Properties

Label 208.10.a.e
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6144x - 66096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( - 9 \beta_{2} - 11 \beta_1 + 79) q^{5} + (51 \beta_{2} - 40 \beta_1 + 972) q^{7} + ( - 79 \beta_{2} - 5 \beta_1 - 6956) q^{9} + ( - 246 \beta_{2} + 380 \beta_1 + 10568) q^{11} + 28561 q^{13}+ \cdots + ( - 121632 \beta_{2} - 5113300 \beta_1 + 99637760) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 248 q^{5} + 2956 q^{7} - 20863 q^{9} + 31324 q^{11} + 85683 q^{13} - 392140 q^{15} + 905228 q^{17} - 1726316 q^{19} + 1771246 q^{21} - 2135256 q^{23} + 4074295 q^{25} - 3038724 q^{27} + 372426 q^{29}+ \cdots + 304026580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6144x - 66096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 13\nu - 4092 ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 48\beta_{2} + 13\beta _1 + 8197 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.9937
83.7664
−71.7727
0 −159.509 0 1767.44 0 −6243.46 0 5760.16 0
1.2 0 76.4939 0 −2441.31 0 −1788.13 0 −13831.7 0
1.3 0 83.0152 0 921.862 0 10987.6 0 −12791.5 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.e 3
4.b odd 2 1 26.10.a.d 3
12.b even 2 1 234.10.a.l 3
52.b odd 2 1 338.10.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.a.d 3 4.b odd 2 1
208.10.a.e 3 1.a even 1 1 trivial
234.10.a.l 3 12.b even 2 1
338.10.a.f 3 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 19093T_{3} + 1012908 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 19093 T + 1012908 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 3977720730 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 122666634104 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 146425442149584 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 10\!\cdots\!86 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 15\!\cdots\!48 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 12\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 18\!\cdots\!52 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 16\!\cdots\!58 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 73\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 71\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 12\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 26\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 19\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots - 28\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 52\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 40\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 45\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 18\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
show more
show less