Properties

Label 208.10.a.f
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,147] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 12623x^{2} - 303924x + 1814436 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 52)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 37) q^{3} + (\beta_{3} + 2 \beta_1 - 486) q^{5} + (4 \beta_{3} - 2 \beta_{2} + \cdots - 2561) q^{7} + ( - 9 \beta_{3} - 17 \beta_{2} + \cdots + 5573) q^{9} + (8 \beta_{3} - 33 \beta_{2} + \cdots - 5550) q^{11}+ \cdots + ( - 66048 \beta_{3} + 846752 \beta_{2} + \cdots - 288864300) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 147 q^{3} - 1947 q^{5} - 10251 q^{7} + 22199 q^{9} - 22038 q^{11} + 114244 q^{13} + 137363 q^{15} - 696135 q^{17} + 254502 q^{19} + 165205 q^{21} + 2038992 q^{23} + 16923 q^{25} + 9068877 q^{27} - 6437112 q^{29}+ \cdots - 1154490140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 12623x^{2} - 303924x + 1814436 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - 55\nu - 6294 ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 233\nu - 6438 ) / 36 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - 19\nu^{2} - 11370\nu - 121284 ) / 108 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 4 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 55\beta_{2} + 233\beta _1 + 50572 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 864\beta_{3} + 12415\beta_{2} - 6943\beta _1 + 1976620 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.95251
−31.2489
123.347
−95.0503
0 −144.718 0 −2497.02 0 −9767.71 0 1260.40 0
1.2 0 −62.9670 0 1026.55 0 4497.03 0 −15718.2 0
1.3 0 96.3430 0 223.782 0 −1984.14 0 −10401.0 0
1.4 0 258.342 0 −700.318 0 −2996.18 0 47057.8 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.f 4
4.b odd 2 1 52.10.a.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.10.a.a 4 4.b odd 2 1
208.10.a.f 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 147T_{3}^{3} - 39661T_{3}^{2} + 1937115T_{3} + 226804788 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 147 T^{3} + \cdots + 226804788 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 401718852990 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 261130689389948 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 37\!\cdots\!72 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots - 27\!\cdots\!38 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 19\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 23\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 22\!\cdots\!28 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 94\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 12\!\cdots\!58 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 10\!\cdots\!68 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 38\!\cdots\!68 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 44\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 81\!\cdots\!16 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 10\!\cdots\!72 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 46\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 51\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 14\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 33\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 22\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 31\!\cdots\!28 \) Copy content Toggle raw display
show more
show less