Properties

Label 208.10.a.j.1.4
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 69754x^{4} - 2752492x^{3} + 1089377733x^{2} + 50183965132x - 2195812679340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(28.3984\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+18.3984 q^{3} +2458.39 q^{5} -6435.39 q^{7} -19344.5 q^{9} +75667.5 q^{11} -28561.0 q^{13} +45230.4 q^{15} -574152. q^{17} +839418. q^{19} -118401. q^{21} -2.18346e6 q^{23} +4.09055e6 q^{25} -718044. q^{27} -4.54258e6 q^{29} +3.24725e6 q^{31} +1.39216e6 q^{33} -1.58207e7 q^{35} -1.47111e7 q^{37} -525477. q^{39} -5.26815e6 q^{41} -1.06362e7 q^{43} -4.75563e7 q^{45} -2.85092e6 q^{47} +1.06069e6 q^{49} -1.05635e7 q^{51} -4.50292e7 q^{53} +1.86020e8 q^{55} +1.54440e7 q^{57} -2.49085e7 q^{59} +1.72663e8 q^{61} +1.24489e8 q^{63} -7.02140e7 q^{65} +2.69226e8 q^{67} -4.01722e7 q^{69} -2.82052e8 q^{71} +1.32314e8 q^{73} +7.52595e7 q^{75} -4.86950e8 q^{77} +2.75182e8 q^{79} +3.67547e8 q^{81} -4.46977e8 q^{83} -1.41149e9 q^{85} -8.35762e7 q^{87} -1.12425e8 q^{89} +1.83801e8 q^{91} +5.97442e7 q^{93} +2.06362e9 q^{95} -1.44020e9 q^{97} -1.46375e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 60 q^{3} + 176 q^{5} - 3416 q^{7} + 22010 q^{9} + 101316 q^{11} - 171366 q^{13} - 257460 q^{15} - 170304 q^{17} + 92084 q^{19} - 424004 q^{21} - 2369944 q^{23} + 2043598 q^{25} + 6428196 q^{27} - 9021404 q^{29}+ \cdots - 282095980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 18.3984 0.131140 0.0655699 0.997848i \(-0.479113\pi\)
0.0655699 + 0.997848i \(0.479113\pi\)
\(4\) 0 0
\(5\) 2458.39 1.75908 0.879540 0.475826i \(-0.157851\pi\)
0.879540 + 0.475826i \(0.157851\pi\)
\(6\) 0 0
\(7\) −6435.39 −1.01306 −0.506529 0.862223i \(-0.669072\pi\)
−0.506529 + 0.862223i \(0.669072\pi\)
\(8\) 0 0
\(9\) −19344.5 −0.982802
\(10\) 0 0
\(11\) 75667.5 1.55827 0.779134 0.626857i \(-0.215659\pi\)
0.779134 + 0.626857i \(0.215659\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) 45230.4 0.230685
\(16\) 0 0
\(17\) −574152. −1.66727 −0.833637 0.552313i \(-0.813745\pi\)
−0.833637 + 0.552313i \(0.813745\pi\)
\(18\) 0 0
\(19\) 839418. 1.47770 0.738851 0.673868i \(-0.235369\pi\)
0.738851 + 0.673868i \(0.235369\pi\)
\(20\) 0 0
\(21\) −118401. −0.132852
\(22\) 0 0
\(23\) −2.18346e6 −1.62694 −0.813468 0.581610i \(-0.802423\pi\)
−0.813468 + 0.581610i \(0.802423\pi\)
\(24\) 0 0
\(25\) 4.09055e6 2.09436
\(26\) 0 0
\(27\) −718044. −0.260024
\(28\) 0 0
\(29\) −4.54258e6 −1.19265 −0.596323 0.802745i \(-0.703372\pi\)
−0.596323 + 0.802745i \(0.703372\pi\)
\(30\) 0 0
\(31\) 3.24725e6 0.631521 0.315761 0.948839i \(-0.397740\pi\)
0.315761 + 0.948839i \(0.397740\pi\)
\(32\) 0 0
\(33\) 1.39216e6 0.204351
\(34\) 0 0
\(35\) −1.58207e7 −1.78205
\(36\) 0 0
\(37\) −1.47111e7 −1.29044 −0.645221 0.763996i \(-0.723235\pi\)
−0.645221 + 0.763996i \(0.723235\pi\)
\(38\) 0 0
\(39\) −525477. −0.0363716
\(40\) 0 0
\(41\) −5.26815e6 −0.291159 −0.145580 0.989347i \(-0.546505\pi\)
−0.145580 + 0.989347i \(0.546505\pi\)
\(42\) 0 0
\(43\) −1.06362e7 −0.474439 −0.237219 0.971456i \(-0.576236\pi\)
−0.237219 + 0.971456i \(0.576236\pi\)
\(44\) 0 0
\(45\) −4.75563e7 −1.72883
\(46\) 0 0
\(47\) −2.85092e6 −0.0852208 −0.0426104 0.999092i \(-0.513567\pi\)
−0.0426104 + 0.999092i \(0.513567\pi\)
\(48\) 0 0
\(49\) 1.06069e6 0.0262849
\(50\) 0 0
\(51\) −1.05635e7 −0.218646
\(52\) 0 0
\(53\) −4.50292e7 −0.783885 −0.391943 0.919990i \(-0.628197\pi\)
−0.391943 + 0.919990i \(0.628197\pi\)
\(54\) 0 0
\(55\) 1.86020e8 2.74112
\(56\) 0 0
\(57\) 1.54440e7 0.193786
\(58\) 0 0
\(59\) −2.49085e7 −0.267617 −0.133809 0.991007i \(-0.542721\pi\)
−0.133809 + 0.991007i \(0.542721\pi\)
\(60\) 0 0
\(61\) 1.72663e8 1.59667 0.798334 0.602214i \(-0.205715\pi\)
0.798334 + 0.602214i \(0.205715\pi\)
\(62\) 0 0
\(63\) 1.24489e8 0.995635
\(64\) 0 0
\(65\) −7.02140e7 −0.487881
\(66\) 0 0
\(67\) 2.69226e8 1.63223 0.816115 0.577890i \(-0.196124\pi\)
0.816115 + 0.577890i \(0.196124\pi\)
\(68\) 0 0
\(69\) −4.01722e7 −0.213356
\(70\) 0 0
\(71\) −2.82052e8 −1.31724 −0.658622 0.752474i \(-0.728860\pi\)
−0.658622 + 0.752474i \(0.728860\pi\)
\(72\) 0 0
\(73\) 1.32314e8 0.545322 0.272661 0.962110i \(-0.412096\pi\)
0.272661 + 0.962110i \(0.412096\pi\)
\(74\) 0 0
\(75\) 7.52595e7 0.274654
\(76\) 0 0
\(77\) −4.86950e8 −1.57861
\(78\) 0 0
