Properties

Label 208.10.a.j
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-60] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 69754x^{4} - 2752492x^{3} + 1089377733x^{2} + 50183965132x - 2195812679340 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3 \)
Twist minimal: no (minimal twist has level 104)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 10) q^{3} + (\beta_{2} - 2 \beta_1 + 29) q^{5} + (\beta_{4} + \beta_{3} - 3 \beta_1 - 570) q^{7} + (\beta_{5} + 2 \beta_{4} + 2 \beta_{3} + \cdots + 3669) q^{9} + (4 \beta_{5} - 3 \beta_{4} + \cdots + 16885) q^{11}+ \cdots + (32622 \beta_{5} + 3173 \beta_{4} + \cdots - 46915424) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 60 q^{3} + 176 q^{5} - 3416 q^{7} + 22010 q^{9} + 101316 q^{11} - 171366 q^{13} - 257460 q^{15} - 170304 q^{17} + 92084 q^{19} - 424004 q^{21} - 2369944 q^{23} + 2043598 q^{25} + 6428196 q^{27} - 9021404 q^{29}+ \cdots - 282095980 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 69754x^{4} - 2752492x^{3} + 1089377733x^{2} + 50183965132x - 2195812679340 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 368 \nu^{5} - 45703 \nu^{4} - 19288734 \nu^{3} + 1079565658 \nu^{2} + 229184428576 \nu - 1111353084345 ) / 2334126375 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 4837 \nu^{5} + 674552 \nu^{4} + 199554531 \nu^{3} - 12219130022 \nu^{2} + \cdots - 23038541410395 ) / 11670631875 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 67849 \nu^{5} - 10621154 \nu^{4} - 3012685212 \nu^{3} + 282627831344 \nu^{2} + \cdots - 930979994747460 ) / 23341263750 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 9059 \nu^{5} + 1534489 \nu^{4} + 387694092 \nu^{3} - 41746828279 \nu^{2} + \cdots + 133358837451735 ) / 2334126375 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + 2\beta_{4} + 2\beta_{3} - 7\beta_{2} + 61\beta _1 + 23252 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 134\beta_{5} + 246\beta_{4} - 59\beta_{3} - 1392\beta_{2} + 38879\beta _1 + 1376603 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 71274\beta_{5} + 126464\beta_{4} + 61554\beta_{3} - 415291\beta_{2} + 5203232\beta _1 + 895673683 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 12941740 \beta_{5} + 22732830 \beta_{4} - 1315120 \beta_{3} - 97659990 \beta_{2} + 1882315401 \beta _1 + 118198901710 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−162.332
−160.070
−88.4022
28.3984
137.372
245.033
0 −172.332 0 107.467 0 615.682 0 10015.3 0
1.2 0 −170.070 0 476.881 0 9274.85 0 9240.75 0
1.3 0 −98.4022 0 −1673.83 0 −9266.18 0 −10000.0 0
1.4 0 18.3984 0 2458.39 0 −6435.39 0 −19344.5 0
1.5 0 127.372 0 811.825 0 899.641 0 −3459.32 0
1.6 0 235.033 0 −2004.73 0 1495.40 0 35557.7 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.j 6
4.b odd 2 1 104.10.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.10.a.b 6 4.b odd 2 1
208.10.a.j 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{6} + 60T_{3}^{5} - 68254T_{3}^{4} - 5522652T_{3}^{3} + 965100573T_{3}^{2} + 70867356192T_{3} - 1588484286720 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 1588484286720 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 99\!\cdots\!88 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 33\!\cdots\!80 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 43\!\cdots\!28 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 79\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 27\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 85\!\cdots\!92 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 14\!\cdots\!20 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 63\!\cdots\!32 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 10\!\cdots\!20 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 19\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 12\!\cdots\!60 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 85\!\cdots\!32 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 68\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 86\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 51\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 14\!\cdots\!48 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 16\!\cdots\!44 \) Copy content Toggle raw display
show more
show less