Properties

Label 26.10.a.d
Level $26$
Weight $10$
Character orbit 26.a
Self dual yes
Analytic conductor $13.391$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [26,10,Mod(1,26)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(26, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("26.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.3909317403\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 6144x - 66096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} - \beta_{2} q^{3} + 256 q^{4} + ( - 9 \beta_{2} - 11 \beta_1 + 79) q^{5} + 16 \beta_{2} q^{6} + ( - 51 \beta_{2} + 40 \beta_1 - 972) q^{7} - 4096 q^{8} + ( - 79 \beta_{2} - 5 \beta_1 - 6956) q^{9}+ \cdots + (121632 \beta_{2} + 5113300 \beta_1 - 99637760) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 48 q^{2} + 768 q^{4} + 248 q^{5} - 2956 q^{7} - 12288 q^{8} - 20863 q^{9} - 3968 q^{10} - 31324 q^{11} + 85683 q^{13} + 47296 q^{14} + 392140 q^{15} + 196608 q^{16} + 905228 q^{17} + 333808 q^{18}+ \cdots - 304026580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 6144x - 66096 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - 13\nu - 4092 ) / 24 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 48\beta_{2} + 13\beta _1 + 8197 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−71.7727
83.7664
−10.9937
−16.0000 −83.0152 256.000 921.862 1328.24 −10987.6 −4096.00 −12791.5 −14749.8
1.2 −16.0000 −76.4939 256.000 −2441.31 1223.90 1788.13 −4096.00 −13831.7 39060.9
1.3 −16.0000 159.509 256.000 1767.44 −2552.15 6243.46 −4096.00 5760.16 −28279.1
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.10.a.d 3
3.b odd 2 1 234.10.a.l 3
4.b odd 2 1 208.10.a.e 3
13.b even 2 1 338.10.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.a.d 3 1.a even 1 1 trivial
208.10.a.e 3 4.b odd 2 1
234.10.a.l 3 3.b odd 2 1
338.10.a.f 3 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 19093T_{3} - 1012908 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(26))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 19093 T - 1012908 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 3977720730 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots + 122666634104 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 146425442149584 \) Copy content Toggle raw display
$13$ \( (T - 28561)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 10\!\cdots\!86 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 15\!\cdots\!48 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 12\!\cdots\!84 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 18\!\cdots\!52 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 16\!\cdots\!58 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 73\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 71\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 11\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 26\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 19\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 28\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 52\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 40\!\cdots\!76 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 45\!\cdots\!20 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 18\!\cdots\!44 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
show more
show less