\(79\) 2.75182e8 0.794872 0.397436 0.917630i \(-0.369900\pi\)
0.397436 + 0.917630i \(0.369900\pi\)
\(80\) 0 0
\(81\) 3.67547e8 0.948703
\(82\) 0 0
\(83\) −4.46977e8 −1.03379 −0.516897 0.856048i \(-0.672913\pi\)
−0.516897 + 0.856048i \(0.672913\pi\)
\(84\) 0 0
\(85\) −1.41149e9 −2.93287
\(86\) 0 0
\(87\) −8.35762e7 −0.156403
\(88\) 0 0
\(89\) −1.12425e8 −0.189937 −0.0949683 0.995480i \(-0.530275\pi\)
−0.0949683 + 0.995480i \(0.530275\pi\)
\(90\) 0 0
\(91\) 1.83801e8 0.280972
\(92\) 0 0
\(93\) 5.97442e7 0.0828176
\(94\) 0 0
\(95\) 2.06362e9 2.59940
\(96\) 0 0
\(97\) −1.44020e9 −1.65177 −0.825885 0.563839i \(-0.809324\pi\)
−0.825885 + 0.563839i \(0.809324\pi\)
\(98\) 0 0
\(99\) −1.46375e9 −1.53147
\(100\) 0 0
\(101\) −1.02501e9 −0.980129 −0.490065 0.871686i \(-0.663027\pi\)
−0.490065 + 0.871686i \(0.663027\pi\)
\(102\) 0 0
\(103\) −3.46579e8 −0.303413 −0.151707 0.988426i \(-0.548477\pi\)
−0.151707 + 0.988426i \(0.548477\pi\)
\(104\) 0 0
\(105\) −2.91076e8 −0.233697
\(106\) 0 0
\(107\) 1.69911e8 0.125312 0.0626562 0.998035i \(-0.480043\pi\)
0.0626562 + 0.998035i \(0.480043\pi\)
\(108\) 0 0
\(109\) −3.11815e8 −0.211582 −0.105791 0.994388i \(-0.533737\pi\)
−0.105791 + 0.994388i \(0.533737\pi\)
\(110\) 0 0
\(111\) −2.70661e8 −0.169228
\(112\) 0 0
\(113\) −1.57007e9 −0.905872 −0.452936 0.891543i \(-0.649623\pi\)
−0.452936 + 0.891543i \(0.649623\pi\)
\(114\) 0 0
\(115\) −5.36780e9 −2.86191
\(116\) 0 0
\(117\) 5.52498e8 0.272580
\(118\) 0 0
\(119\) 3.69489e9 1.68904
\(120\) 0 0
\(121\) 3.36762e9 1.42820
\(122\) 0 0
\(123\) −9.69255e7 −0.0381826
\(124\) 0 0
\(125\) 5.25461e9 1.92506
\(126\) 0 0
\(127\) −7.73812e8 −0.263948 −0.131974 0.991253i \(-0.542132\pi\)
−0.131974 + 0.991253i \(0.542132\pi\)
\(128\) 0 0
\(129\) −1.95690e8 −0.0622178
\(130\) 0 0
\(131\) 1.31015e9 0.388687 0.194343 0.980934i \(-0.437742\pi\)
0.194343 + 0.980934i \(0.437742\pi\)
\(132\) 0 0
\(133\) −5.40199e9 −1.49700
\(134\) 0 0
\(135\) −1.76523e9 −0.457403
\(136\) 0 0
\(137\) −4.78493e9 −1.16047 −0.580234 0.814450i \(-0.697039\pi\)
−0.580234 + 0.814450i \(0.697039\pi\)
\(138\) 0 0
\(139\) −4.08752e9 −0.928739 −0.464369 0.885642i \(-0.653719\pi\)
−0.464369 + 0.885642i \(0.653719\pi\)
\(140\) 0 0
\(141\) −5.24525e7 −0.0111758
\(142\) 0 0
\(143\) −2.16114e9 −0.432186
\(144\) 0 0
\(145\) −1.11674e10 −2.09796
\(146\) 0 0
\(147\) 1.95150e7 0.00344700
\(148\) 0 0
\(149\) 1.60352e9 0.266525 0.133262 0.991081i \(-0.457455\pi\)
0.133262 + 0.991081i \(0.457455\pi\)
\(150\) 0 0
\(151\) −7.79529e8 −0.122021 −0.0610107 0.998137i \(-0.519432\pi\)
−0.0610107 + 0.998137i \(0.519432\pi\)
\(152\) 0 0
\(153\) 1.11067e10 1.63860
\(154\) 0 0
\(155\) 7.98299e9 1.11090
\(156\) 0 0
\(157\) 7.27110e9 0.955107 0.477553 0.878603i \(-0.341524\pi\)
0.477553 + 0.878603i \(0.341524\pi\)
\(158\) 0 0
\(159\) −8.28465e8 −0.102799
\(160\) 0 0
\(161\) 1.40514e10 1.64818
\(162\) 0 0
\(163\) −1.56583e10 −1.73741 −0.868703 0.495333i \(-0.835046\pi\)
−0.868703 + 0.495333i \(0.835046\pi\)
\(164\) 0 0
\(165\) 3.42247e9 0.359470
\(166\) 0 0
\(167\) −1.24905e10 −1.24267 −0.621333 0.783546i \(-0.713409\pi\)
−0.621333 + 0.783546i \(0.713409\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) −1.62381e10 −1.45229
\(172\) 0 0
\(173\) −2.31060e10 −1.96118 −0.980588 0.196079i \(-0.937179\pi\)
−0.980588 + 0.196079i \(0.937179\pi\)
\(174\) 0 0
\(175\) −2.63243e10 −2.12171
\(176\) 0 0
\(177\) −4.58277e8 −0.0350953
\(178\) 0 0
\(179\) −4.31517e9 −0.314166 −0.157083 0.987585i \(-0.550209\pi\)
−0.157083 + 0.987585i \(0.550209\pi\)
\(180\) 0 0
\(181\) −1.46244e10 −1.01280 −0.506401 0.862298i \(-0.669024\pi\)
−0.506401 + 0.862298i \(0.669024\pi\)
\(182\) 0 0
\(183\) 3.17672e9 0.209387
\(184\) 0 0
\(185\) −3.61657e10 −2.26999
\(186\) 0 0
\(187\) −4.34446e10 −2.59806
\(188\) 0 0
\(189\) 4.62089e9 0.263420
\(190\) 0 0
\(191\) 1.75992e10 0.956845 0.478423 0.878130i \(-0.341209\pi\)
0.478423 + 0.878130i \(0.341209\pi\)
\(192\) 0 0
\(193\) −1.38011e10 −0.715986 −0.357993 0.933724i \(-0.616539\pi\)
−0.357993 + 0.933724i \(0.616539\pi\)
\(194\) 0 0
\(195\) −1.29183e9 −0.0639806
\(196\) 0 0
\(197\) −5.16948e9 −0.244539 −0.122270 0.992497i \(-0.539017\pi\)
−0.122270 + 0.992497i \(0.539017\pi\)
\(198\) 0 0
\(199\) −1.40212e10 −0.633790 −0.316895 0.948461i \(-0.602640\pi\)
