e13 2.23526
\(658\) 0 0
\(659\) 3.74377e12 0.773259 0.386629 0.922235i \(-0.373639\pi\)
0.386629 + 0.922235i \(0.373639\pi\)
\(660\) 0 0
\(661\) −2.30194e12 −0.469016 −0.234508 0.972114i \(-0.575348\pi\)
−0.234508 + 0.972114i \(0.575348\pi\)
\(662\) 0 0
\(663\) 2.49296e12 0.501077
\(664\) 0 0
\(665\) −2.35861e12 −0.467690
\(666\) 0 0
\(667\) 9.17725e10 0.0179534
\(668\) 0 0
\(669\) 6.65414e12 1.28432
\(670\) 0 0
\(671\) 1.60101e12 0.304889
\(672\) 0 0
\(673\) −1.04550e13 −1.96452 −0.982260 0.187522i \(-0.939954\pi\)
−0.982260 + 0.187522i \(0.939954\pi\)
\(674\) 0 0
\(675\) 1.04971e12 0.194626
\(676\) 0 0
\(677\) −7.44943e11 −0.136293 −0.0681466 0.997675i \(-0.521709\pi\)
−0.0681466 + 0.997675i \(0.521709\pi\)
\(678\) 0 0
\(679\) 5.99082e12 1.08161
\(680\) 0 0
\(681\) −2.47647e12 −0.441237
\(682\) 0 0
\(683\) −8.05108e12 −1.41567 −0.707833 0.706379i \(-0.750327\pi\)
−0.707833 + 0.706379i \(0.750327\pi\)
\(684\) 0 0
\(685\) −1.12674e13 −1.95532
\(686\) 0 0
\(687\) −1.48418e13 −2.54203
\(688\) 0 0
\(689\) 1.12148e12 0.189586
\(690\) 0 0
\(691\) 1.00440e13 1.67593 0.837963 0.545727i \(-0.183747\pi\)
0.837963 + 0.545727i \(0.183747\pi\)
\(692\) 0 0
\(693\) −7.09967e12 −1.16933
\(694\) 0 0
\(695\) 9.95392e12 1.61831
\(696\) 0 0
\(697\) −8.06173e11 −0.129384
\(698\) 0 0
\(699\) −1.51397e13 −2.39866
\(700\) 0 0
\(701\) −6.14523e12 −0.961186 −0.480593 0.876944i \(-0.659578\pi\)
−0.480593 + 0.876944i \(0.659578\pi\)
\(702\) 0 0
\(703\) 3.01807e12 0.466047
\(704\) 0 0
\(705\) −2.27984e13 −3.47579
\(706\) 0 0
\(707\) 2.26188e12 0.340472
\(708\) 0 0
\(709\) 4.98013e12 0.740172 0.370086 0.928997i \(-0.379328\pi\)
0.370086 + 0.928997i \(0.379328\pi\)
\(710\) 0 0
\(711\) 5.33178e12 0.782455
\(712\) 0 0
\(713\) −1.87411e12 −0.271576
\(714\) 0 0
\(715\) 1.70556e12 0.244056
\(716\) 0 0
\(717\) 1.61086e13 2.27625
\(718\) 0 0
\(719\) 4.89030e12 0.682426 0.341213 0.939986i \(-0.389162\pi\)
0.341213 + 0.939986i \(0.389162\pi\)
\(720\) 0 0
\(721\) −6.66241e12 −0.918170
\(722\) 0 0
\(723\) 1.31706e12 0.179260
\(724\) 0 0
\(725\) 1.51412e11 0.0203536
\(726\) 0 0
\(727\) −3.19281e12 −0.423905 −0.211952 0.977280i \(-0.567982\pi\)
−0.211952 + 0.977280i \(0.567982\pi\)
\(728\) 0 0
\(729\) −1.18213e13 −1.55021
\(730\) 0 0
\(731\) −5.07376e12 −0.657206
\(732\) 0 0
\(733\) −6.98794e12 −0.894090 −0.447045 0.894511i \(-0.647524\pi\)
−0.447045 + 0.894511i \(0.647524\pi\)
\(734\) 0 0
\(735\) −3.80574e12 −0.481001
\(736\) 0 0
\(737\) −2.04817e12 −0.255719
\(738\) 0 0
\(739\) −1.40477e12 −0.173263 −0.0866313 0.996240i \(-0.527610\pi\)
−0.0866313 + 0.996240i \(0.527610\pi\)
\(740\) 0 0
\(741\) 1.25376e12 0.152768
\(742\) 0 0
\(743\) −5.29417e12 −0.637306 −0.318653 0.947871i \(-0.603230\pi\)
