Properties

Label 2-208-1.1-c9-0-40
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 62.9·3-s + 1.02e3·5-s + 4.49e3·7-s − 1.57e4·9-s + 3.35e4·11-s + 2.85e4·13-s − 6.46e4·15-s − 3.09e5·17-s − 3.43e5·19-s − 2.83e5·21-s + 6.35e5·23-s − 8.99e5·25-s + 2.22e6·27-s − 8.19e5·29-s − 2.76e6·31-s − 2.11e6·33-s + 4.61e6·35-s − 1.71e7·37-s − 1.79e6·39-s − 1.04e7·41-s + 3.30e7·43-s − 1.61e7·45-s + 2.06e7·47-s − 2.01e7·49-s + 1.94e7·51-s + 8.67e7·53-s + 3.44e7·55-s + ⋯
L(s)  = 1  − 0.448·3-s + 0.734·5-s + 0.707·7-s − 0.798·9-s + 0.690·11-s + 0.277·13-s − 0.329·15-s − 0.897·17-s − 0.604·19-s − 0.317·21-s + 0.473·23-s − 0.460·25-s + 0.807·27-s − 0.215·29-s − 0.537·31-s − 0.309·33-s + 0.519·35-s − 1.50·37-s − 0.124·39-s − 0.575·41-s + 1.47·43-s − 0.586·45-s + 0.618·47-s − 0.498·49-s + 0.402·51-s + 1.51·53-s + 0.507·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 + 62.9T + 1.96e4T^{2} \)
5 \( 1 - 1.02e3T + 1.95e6T^{2} \)
7 \( 1 - 4.49e3T + 4.03e7T^{2} \)
11 \( 1 - 3.35e4T + 2.35e9T^{2} \)
17 \( 1 + 3.09e5T + 1.18e11T^{2} \)
19 \( 1 + 3.43e5T + 3.22e11T^{2} \)
23 \( 1 - 6.35e5T + 1.80e12T^{2} \)
29 \( 1 + 8.19e5T + 1.45e13T^{2} \)
31 \( 1 + 2.76e6T + 2.64e13T^{2} \)
37 \( 1 + 1.71e7T + 1.29e14T^{2} \)
41 \( 1 + 1.04e7T + 3.27e14T^{2} \)
43 \( 1 - 3.30e7T + 5.02e14T^{2} \)
47 \( 1 - 2.06e7T + 1.11e15T^{2} \)
53 \( 1 - 8.67e7T + 3.29e15T^{2} \)
59 \( 1 - 2.54e7T + 8.66e15T^{2} \)
61 \( 1 - 2.17e7T + 1.16e16T^{2} \)
67 \( 1 - 6.00e7T + 2.72e16T^{2} \)
71 \( 1 + 1.65e8T + 4.58e16T^{2} \)
73 \( 1 + 3.19e7T + 5.88e16T^{2} \)
79 \( 1 + 4.12e8T + 1.19e17T^{2} \)
83 \( 1 + 5.84e8T + 1.86e17T^{2} \)
89 \( 1 - 1.09e8T + 3.50e17T^{2} \)
97 \( 1 - 1.08e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.45182359577731638960536310375, −9.128862602298421300590859440419, −8.495950999836293993582591243963, −7.03703270214642280307357374838, −6.03828010583896058817338308184, −5.22049937994051112848847634160, −3.98920619556203509468940340499, −2.42733346515425599710017991272, −1.39478606967193825361658925565, 0, 1.39478606967193825361658925565, 2.42733346515425599710017991272, 3.98920619556203509468940340499, 5.22049937994051112848847634160, 6.03828010583896058817338308184, 7.03703270214642280307357374838, 8.495950999836293993582591243963, 9.128862602298421300590859440419, 10.45182359577731638960536310375

Graph of the $Z$-function along the critical line