−0.316895 + 0.948461i \(0.602640\pi\)
\(200\) 0 0
\(201\) 4.95334e9 0.214050
\(202\) 0 0
\(203\) 2.92333e10 1.20822
\(204\) 0 0
\(205\) −1.29512e10 −0.512172
\(206\) 0 0
\(207\) 4.22380e10 1.59896
\(208\) 0 0
\(209\) 6.35167e10 2.30266
\(210\) 0 0
\(211\) 2.51083e10 0.872061 0.436030 0.899932i \(-0.356384\pi\)
0.436030 + 0.899932i \(0.356384\pi\)
\(212\) 0 0
\(213\) −5.18930e9 −0.172743
\(214\) 0 0
\(215\) −2.61480e10 −0.834576
\(216\) 0 0
\(217\) −2.08973e10 −0.639767
\(218\) 0 0
\(219\) 2.43437e9 0.0715134
\(220\) 0 0
\(221\) 1.63984e10 0.462418
\(222\) 0 0
\(223\) 5.54861e10 1.50249 0.751246 0.660022i \(-0.229453\pi\)
0.751246 + 0.660022i \(0.229453\pi\)
\(224\) 0 0
\(225\) −7.91295e10 −2.05834
\(226\) 0 0
\(227\) 2.94375e10 0.735841 0.367921 0.929857i \(-0.380070\pi\)
0.367921 + 0.929857i \(0.380070\pi\)
\(228\) 0 0
\(229\) 6.74856e10 1.62163 0.810814 0.585304i \(-0.199025\pi\)
0.810814 + 0.585304i \(0.199025\pi\)
\(230\) 0 0
\(231\) −8.95911e9 −0.207019
\(232\) 0 0
\(233\) −4.22644e9 −0.0939449 −0.0469725 0.998896i \(-0.514957\pi\)
−0.0469725 + 0.998896i \(0.514957\pi\)
\(234\) 0 0
\(235\) −7.00868e9 −0.149910
\(236\) 0 0
\(237\) 5.06290e9 0.104239
\(238\) 0 0
\(239\) −4.94236e10 −0.979815 −0.489908 0.871774i \(-0.662969\pi\)
−0.489908 + 0.871774i \(0.662969\pi\)
\(240\) 0 0
\(241\) 4.07735e10 0.778577 0.389289 0.921116i \(-0.372721\pi\)
0.389289 + 0.921116i \(0.372721\pi\)
\(242\) 0 0
\(243\) 2.08955e10 0.384437
\(244\) 0 0
\(245\) 2.60759e9 0.0462373
\(246\) 0 0
\(247\) −2.39746e10 −0.409841
\(248\) 0 0
\(249\) −8.22367e9 −0.135572
\(250\) 0 0
\(251\) 9.94646e9 0.158175 0.0790873 0.996868i \(-0.474799\pi\)
0.0790873 + 0.996868i \(0.474799\pi\)
\(252\) 0 0
\(253\) −1.65217e11 −2.53520
\(254\) 0 0
\(255\) −2.59691e10 −0.384615
\(256\) 0 0
\(257\) −1.00123e10 −0.143165 −0.0715824 0.997435i \(-0.522805\pi\)
−0.0715824 + 0.997435i \(0.522805\pi\)
\(258\) 0 0
\(259\) 9.46720e10 1.30729
\(260\) 0 0
\(261\) 8.78739e10 1.17213
\(262\) 0 0
\(263\) −9.20736e10 −1.18668 −0.593341 0.804952i \(-0.702191\pi\)
−0.593341 + 0.804952i \(0.702191\pi\)
\(264\) 0 0
\(265\) −1.10699e11 −1.37892
\(266\) 0 0
\(267\) −2.06844e9 −0.0249082
\(268\) 0 0
\(269\) 3.08802e10 0.359580 0.179790 0.983705i \(-0.442458\pi\)
0.179790 + 0.983705i \(0.442458\pi\)
\(270\) 0 0
\(271\) 1.18521e11 1.33486 0.667429 0.744674i \(-0.267395\pi\)
0.667429 + 0.744674i \(0.267395\pi\)
\(272\) 0 0
\(273\) 3.38165e9 0.0368466
\(274\) 0 0
\(275\) 3.09521e11 3.26357
\(276\) 0 0
\(277\) −1.63843e11 −1.67212 −0.836062 0.548635i \(-0.815148\pi\)
−0.836062 + 0.548635i \(0.815148\pi\)
\(278\) 0 0
\(279\) −6.28164e10 −0.620660
\(280\) 0 0
\(281\) −3.80342e10 −0.363911 −0.181956 0.983307i \(-0.558243\pi\)
−0.181956 + 0.983307i \(0.558243\pi\)
\(282\) 0 0
\(283\) −7.53549e10 −0.698349 −0.349174 0.937058i \(-0.613538\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(284\) 0 0
\(285\) 3.79672e10 0.340884
\(286\) 0 0
\(287\) 3.39026e10 0.294961
\(288\) 0 0
\(289\) 2.11063e11 1.77980
\(290\) 0 0
\(291\) −2.64974e10 −0.216613
\(292\) 0 0
\(293\) −8.75188e10 −0.693740 −0.346870 0.937913i \(-0.612756\pi\)
−0.346870 + 0.937913i \(0.612756\pi\)
\(294\) 0 0
\(295\) −6.12348e10 −0.470760
\(296\) 0 0
\(297\) −5.43326e10 −0.405188
\(298\) 0 0
\(299\) 6.23618e10 0.451231
\(300\) 0 0
\(301\) 6.84484e10 0.480634
\(302\) 0 0
\(303\) −1.88586e10 −0.128534
\(304\) 0 0
\(305\) 4.24472e11 2.80867
\(306\) 0 0
\(307\) 6.03418e10 0.387700 0.193850 0.981031i \(-0.437903\pi\)
0.193850 + 0.981031i \(0.437903\pi\)
\(308\) 0 0
\(309\) −6.37650e9 −0.0397895
\(310\) 0 0
\(311\) −2.10937e11 −1.27859 −0.639294 0.768963i \(-0.720773\pi\)
−0.639294 + 0.768963i \(0.720773\pi\)
\(312\) 0 0
\(313\) 3.16216e10 0.186223 0.0931117 0.995656i \(-0.470319\pi\)
0.0931117 + 0.995656i \(0.470319\pi\)
\(314\) 0 0
\(315\) 3.06043e11 1.75140
\(316\) 0 0
\(317\) 2.40969e11 1.34028 0.670139 0.742235i \(-0.266234\pi\)
0.670139 + 0.742235i \(0.266234\pi\)
\(318\) 0 0
\(319\) −3.43725e11 −1.85846
\(320\) 0 0
\(321\) 3.12609e9 0.0164334
\(322\) 0 0
\(323\) −4.81954e11 −2.46373
\(324\) 0 0
\(325\) −1.16830e11 −0.580871
\(326\) 0 0
\(327\) −5.73691e9 −0.0277468
\(328\) 0 0
\(329\) 1.83468e10 0.0863335
\(330\) 0 0
\(331\) 4.00948e11 1.83595 0.917977 0.396633i \(-0.129822\pi\)
0.917977 + 0.396633i \(0.129822\pi\)