−0.318653 + 0.947871i \(0.603230\pi\)
\(744\) 0 0
\(745\) −1.79508e13 −2.13491
\(746\) 0 0
\(747\) −2.02504e13 −2.37953
\(748\) 0 0
\(749\) 1.41669e13 1.64478
\(750\) 0 0
\(751\) 1.63972e13 1.88100 0.940502 0.339787i \(-0.110355\pi\)
0.940502 + 0.339787i \(0.110355\pi\)
\(752\) 0 0
\(753\) 1.95461e13 2.21556
\(754\) 0 0
\(755\) 5.41987e12 0.607054
\(756\) 0 0
\(757\) 6.89161e12 0.762762 0.381381 0.924418i \(-0.375449\pi\)
0.381381 + 0.924418i \(0.375449\pi\)
\(758\) 0 0
\(759\) −3.24256e12 −0.354651
\(760\) 0 0
\(761\) 1.79318e13 1.93817 0.969085 0.246728i \(-0.0793554\pi\)
0.969085 + 0.246728i \(0.0793554\pi\)
\(762\) 0 0
\(763\) −8.24582e12 −0.880792
\(764\) 0 0
\(765\) −1.76343e13 −1.86158
\(766\) 0 0
\(767\) 1.39598e12 0.145647
\(768\) 0 0
\(769\) 3.65837e12 0.377242 0.188621 0.982050i \(-0.439598\pi\)
0.188621 + 0.982050i \(0.439598\pi\)
\(770\) 0 0
\(771\) 3.98363e12 0.406007
\(772\) 0 0
\(773\) 1.05162e12 0.105938 0.0529692 0.998596i \(-0.483132\pi\)
0.0529692 + 0.998596i \(0.483132\pi\)
\(774\) 0 0
\(775\) −3.09202e12 −0.307883
\(776\) 0 0
\(777\) 2.29312e13 2.25700
\(778\) 0 0
\(779\) −4.05441e11 −0.0394465
\(780\) 0 0
\(781\) −1.44158e13 −1.38647
\(782\) 0 0
\(783\) 3.51456e11 0.0334151
\(784\) 0 0
\(785\) −2.16057e12 −0.203074
\(786\) 0 0
\(787\) 2.00786e12 0.186572 0.0932862 0.995639i \(-0.470263\pi\)
0.0932862 + 0.995639i \(0.470263\pi\)
\(788\) 0 0
\(789\) −1.33470e13 −1.22614
\(790\) 0 0
\(791\) −1.06476e13 −0.967070
\(792\) 0 0
\(793\) −1.24076e12 −0.111419
\(794\) 0 0
\(795\) −1.37345e13 −1.21944
\(796\) 0 0
\(797\) −1.60085e13 −1.40536 −0.702681 0.711505i \(-0.748014\pi\)
−0.702681 + 0.711505i \(0.748014\pi\)
\(798\) 0 0
\(799\) 2.63555e13 2.28777
\(800\) 0 0
\(801\) 1.07932e13 0.926410
\(802\) 0 0
\(803\) −1.46174e13 −1.24065
\(804\) 0 0
\(805\) −4.72742e12 −0.396774
\(806\) 0 0
\(807\) −4.02534e12 −0.334096
\(808\) 0 0
\(809\) 2.11454e12 0.173559 0.0867795 0.996228i \(-0.472342\pi\)
0.0867795 + 0.996228i \(0.472342\pi\)
\(810\) 0 0
\(811\) 6.76373e12 0.549025 0.274513 0.961583i \(-0.411483\pi\)
0.274513 + 0.961583i \(0.411483\pi\)
\(812\) 0 0
\(813\) 7.12494e12 0.571970
\(814\) 0 0
\(815\) −2.34014e13 −1.85795
\(816\) 0 0
\(817\) −2.55169e12 −0.200368
\(818\) 0 0
\(819\) 5.50217e12 0.427323
\(820\) 0 0
\(821\) 9.89188e12 0.759862 0.379931 0.925015i \(-0.375948\pi\)
0.379931 + 0.925015i \(0.375948\pi\)
\(822\) 0 0
\(823\) −4.33526e12 −0.329394 −0.164697 0.986344i \(-0.552665\pi\)
−0.164697 + 0.986344i \(0.552665\pi\)
\(824\) 0 0
\(825\) −5.34980e12 −0.402063
\(826\) 0 0
\(827\) 1.50216e12 0.111671 0.0558355 0.998440i \(-0.482218\pi\)
0.0558355 + 0.998440i \(0.482218\pi\)
\(828\) 0 0
\(829\) 2.26692e13 1.66702 0.833509 0.552505i \(-0.186328\pi\)
