Properties

Label 208.10.a.k
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 72131x^{4} + 310880x^{3} + 1323158708x^{2} - 12926602192x - 1707532200192 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 11) q^{3} + (\beta_{2} - 29) q^{5} + (\beta_{3} + 2 \beta_1 + 1610) q^{7} + ( - \beta_{5} - \beta_{4} + \cdots + 4482) q^{9} + ( - 4 \beta_{5} - 3 \beta_{4} + \cdots + 2678) q^{11} + 28561 q^{13}+ \cdots + ( - 27534 \beta_{5} + 9798 \beta_{4} + \cdots + 324072783) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 68 q^{3} - 176 q^{5} + 9664 q^{7} + 26938 q^{9} + 15980 q^{11} + 171366 q^{13} + 10756 q^{15} + 215048 q^{17} + 519868 q^{19} + 384084 q^{21} + 691224 q^{23} - 196082 q^{25} + 1592756 q^{27} - 546932 q^{29}+ \cdots + 1940442636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 72131x^{4} + 310880x^{3} + 1323158708x^{2} - 12926602192x - 1707532200192 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -76\nu^{5} - 917\nu^{4} + 4180218\nu^{3} + 25058752\nu^{2} - 48836424220\nu + 432797607042 ) / 1017191925 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 149\nu^{5} - 45937\nu^{4} - 198012\nu^{3} + 1836763552\nu^{2} - 183849555830\nu - 4766327538378 ) / 1130213250 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 79 \nu^{5} + 230377 \nu^{4} + 52528002 \nu^{3} - 13199429942 \nu^{2} + \cdots + 125958387049188 ) / 10171919250 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 5801 \nu^{5} - 1020563 \nu^{4} - 223300938 \nu^{3} + 35086904548 \nu^{2} + \cdots + 15509439425328 ) / 10171919250 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} - \beta_{4} + 2\beta_{3} - 4\beta_{2} - 4\beta _1 + 24044 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -47\beta_{5} + 70\beta_{4} + 157\beta_{3} - 89\beta_{2} + 35472\beta _1 - 95177 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -47382\beta_{5} - 27780\beta_{4} + 81642\beta_{3} - 214719\beta_{2} - 72356\beta _1 + 851902512 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -2343154\beta_{5} + 3855668\beta_{4} + 8309816\beta_{3} - 17007487\beta_{2} + 1308031370\beta _1 - 1891381210 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−193.617
−185.799
−32.2698
43.4051
165.417
204.864
0 −182.617 0 −149.732 0 −2294.25 0 13666.0 0
1.2 0 −174.799 0 −722.350 0 6843.47 0 10871.6 0
1.3 0 −21.2698 0 1834.98 0 4227.07 0 −19230.6 0
1.4 0 54.4051 0 −1319.68 0 −6657.51 0 −16723.1 0
1.5 0 176.417 0 1801.15 0 387.425 0 11439.9 0
1.6 0 215.864 0 −1620.37 0 7157.79 0 26914.2 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.k 6
4.b odd 2 1 104.10.a.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.10.a.a 6 4.b odd 2 1
208.10.a.k 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} - 68T_{3}^{5} - 70206T_{3}^{4} + 3455604T_{3}^{3} + 1260778797T_{3}^{2} - 41540331600T_{3} - 1406705130000 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 1406705130000 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 76\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 12\!\cdots\!20 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 12\!\cdots\!04 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 37\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 60\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 23\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 39\!\cdots\!32 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 16\!\cdots\!44 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 19\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 13\!\cdots\!60 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 31\!\cdots\!60 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 40\!\cdots\!56 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 13\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 86\!\cdots\!80 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 49\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 27\!\cdots\!88 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
show more
show less