\(332\) 0 0
\(333\) 2.84580e11 1.26825
\(334\) 0 0
\(335\) 6.61863e11 2.87122
\(336\) 0 0
\(337\) 1.55183e11 0.655403 0.327702 0.944781i \(-0.393726\pi\)
0.327702 + 0.944781i \(0.393726\pi\)
\(338\) 0 0
\(339\) −2.88868e10 −0.118796
\(340\) 0 0
\(341\) 2.45711e11 0.984079
\(342\) 0 0
\(343\) 2.52865e11 0.986429
\(344\) 0 0
\(345\) −9.87589e10 −0.375310
\(346\) 0 0
\(347\) −6.98583e10 −0.258664 −0.129332 0.991601i \(-0.541283\pi\)
−0.129332 + 0.991601i \(0.541283\pi\)
\(348\) 0 0
\(349\) −5.24407e11 −1.89214 −0.946072 0.323955i \(-0.894987\pi\)
−0.946072 + 0.323955i \(0.894987\pi\)
\(350\) 0 0
\(351\) 2.05080e10 0.0721178
\(352\) 0 0
\(353\) 2.63624e11 0.903646 0.451823 0.892108i \(-0.350774\pi\)
0.451823 + 0.892108i \(0.350774\pi\)
\(354\) 0 0
\(355\) −6.93393e11 −2.31714
\(356\) 0 0
\(357\) 6.79802e10 0.221501
\(358\) 0 0
\(359\) −4.18402e11 −1.32944 −0.664720 0.747093i \(-0.731449\pi\)
−0.664720 + 0.747093i \(0.731449\pi\)
\(360\) 0 0
\(361\) 3.81935e11 1.18361
\(362\) 0 0
\(363\) 6.19588e10 0.187294
\(364\) 0 0
\(365\) 3.25279e11 0.959265
\(366\) 0 0
\(367\) 3.13025e11 0.900703 0.450352 0.892851i \(-0.351299\pi\)
0.450352 + 0.892851i \(0.351299\pi\)
\(368\) 0 0
\(369\) 1.01910e11 0.286152
\(370\) 0 0
\(371\) 2.89781e11 0.794121
\(372\) 0 0
\(373\) 4.18923e11 1.12058 0.560292 0.828295i \(-0.310689\pi\)
0.560292 + 0.828295i \(0.310689\pi\)
\(374\) 0 0
\(375\) 9.66764e10 0.252453
\(376\) 0 0
\(377\) 1.29741e11 0.330780
\(378\) 0 0
\(379\) −5.47158e11 −1.36219 −0.681093 0.732197i \(-0.738495\pi\)
−0.681093 + 0.732197i \(0.738495\pi\)
\(380\) 0 0
\(381\) −1.42369e10 −0.0346141
\(382\) 0 0
\(383\) −1.08005e11 −0.256477 −0.128239 0.991743i \(-0.540932\pi\)
−0.128239 + 0.991743i \(0.540932\pi\)
\(384\) 0 0
\(385\) −1.19711e12 −2.77691
\(386\) 0 0
\(387\) 2.05753e11 0.466280
\(388\) 0 0
\(389\) 2.46852e10 0.0546592 0.0273296 0.999626i \(-0.491300\pi\)
0.0273296 + 0.999626i \(0.491300\pi\)
\(390\) 0 0
\(391\) 1.25364e12 2.71255
\(392\) 0 0
\(393\) 2.41046e10 0.0509723
\(394\) 0 0
\(395\) 6.76503e11 1.39824
\(396\) 0 0
\(397\) 8.16247e10 0.164917 0.0824583 0.996595i \(-0.473723\pi\)
0.0824583 + 0.996595i \(0.473723\pi\)
\(398\) 0 0
\(399\) −9.93879e10 −0.196316
\(400\) 0 0
\(401\) 4.97530e11 0.960881 0.480441 0.877027i \(-0.340477\pi\)
0.480441 + 0.877027i \(0.340477\pi\)
\(402\) 0 0
\(403\) −9.27447e10 −0.175152
\(404\) 0 0
\(405\) 9.03573e11 1.66884
\(406\) 0 0
\(407\) −1.11315e12 −2.01085
\(408\) 0 0
\(409\) −7.11698e11 −1.25760 −0.628798 0.777569i \(-0.716453\pi\)
−0.628798 + 0.777569i \(0.716453\pi\)
\(410\) 0 0
\(411\) −8.80351e10 −0.152184
\(412\) 0 0
\(413\) 1.60296e11 0.271112
\(414\) 0 0
\(415\) −1.09884e12 −1.81853
\(416\) 0 0
\(417\) −7.52039e10 −0.121795
\(418\) 0 0
\(419\) −2.51824e11 −0.399148 −0.199574 0.979883i \(-0.563956\pi\)
−0.199574 + 0.979883i \(0.563956\pi\)
\(420\) 0 0
\(421\) 7.79431e9 0.0120923 0.00604614 0.999982i \(-0.498075\pi\)
0.00604614 + 0.999982i \(0.498075\pi\)
\(422\) 0 0
\(423\) 5.51497e10 0.0837552
\(424\) 0 0
\(425\) −2.34859e12 −3.49187
\(426\) 0 0
\(427\) −1.11115e12 −1.61752
\(428\) 0 0
\(429\) −3.97615e10 −0.0566768
\(430\) 0 0
\(431\) 7.28020e11 1.01624 0.508119 0.861287i \(-0.330341\pi\)
0.508119 + 0.861287i \(0.330341\pi\)
\(432\) 0 0
\(433\) 3.00825e11 0.411262 0.205631 0.978630i \(-0.434075\pi\)
0.205631 + 0.978630i \(0.434075\pi\)
\(434\) 0 0
\(435\) −2.05463e11 −0.275126
\(436\) 0 0
\(437\) −1.83284e12 −2.40413
\(438\) 0 0
\(439\) 2.09332e11 0.268996 0.134498 0.990914i \(-0.457058\pi\)
0.134498 + 0.990914i \(0.457058\pi\)
\(440\) 0 0
\(441\) −2.05186e10 −0.0258329
\(442\) 0 0
\(443\) 1.18518e12 1.46207 0.731036 0.682339i \(-0.239037\pi\)
0.731036 + 0.682339i \(0.239037\pi\)
\(444\) 0 0
\(445\) −2.76385e11 −0.334113
\(446\) 0 0
\(447\) 2.95023e10 0.0349520
\(448\) 0 0
\(449\) −4.69649e11 −0.545336 −0.272668 0.962108i \(-0.587906\pi\)
−0.272668 + 0.962108i \(0.587906\pi\)
\(450\) 0 0
\(451\) −3.98628e11 −0.453704
\(452\) 0 0
\(453\) −1.43421e10 −0.0160019
\(454\) 0 0
\(455\) 4.51855e11 0.494251
\(456\) 0 0
\(457\) 1.47311e12 1.57984 0.789919 0.613212i \(-0.210123\pi\)
0.789919 + 0.613212i \(0.210123\pi\)
\(458\) 0 0
\(459\) 4.12266e11 0.433532
\(460\) 0 0
\(461\) 6.46731e10 0.0666913 0.0333457 0.999444i \(-0.489384\pi\)