0.833509 + 0.552505i \(0.186328\pi\)
\(830\) 0 0
\(831\) 2.43985e13 1.77484
\(832\) 0 0
\(833\) 4.39954e12 0.316595
\(834\) 0 0
\(835\) 1.77301e13 1.26218
\(836\) 0 0
\(837\) −7.17715e12 −0.505461
\(838\) 0 0
\(839\) 1.10333e13 0.768732 0.384366 0.923181i \(-0.374420\pi\)
0.384366 + 0.923181i \(0.374420\pi\)
\(840\) 0 0
\(841\) −1.44565e13 −0.996506
\(842\) 0 0
\(843\) −2.47145e13 −1.68549
\(844\) 0 0
\(845\) −1.32179e12 −0.0891880
\(846\) 0 0
\(847\) −7.15615e12 −0.477754
\(848\) 0 0
\(849\) 1.30699e13 0.863350
\(850\) 0 0
\(851\) 6.04920e12 0.395380
\(852\) 0 0
\(853\) −9.89097e12 −0.639688 −0.319844 0.947470i \(-0.603631\pi\)
−0.319844 + 0.947470i \(0.603631\pi\)
\(854\) 0 0
\(855\) −8.86864e12 −0.567557
\(856\) 0 0
\(857\) 7.61479e12 0.482219 0.241109 0.970498i \(-0.422489\pi\)
0.241109 + 0.970498i \(0.422489\pi\)
\(858\) 0 0
\(859\) −6.62850e12 −0.415381 −0.207690 0.978195i \(-0.566595\pi\)
−0.207690 + 0.978195i \(0.566595\pi\)
\(860\) 0 0
\(861\) −3.08053e12 −0.191034
\(862\) 0 0
\(863\) 2.17146e13 1.33261 0.666305 0.745679i \(-0.267875\pi\)
0.666305 + 0.745679i \(0.267875\pi\)
\(864\) 0 0
\(865\) −1.72559e13 −1.04801
\(866\) 0 0
\(867\) 9.69547e12 0.582751
\(868\) 0 0
\(869\) −7.30078e12 −0.434291
\(870\) 0 0
\(871\) 1.58731e12 0.0934503
\(872\) 0 0
\(873\) 2.25262e13 1.31258
\(874\) 0 0
\(875\) 1.48533e13 0.856616
\(876\) 0 0
\(877\) −1.07781e13 −0.615237 −0.307618 0.951510i \(-0.599532\pi\)
−0.307618 + 0.951510i \(0.599532\pi\)
\(878\) 0 0
\(879\) 3.19762e11 0.0180666
\(880\) 0 0
\(881\) 2.91671e13 1.63118 0.815591 0.578629i \(-0.196412\pi\)
0.815591 + 0.578629i \(0.196412\pi\)
\(882\) 0 0
\(883\) −8.57360e12 −0.474613 −0.237307 0.971435i \(-0.576265\pi\)
−0.237307 + 0.971435i \(0.576265\pi\)
\(884\) 0 0
\(885\) −1.70962e13 −0.936820
\(886\) 0 0
\(887\) −1.12966e13 −0.612764 −0.306382 0.951909i \(-0.599118\pi\)
−0.306382 + 0.951909i \(0.599118\pi\)
\(888\) 0 0
\(889\) 2.70279e13 1.45129
\(890\) 0 0
\(891\) 7.10532e12 0.377689
\(892\) 0 0
\(893\) 1.32547e13 0.697492
\(894\) 0 0
\(895\) 6.69418e12 0.348734
\(896\) 0 0
\(897\) 2.51295e12 0.129604
\(898\) 0 0
\(899\) −1.03525e12 −0.0528599
\(900\) 0 0
\(901\) 1.58775e13 0.802639
\(902\) 0 0
\(903\) −1.93877e13 −0.970356
\(904\) 0 0
\(905\) 3.71125e13 1.83909
\(906\) 0 0
\(907\) −3.61284e13 −1.77262 −0.886311 0.463090i \(-0.846741\pi\)
−0.886311 + 0.463090i \(0.846741\pi\)
\(908\) 0 0
\(909\) 8.50494e12 0.413175
\(910\) 0 0
\(911\) −5.05617e12 −0.243214 −0.121607 0.992578i \(-0.538805\pi\)
−0.121607 + 0.992578i \(0.538805\pi\)
\(912\) 0 0
\(913\) 2.77288e13 1.32072
\(914\) 0 0
\(915\) 1.51953e13 0.716663
\(916\) 0 0
\(917\) −8.58105e12 −0.400755
\(918\) 0 0
\(919\) 3.93434e13 1.81950 0.909749 0.415159i \(-0.136274\pi\)