0.0333457 + 0.999444i \(0.489384\pi\)
\(462\) 0 0
\(463\) 1.89611e11 0.191756 0.0958780 0.995393i \(-0.469434\pi\)
0.0958780 + 0.995393i \(0.469434\pi\)
\(464\) 0 0
\(465\) 1.46874e11 0.145683
\(466\) 0 0
\(467\) 1.27878e11 0.124414 0.0622069 0.998063i \(-0.480186\pi\)
0.0622069 + 0.998063i \(0.480186\pi\)
\(468\) 0 0
\(469\) −1.73258e12 −1.65354
\(470\) 0 0
\(471\) 1.33777e11 0.125252
\(472\) 0 0
\(473\) −8.04818e11 −0.739303
\(474\) 0 0
\(475\) 3.43368e12 3.09484
\(476\) 0 0
\(477\) 8.71067e11 0.770404
\(478\) 0 0
\(479\) 2.46378e10 0.0213842 0.0106921 0.999943i \(-0.496597\pi\)
0.0106921 + 0.999943i \(0.496597\pi\)
\(480\) 0 0
\(481\) 4.20165e11 0.357904
\(482\) 0 0
\(483\) 2.58524e11 0.216142
\(484\) 0 0
\(485\) −3.54057e12 −2.90559
\(486\) 0 0
\(487\) −7.93791e11 −0.639479 −0.319739 0.947506i \(-0.603595\pi\)
−0.319739 + 0.947506i \(0.603595\pi\)
\(488\) 0 0
\(489\) −2.88088e11 −0.227843
\(490\) 0 0
\(491\) −9.39198e11 −0.729274 −0.364637 0.931150i \(-0.618807\pi\)
−0.364637 + 0.931150i \(0.618807\pi\)
\(492\) 0 0
\(493\) 2.60813e12 1.98847
\(494\) 0 0
\(495\) −3.59846e12 −2.69398
\(496\) 0 0
\(497\) 1.81511e12 1.33444
\(498\) 0 0
\(499\) −5.14451e11 −0.371443 −0.185721 0.982602i \(-0.559462\pi\)
−0.185721 + 0.982602i \(0.559462\pi\)
\(500\) 0 0
\(501\) −2.29805e11 −0.162963
\(502\) 0 0
\(503\) −7.42503e11 −0.517181 −0.258590 0.965987i \(-0.583258\pi\)
−0.258590 + 0.965987i \(0.583258\pi\)
\(504\) 0 0
\(505\) −2.51988e12 −1.72412
\(506\) 0 0
\(507\) 1.50081e10 0.0100877
\(508\) 0 0
\(509\) 7.70649e11 0.508893 0.254447 0.967087i \(-0.418107\pi\)
0.254447 + 0.967087i \(0.418107\pi\)
\(510\) 0 0
\(511\) −8.51493e11 −0.552443
\(512\) 0 0
\(513\) −6.02739e11 −0.384239
\(514\) 0 0
\(515\) −8.52025e11 −0.533728
\(516\) 0 0
\(517\) −2.15722e11 −0.132797
\(518\) 0 0
\(519\) −4.25113e11 −0.257188
\(520\) 0 0
\(521\) 1.46940e12 0.873715 0.436858 0.899531i \(-0.356091\pi\)
0.436858 + 0.899531i \(0.356091\pi\)
\(522\) 0 0
\(523\) 2.94075e12 1.71870 0.859352 0.511385i \(-0.170867\pi\)
0.859352 + 0.511385i \(0.170867\pi\)
\(524\) 0 0
\(525\) −4.84325e11 −0.278240
\(526\) 0 0
\(527\) −1.86441e12 −1.05292
\(528\) 0 0
\(529\) 2.96635e12 1.64692
\(530\) 0 0
\(531\) 4.81843e11 0.263015
\(532\) 0 0
\(533\) 1.50464e11 0.0807531
\(534\) 0 0
\(535\) 4.17706e11 0.220434
\(536\) 0 0
\(537\) −7.93922e10 −0.0411997
\(538\) 0 0
\(539\) 8.02599e10 0.0409590
\(540\) 0 0
\(541\) 6.51159e11 0.326813 0.163406 0.986559i \(-0.447752\pi\)
0.163406 + 0.986559i \(0.447752\pi\)
\(542\) 0 0
\(543\) −2.69066e11 −0.132819
\(544\) 0 0
\(545\) −7.66563e11 −0.372189
\(546\) 0 0
\(547\) 1.65143e12 0.788711 0.394355 0.918958i \(-0.370968\pi\)
0.394355 + 0.918958i \(0.370968\pi\)
\(548\) 0 0
\(549\) −3.34008e12 −1.56921
\(550\) 0 0
\(551\) −3.81312e12 −1.76238
\(552\) 0 0
\(553\) −1.77090e12 −0.805251
\(554\) 0 0
\(555\) −6.65391e11 −0.297686
\(556\) 0 0
\(557\) −1.10492e12 −0.486387 −0.243194 0.969978i \(-0.578195\pi\)
−0.243194 + 0.969978i \(0.578195\pi\)
\(558\) 0 0
\(559\) 3.03782e11 0.131586
\(560\) 0 0
\(561\) −7.99312e11 −0.340709
\(562\) 0 0
\(563\) 3.85170e11 0.161572 0.0807858 0.996731i \(-0.474257\pi\)
0.0807858 + 0.996731i \(0.474257\pi\)
\(564\) 0 0
\(565\) −3.85985e12 −1.59350
\(566\) 0 0
\(567\) −2.36531e12 −0.961090
\(568\) 0 0
\(569\) 5.78791e11 0.231482 0.115741 0.993279i \(-0.463076\pi\)
0.115741 + 0.993279i \(0.463076\pi\)
\(570\) 0 0
\(571\) 2.70011e12 1.06297 0.531483 0.847069i \(-0.321635\pi\)
0.531483 + 0.847069i \(0.321635\pi\)
\(572\) 0 0
\(573\) 3.23796e11 0.125481
\(574\) 0 0
\(575\) −8.93155e12 −3.40739
\(576\) 0 0
\(577\) −1.44536e12 −0.542856 −0.271428 0.962459i \(-0.587496\pi\)
−0.271428 + 0.962459i \(0.587496\pi\)
\(578\) 0 0
\(579\) −2.53918e11 −0.0938943
\(580\) 0 0
\(581\) 2.87648e12 1.04729
\(582\) 0 0
\(583\) −3.40724e12 −1.22150
\(584\) 0 0
\(585\) 1.35825e12 0.479490
\(586\) 0 0
\(587\) 1.07907e12 0.375125 0.187563 0.982253i \(-0.439941\pi\)
0.187563 + 0.982253i \(0.439941\pi\)
\(588\) 0 0
\(589\) 2.72580e12 0.933200
\(590\) 0 0
\(591\) −9.51101e10 −0.0320688
\(592\) 0 0
\(593\) 1.03467e12 0.343604 0.171802 0.985132i \(-0.445041\pi\)
0.171802 + 0.985132i \(0.445041\pi\)
\(594\) 0 0
\(595\) 9.08348e12 2.97116
\(596\) 0 0
\(597\) −2.57967e11 −0.0831151
\(598\) 0 0
\(599\) −2.51684e12 −0.798793 −0.399396 0.916778i \(-0.630780\pi\)
−0.399396 + 0.916778i \(0.630780\pi\)
\(600\) 0 0
\(601\) 1.01442e12 0.317164 0.158582 0.987346i \(-0.449308\pi\)
0.158582 + 0.987346i \(0.449308\pi\)
\(602\) 0 0
\(603\) −5.20805e12 −1.60416
\(604\) 0 0
\(605\) 8.27892e12 2.51232
\(606\) 0 0
\(607\) 1.84602e12 0.551935 0.275967 0.961167i \(-0.411002\pi\)
0.275967 + 0.961167i \(0.411002\pi\)
\(608\) 0 0
\(609\) 5.37846e11 0.158445
\(610\) 0 0
\(611\) 8.14253e10 0.0236360
\(612\) 0 0
\(613\) −5.10934e12 −1.46148 −0.730740 0.682656i \(-0.760825\pi\)
−0.730740 + 0.682656i \(0.760825\pi\)
\(614\) 0 0
\(615\) −2.38281e11 −0.0671662
\(616\) 0 0
\(617\) 4.21621e12 1.17122 0.585611 0.810593i \(-0.300855\pi\)
0.585611 + 0.810593i \(0.300855\pi\)
\(618\) 0 0
\(619\) 7.24019e11 0.198218 0.0991088 0.995077i \(-0.468401\pi\)
0.0991088 + 0.995077i \(0.468401\pi\)
\(620\) 0 0
\(621\) 1.56782e12 0.423043
\(622\) 0 0
\(623\) 7.23500e11 0.192417
\(624\) 0 0
\(625\) 4.92852e12 1.29198
\(626\) 0 0
\(627\) 1.16861e12 0.301970
\(628\) 0 0
\(629\) 8.44643e12 2.15152
\(630\) 0 0
\(631\) 2.90019e11 0.0728273 0.0364136 0.999337i \(-0.488407\pi\)
0.0364136 + 0.999337i \(0.488407\pi\)
\(632\) 0 0
\(633\) 4.61953e11 0.114362
\(634\) 0 0
\(635\) −1.90233e12 −0.464306
\(636\) 0 0
\(637\) −3.02944e10 −0.00729013
\(638\) 0 0
\(639\) 5.45615e12 1.29459
\(640\) 0 0
\(641\) −5.41213e11 −0.126621 −0.0633107 0.997994i \(-0.520166\pi\)
−0.0633107 + 0.997994i \(0.520166\pi\)
\(642\) 0 0
\(643\) −1.10572e12 −0.255091 −0.127546 0.991833i \(-0.540710\pi\)
−0.127546 + 0.991833i \(0.540710\pi\)
\(644\) 0 0
\(645\) −4.81082e11 −0.109446
\(646\) 0 0
\(647\) 3.04797e12 0.683820 0.341910 0.939733i \(-0.388926\pi\)
0.341910 + 0.939733i \(0.388926\pi\)
\(648\) 0 0
\(649\) −1.88477e12 −0.417019
\(650\) 0 0
\(651\) −3.84477e11 −0.0838989
\(652\) 0 0
\(653\) 5.03816e11 0.108433 0.0542166 0.998529i \(-0.482734\pi\)
0.0542166 + 0.998529i \(0.482734\pi\)
\(654\) 0 0
\(655\) 3.22085e12 0.683730
\(656\) 0 0
\(657\) −2.55955e12 −0.535944
\(658\) 0 0
\(659\) 7.03410e12 1.45286 0.726431 0.687240i \(-0.241178\pi\)
0.726431 + 0.687240i \(0.241178\pi\)
\(660\) 0 0
\(661\) 1.37076e12 0.279290 0.139645 0.990202i \(-0.455404\pi\)
0.139645 + 0.990202i \(0.455404\pi\)
\(662\) 0 0
\(663\) 3.01704e11 0.0606415
\(664\) 0 0
\(665\) −1.32802e13 −2.63334
\(666\) 0 0
\(667\) 9.91854e12 1.94036
\(668\) 0 0
\(669\) 1.02086e12 0.197037
\(670\) 0 0
\(671\) 1.30650e13 2.48804
\(672\) 0 0
\(673\) −1.63464e12 −0.307153 −0.153576 0.988137i \(-0.549079\pi\)
−0.153576 + 0.988137i \(0.549079\pi\)
\(674\) 0 0
\(675\) −2.93719e12 −0.544584
\(676\) 0 0
\(677\) 8.41927e12 1.54037 0.770186 0.637820i \(-0.220163\pi\)
0.770186 + 0.637820i \(0.220163\pi\)
\(678\) 0 0
\(679\) 9.26825e12 1.67334
\(680\) 0 0
\(681\) 5.41603e11 0.0964981
\(682\) 0 0
\(683\) −4.06625e12 −0.714992 −0.357496 0.933915i \(-0.616369\pi\)
−0.357496 + 0.933915i \(0.616369\pi\)
\(684\) 0 0
\(685\) −1.17632e13 −2.04135
\(686\) 0 0
\(687\) 1.24163e12 0.212660
\(688\) 0 0
\(689\) 1.28608e12 0.217411
\(690\) 0 0
\(691\) −4.31792e11 −0.0720482 −0.0360241 0.999351i \(-0.511469\pi\)
−0.0360241 + 0.999351i \(0.511469\pi\)
\(692\) 0 0
\(693\) 9.41981e12 1.55147
\(694\) 0 0
\(695\) −1.00487e13 −1.63372
\(696\) 0 0
\(697\) 3.02472e12 0.485442
\(698\) 0 0
\(699\) −7.77598e10 −0.0123199
\(700\) 0 0
\(701\) −3.07495e12 −0.480957 −0.240479 0.970654i \(-0.577304\pi\)
−0.240479 + 0.970654i \(0.577304\pi\)
\(702\) 0 0
\(703\) −1.23488e13 −1.90689
\(704\) 0 0
\(705\) −1.28949e11 −0.0196592
\(706\) 0 0
\(707\) 6.59636e12 0.992927
\(708\) 0 0
\(709\) −6.01531e12 −0.894026 −0.447013 0.894528i \(-0.647512\pi\)
−0.447013 + 0.894528i \(0.647512\pi\)
\(710\) 0 0
\(711\) −5.32325e12 −0.781202
\(712\) 0 0
\(713\) −7.09024e12 −1.02744
\(714\) 0 0
\(715\) −5.31292e12 −0.760249
\(716\) 0 0
\(717\) −9.09316e11 −0.128493
\(718\) 0 0
\(719\) −8.51552e12 −1.18831 −0.594157 0.804349i \(-0.702514\pi\)
−0.594157 + 0.804349i \(0.702514\pi\)
\(720\) 0 0
\(721\) 2.23037e12 0.307375
\(722\) 0 0
\(723\) 7.50168e11 0.102102
\(724\) 0 0
\(725\) −1.85816e13 −2.49783
\(726\) 0 0
\(727\) 3.46201e12 0.459646 0.229823 0.973232i \(-0.426185\pi\)
0.229823 + 0.973232i \(0.426185\pi\)
\(728\) 0 0
\(729\) −6.84998e12 −0.898288
\(730\) 0 0
\(731\) 6.10682e12 0.791019
\(732\) 0 0