0.909749 + 0.415159i \(0.136274\pi\)
\(920\) 0 0
\(921\) 1.69829e12 0.0777757
\(922\) 0 0
\(923\) 1.11721e13 0.506672
\(924\) 0 0
\(925\) 9.98037e12 0.448238
\(926\) 0 0
\(927\) −2.50515e13 −1.11423
\(928\) 0 0
\(929\) 1.76046e13 0.775453 0.387726 0.921774i \(-0.373261\pi\)
0.387726 + 0.921774i \(0.373261\pi\)
\(930\) 0 0
\(931\) 2.21262e12 0.0965234
\(932\) 0 0
\(933\) 6.61874e13 2.85962
\(934\) 0 0
\(935\) 2.41466e13 1.03324
\(936\) 0 0
\(937\) −3.59967e13 −1.52558 −0.762790 0.646646i \(-0.776171\pi\)
−0.762790 + 0.646646i \(0.776171\pi\)
\(938\) 0 0
\(939\) −3.92479e12 −0.164748
\(940\) 0 0
\(941\) −2.62359e13 −1.09079 −0.545397 0.838178i \(-0.683621\pi\)
−0.545397 + 0.838178i \(0.683621\pi\)
\(942\) 0 0
\(943\) −8.12637e11 −0.0334653
\(944\) 0 0
\(945\) −1.81043e13 −0.738481
\(946\) 0 0
\(947\) −2.36296e11 −0.00954733 −0.00477367 0.999989i \(-0.501520\pi\)
−0.00477367 + 0.999989i \(0.501520\pi\)
\(948\) 0 0
\(949\) 1.13283e13 0.453384
\(950\) 0 0
\(951\) −4.50411e13 −1.78565
\(952\) 0 0
\(953\) 2.37919e13 0.934352 0.467176 0.884164i \(-0.345271\pi\)
0.467176 + 0.884164i \(0.345271\pi\)
\(954\) 0 0
\(955\) −3.81624e13 −1.48464
\(956\) 0 0
\(957\) −1.79118e12 −0.0690297
\(958\) 0 0
\(959\) 4.97726e13 1.90023
\(960\) 0 0
\(961\) −5.29856e12 −0.200402
\(962\) 0 0
\(963\) 5.32694e13 1.99600
\(964\) 0 0
\(965\) 5.25713e13 1.95153
\(966\) 0 0
\(967\) 3.61190e13 1.32836 0.664182 0.747571i \(-0.268780\pi\)
0.664182 + 0.747571i \(0.268780\pi\)
\(968\) 0 0
\(969\) 1.77502e13 0.646765
\(970\) 0 0
\(971\) 1.78316e13 0.643728 0.321864 0.946786i \(-0.395691\pi\)
0.321864 + 0.946786i \(0.395691\pi\)
\(972\) 0 0
\(973\) −4.39702e13 −1.57272
\(974\) 0 0
\(975\) 4.14603e12 0.146930
\(976\) 0 0
\(977\) −1.06952e13 −0.375545 −0.187772 0.982213i \(-0.560127\pi\)
−0.187772 + 0.982213i \(0.560127\pi\)
\(978\) 0 0
\(979\) −1.47790e13 −0.514191
\(980\) 0 0
\(981\) −3.10053e13 −1.06887
\(982\) 0 0
\(983\) −3.88263e13 −1.32628 −0.663139 0.748496i \(-0.730776\pi\)
−0.663139 + 0.748496i \(0.730776\pi\)
\(984\) 0 0
\(985\) −4.67518e13 −1.58247
\(986\) 0 0
\(987\) 1.00709e14 3.37786
\(988\) 0 0
\(989\) −5.11444e12 −0.169987
\(990\) 0 0
\(991\) 3.56040e12 0.117265 0.0586324 0.998280i \(-0.481326\pi\)
0.0586324 + 0.998280i \(0.481326\pi\)
\(992\) 0 0
\(993\) −5.89215e13 −1.92310
\(994\) 0 0
\(995\) −3.37406e13 −1.09131
\(996\) 0 0
\(997\) 3.34151e13 1.07106 0.535531 0.844515i \(-0.320111\pi\)
0.535531 + 0.844515i \(0.320111\pi\)
\(998\) 0 0
\(999\) 2.31663e13 0.735887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.k.1.6 6
4.3 odd 2 104.10.a.a.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.a.1.1 6 4.3 odd 2
208.10.a.k.1.6 6 1.1 even 1 trivial