\(733\) 7.11267e12 0.910049 0.455025 0.890479i \(-0.349630\pi\)
0.455025 + 0.890479i \(0.349630\pi\)
\(734\) 0 0
\(735\) 4.79755e10 0.00606355
\(736\) 0 0
\(737\) 2.03717e13 2.54345
\(738\) 0 0
\(739\) 1.31328e13 1.61978 0.809891 0.586581i \(-0.199526\pi\)
0.809891 + 0.586581i \(0.199526\pi\)
\(740\) 0 0
\(741\) −4.41095e11 −0.0537465
\(742\) 0 0
\(743\) −1.28936e12 −0.155212 −0.0776058 0.996984i \(-0.524728\pi\)
−0.0776058 + 0.996984i \(0.524728\pi\)
\(744\) 0 0
\(745\) 3.94208e12 0.468838
\(746\) 0 0
\(747\) 8.64655e12 1.01602
\(748\) 0 0
\(749\) −1.09344e12 −0.126949
\(750\) 0 0
\(751\) −2.31793e12 −0.265901 −0.132951 0.991123i \(-0.542445\pi\)
−0.132951 + 0.991123i \(0.542445\pi\)
\(752\) 0 0
\(753\) 1.82999e11 0.0207430
\(754\) 0 0
\(755\) −1.91638e12 −0.214645
\(756\) 0 0
\(757\) −6.40292e12 −0.708674 −0.354337 0.935118i \(-0.615293\pi\)
−0.354337 + 0.935118i \(0.615293\pi\)
\(758\) 0 0
\(759\) −3.03973e12 −0.332466
\(760\) 0 0
\(761\) −5.79503e12 −0.626362 −0.313181 0.949694i \(-0.601395\pi\)
−0.313181 + 0.949694i \(0.601395\pi\)
\(762\) 0 0
\(763\) 2.00666e12 0.214345
\(764\) 0 0
\(765\) 2.73045e13 2.88243
\(766\) 0 0
\(767\) 7.11413e11 0.0742237
\(768\) 0 0
\(769\) 1.83778e12 0.189506 0.0947532 0.995501i \(-0.469794\pi\)
0.0947532 + 0.995501i \(0.469794\pi\)
\(770\) 0 0
\(771\) −1.84211e11 −0.0187746
\(772\) 0 0
\(773\) −1.45836e13 −1.46912 −0.734560 0.678543i \(-0.762612\pi\)
−0.734560 + 0.678543i \(0.762612\pi\)
\(774\) 0 0
\(775\) 1.32830e13 1.32263
\(776\) 0 0
\(777\) 1.74181e12 0.171438
\(778\) 0 0
\(779\) −4.42218e12 −0.430247
\(780\) 0 0
\(781\) −2.13421e13 −2.05262
\(782\) 0 0
\(783\) 3.26177e12 0.310117
\(784\) 0 0
\(785\) 1.78752e13 1.68011
\(786\) 0 0
\(787\) 1.05513e13 0.980441 0.490220 0.871599i \(-0.336916\pi\)
0.490220 + 0.871599i \(0.336916\pi\)
\(788\) 0 0
\(789\) −1.69401e12 −0.155621
\(790\) 0 0
\(791\) 1.01040e13 0.917700
\(792\) 0 0
\(793\) −4.93143e12 −0.442836
\(794\) 0 0
\(795\) −2.03669e12 −0.180831
\(796\) 0 0
\(797\) −1.55803e13 −1.36778 −0.683888 0.729587i \(-0.739712\pi\)
−0.683888 + 0.729587i \(0.739712\pi\)
\(798\) 0 0
\(799\) 1.63686e12 0.142086
\(800\) 0 0
\(801\) 2.17481e12 0.186670
\(802\) 0 0
\(803\) 1.00119e13 0.849758
\(804\) 0 0
\(805\) 3.45439e13 2.89928
\(806\) 0 0
\(807\) 5.68147e11 0.0471552
\(808\) 0 0
\(809\) 1.89112e13 1.55221 0.776106 0.630602i \(-0.217192\pi\)
0.776106 + 0.630602i \(0.217192\pi\)
\(810\) 0 0
\(811\) −5.34506e12 −0.433869 −0.216934 0.976186i \(-0.569606\pi\)
−0.216934 + 0.976186i \(0.569606\pi\)
\(812\) 0 0
\(813\) 2.18061e12 0.175053
\(814\) 0 0
\(815\) −3.84943e13 −3.05624
\(816\) 0 0
\(817\) −8.92826e12 −0.701080
\(818\) 0 0
\(819\) −3.55554e12 −0.276139
\(820\) 0 0
\(821\) 8.66499e12 0.665616 0.332808 0.942995i \(-0.392004\pi\)
0.332808 + 0.942995i \(0.392004\pi\)
\(822\) 0 0
\(823\) 2.49997e13 1.89948 0.949741 0.313038i \(-0.101347\pi\)
0.949741 + 0.313038i \(0.101347\pi\)
\(824\) 0 0
\(825\) 5.69470e12 0.427984
\(826\) 0 0
\(827\) 1.12047e13 0.832960 0.416480 0.909145i \(-0.363264\pi\)
0.416480 + 0.909145i \(0.363264\pi\)
\(828\) 0 0
\(829\) −1.40565e13 −1.03367 −0.516835 0.856085i \(-0.672890\pi\)
−0.516835 + 0.856085i \(0.672890\pi\)
\(830\) 0 0
\(831\) −3.01445e12 −0.219282
\(832\) 0 0
\(833\) −6.08998e11 −0.0438242
\(834\) 0 0
\(835\) −3.07064e13 −2.18595
\(836\) 0 0
\(837\) −2.33167e12 −0.164211
\(838\) 0 0
\(839\) 8.22132e12 0.572813 0.286406 0.958108i \(-0.407539\pi\)
0.286406 + 0.958108i \(0.407539\pi\)
\(840\) 0 0
\(841\) 6.12786e12 0.422403
\(842\) 0 0
\(843\) −6.99768e11 −0.0477233
\(844\) 0 0
\(845\) 2.00538e12 0.135314
\(846\) 0 0
\(847\) −2.16720e13 −1.44685
\(848\) 0 0
\(849\) −1.38641e12 −0.0915813
\(850\) 0 0
\(851\) 3.21212e13 2.09947
\(852\) 0 0
\(853\) −8.63701e12 −0.558589 −0.279295 0.960205i \(-0.590101\pi\)
−0.279295 + 0.960205i \(0.590101\pi\)
\(854\) 0 0
\(855\) −3.99196e13 −2.55469
\(856\) 0 0
\(857\) 5.69915e11 0.0360908 0.0180454 0.999837i \(-0.494256\pi\)
0.0180454 + 0.999837i \(0.494256\pi\)
\(858\) 0 0
\(859\) −2.40033e13 −1.50419 −0.752094 0.659056i \(-0.770956\pi\)
−0.752094 + 0.659056i \(0.770956\pi\)
\(860\) 0 0
\(861\) 6.23754e11 0.0386811
\(862\) 0 0
\(863\) −1.23684e13 −0.759041 −0.379521 0.925183i \(-0.623911\pi\)
−0.379521 + 0.925183i \(0.623911\pi\)
\(864\) 0 0
\(865\) −5.68034e13 −3.44986
\(866\) 0 0
\(867\) 3.88322e12 0.233403
\(868\) 0 0
\(869\) 2.08223e13 1.23862
\(870\) 0 0
\(871\) −7.68938e12 −0.452699
\(872\) 0 0
\(873\) 2.78599e13 1.62336
\(874\) 0 0
\(875\) −3.38155e13 −1.95020
\(876\) 0 0
\(877\) 2.72862e13 1.55756 0.778780 0.627298i \(-0.215839\pi\)
0.778780 + 0.627298i \(0.215839\pi\)
\(878\) 0 0
\(879\) −1.61021e12 −0.0909770
\(880\) 0 0
\(881\) −2.76782e13 −1.54791 −0.773955 0.633241i \(-0.781724\pi\)
−0.773955 + 0.633241i \(0.781724\pi\)
\(882\) 0 0
\(883\) −1.80925e13 −1.00156 −0.500778 0.865576i \(-0.666953\pi\)
−0.500778 + 0.865576i \(0.666953\pi\)
\(884\) 0 0
\(885\) −1.12662e12 −0.0617354
\(886\) 0 0
\(887\) −2.13275e13 −1.15687 −0.578433 0.815730i \(-0.696335\pi\)
−0.578433 + 0.815730i \(0.696335\pi\)
\(888\) 0 0
\(889\) 4.97979e12 0.267395
\(890\) 0 0
\(891\) 2.78113e13 1.47833
\(892\) 0 0
\(893\) −2.39312e12 −0.125931
\(894\) 0 0
\(895\) −1.06084e13 −0.552643
\(896\) 0 0
\(897\) 1.14736e12 0.0591743
\(898\) 0 0
\(899\) −1.47509e13 −0.753181
\(900\) 0 0
\(901\) 2.58536e13 1.30695
\(902\) 0 0
\(903\) 1.25934e12 0.0630302
\(904\) 0 0
\(905\) −3.59524e13 −1.78160
\(906\) 0 0
\(907\) 2.18772e13 1.07339 0.536696 0.843776i \(-0.319672\pi\)
0.536696 + 0.843776i \(0.319672\pi\)
\(908\) 0 0
\(909\) 1.98284e13 0.963273
\(910\) 0 0
\(911\) 7.21991e12 0.347295 0.173648 0.984808i \(-0.444445\pi\)
0.173648 + 0.984808i \(0.444445\pi\)
\(912\) 0 0
\(913\) −3.38216e13 −1.61093
\(914\) 0 0
\(915\) 7.80962e12 0.368328
\(916\) 0 0
\(917\) −8.43132e12 −0.393762
\(918\) 0 0
\(919\) 1.68962e13 0.781394 0.390697 0.920519i \(-0.372234\pi\)
0.390697 + 0.920519i \(0.372234\pi\)
\(920\) 0 0
\(921\) 1.11019e12 0.0508429
\(922\) 0 0
\(923\) 8.05568e12 0.365338
\(924\) 0 0
\(925\) −6.01766e13 −2.70265
\(926\) 0 0
\(927\) 6.70439e12 0.298195
\(928\) 0 0
\(929\) 2.94634e13 1.29781 0.648906 0.760869i \(-0.275227\pi\)
0.648906 + 0.760869i \(0.275227\pi\)
\(930\) 0 0
\(931\) 8.90364e11 0.0388413
\(932\) 0 0
\(933\) −3.88090e12 −0.167674
\(934\) 0 0
\(935\) −1.06804e14 −4.57019
\(936\) 0 0
\(937\) 3.67745e12 0.155854 0.0779271 0.996959i \(-0.475170\pi\)
0.0779271 + 0.996959i \(0.475170\pi\)
\(938\) 0 0
\(939\) 5.81787e11 0.0244213
\(940\) 0 0
\(941\) −4.72700e13 −1.96532 −0.982659 0.185424i \(-0.940634\pi\)
−0.982659 + 0.185424i \(0.940634\pi\)
\(942\) 0 0
\(943\) 1.15028e13 0.473697
\(944\) 0 0
\(945\) 1.13600e13 0.463376
\(946\) 0 0
\(947\) 2.25228e13 0.910014 0.455007 0.890488i \(-0.349637\pi\)
0.455007 + 0.890488i \(0.349637\pi\)
\(948\) 0 0
\(949\) −3.77902e12 −0.151245
\(950\) 0 0
\(951\) 4.43345e12 0.175764
\(952\) 0 0
\(953\) 3.02491e13 1.18794 0.593970 0.804487i \(-0.297560\pi\)
0.593970 + 0.804487i \(0.297560\pi\)
\(954\) 0 0
\(955\) 4.32656e13 1.68317
\(956\) 0 0
\(957\) −6.32400e12 −0.243718
\(958\) 0 0
\(959\) 3.07929e13 1.17562
\(960\) 0 0
\(961\) −1.58950e13 −0.601181
\(962\) 0 0
\(963\) −3.28684e12 −0.123157
\(964\) 0 0
\(965\) −3.39284e13 −1.25948
\(966\) 0 0
\(967\) −2.87362e13 −1.05684 −0.528421 0.848983i \(-0.677216\pi\)
−0.528421 + 0.848983i \(0.677216\pi\)
\(968\) 0 0
\(969\) −8.86718e12 −0.323094
\(970\) 0 0
\(971\) −4.90160e13 −1.76950 −0.884751 0.466064i \(-0.845672\pi\)
−0.884751 + 0.466064i \(0.845672\pi\)
\(972\) 0 0
\(973\) 2.63048e13 0.940865
\(974\) 0 0
\(975\) −2.14949e12 −0.0761753
\(976\) 0 0
\(977\) 1.70416e13 0.598392 0.299196 0.954192i \(-0.403282\pi\)
0.299196 + 0.954192i \(0.403282\pi\)
\(978\) 0 0
\(979\) −8.50693e12 −0.295972
\(980\) 0 0
\(981\) 6.03191e12 0.207943
\(982\) 0 0
\(983\) 4.37056e13 1.49295 0.746476 0.665412i \(-0.231744\pi\)
0.746476 + 0.665412i \(0.231744\pi\)
\(984\) 0 0
\(985\) −1.27086e13 −0.430164
\(986\) 0 0
\(987\) 3.37552e11 0.0113218
\(988\) 0 0
\(989\) 2.32238e13 0.771881
\(990\) 0 0
\(991\) 2.74983e12 0.0905680 0.0452840 0.998974i \(-0.485581\pi\)
0.0452840 + 0.998974i \(0.485581\pi\)
\(992\) 0 0
\(993\) 7.37680e12 0.240767
\(994\) 0 0
\(995\) −3.44695e13 −1.11489
\(996\) 0 0
\(997\) −1.61703e13 −0.518310 −0.259155 0.965836i \(-0.583444\pi\)
−0.259155 + 0.965836i \(0.583444\pi\)
\(998\) 0 0
\(999\) 1.05632e13 0.335546
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.j.1.4 6
4.3 odd 2 104.10.a.b.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.a.b.1.3 6 4.3 odd 2
208.10.a.j.1.4 6 1.1 even 1 trivial