Properties

Label 208.10.a.d.1.3
Level $208$
Weight $10$
Character 208.1
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(16.8848\) of defining polynomial
Character \(\chi\) \(=\) 208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+178.768 q^{3} -2343.01 q^{5} -10882.2 q^{7} +12274.9 q^{9} -80220.9 q^{11} -28561.0 q^{13} -418855. q^{15} +193066. q^{17} +290332. q^{19} -1.94538e6 q^{21} -1.11158e6 q^{23} +3.53659e6 q^{25} -1.32434e6 q^{27} -2.97253e6 q^{29} -7.98567e6 q^{31} -1.43409e7 q^{33} +2.54971e7 q^{35} -762787. q^{37} -5.10578e6 q^{39} -4.07656e6 q^{41} +4.14147e6 q^{43} -2.87601e7 q^{45} +2.04292e7 q^{47} +7.80686e7 q^{49} +3.45140e7 q^{51} +5.05420e7 q^{53} +1.87959e8 q^{55} +5.19020e7 q^{57} +6.13428e7 q^{59} +1.31190e8 q^{61} -1.33577e8 q^{63} +6.69188e7 q^{65} -3.22558e8 q^{67} -1.98714e8 q^{69} +5.50167e7 q^{71} +1.03200e8 q^{73} +6.32227e8 q^{75} +8.72979e8 q^{77} -6.04613e8 q^{79} -4.78354e8 q^{81} +5.67238e8 q^{83} -4.52357e8 q^{85} -5.31391e8 q^{87} +1.37799e8 q^{89} +3.10806e8 q^{91} -1.42758e9 q^{93} -6.80252e8 q^{95} -1.19935e7 q^{97} -9.84699e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 156 q^{3} - 1272 q^{5} - 17058 q^{7} + 42273 q^{9} - 73974 q^{11} - 85683 q^{13} - 393756 q^{15} + 374976 q^{17} - 418338 q^{19} - 284694 q^{21} - 1026168 q^{23} + 3337287 q^{25} - 4218588 q^{27}+ \cdots + 2480087466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 178.768 1.27422 0.637108 0.770774i \(-0.280130\pi\)
0.637108 + 0.770774i \(0.280130\pi\)
\(4\) 0 0
\(5\) −2343.01 −1.67652 −0.838262 0.545268i \(-0.816428\pi\)
−0.838262 + 0.545268i \(0.816428\pi\)
\(6\) 0 0
\(7\) −10882.2 −1.71307 −0.856536 0.516088i \(-0.827388\pi\)
−0.856536 + 0.516088i \(0.827388\pi\)
\(8\) 0 0
\(9\) 12274.9 0.623627
\(10\) 0 0
\(11\) −80220.9 −1.65204 −0.826019 0.563642i \(-0.809400\pi\)
−0.826019 + 0.563642i \(0.809400\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 0 0
\(15\) −418855. −2.13625
\(16\) 0 0
\(17\) 193066. 0.560643 0.280322 0.959906i \(-0.409559\pi\)
0.280322 + 0.959906i \(0.409559\pi\)
\(18\) 0 0
\(19\) 290332. 0.511097 0.255549 0.966796i \(-0.417744\pi\)
0.255549 + 0.966796i \(0.417744\pi\)
\(20\) 0 0
\(21\) −1.94538e6 −2.18282
\(22\) 0 0
\(23\) −1.11158e6 −0.828258 −0.414129 0.910218i \(-0.635914\pi\)
−0.414129 + 0.910218i \(0.635914\pi\)
\(24\) 0 0
\(25\) 3.53659e6 1.81073
\(26\) 0 0
\(27\) −1.32434e6 −0.479581
\(28\) 0 0
\(29\) −2.97253e6 −0.780431 −0.390216 0.920724i \(-0.627600\pi\)
−0.390216 + 0.920724i \(0.627600\pi\)
\(30\) 0 0
\(31\) −7.98567e6 −1.55304 −0.776522 0.630090i \(-0.783018\pi\)
−0.776522 + 0.630090i \(0.783018\pi\)
\(32\) 0 0
\(33\) −1.43409e7 −2.10505
\(34\) 0 0
\(35\) 2.54971e7 2.87201
\(36\) 0 0
\(37\) −762787. −0.0669107 −0.0334554 0.999440i \(-0.510651\pi\)
−0.0334554 + 0.999440i \(0.510651\pi\)
\(38\) 0 0
\(39\) −5.10578e6 −0.353404
\(40\) 0 0
\(41\) −4.07656e6 −0.225303 −0.112651 0.993635i \(-0.535934\pi\)
−0.112651 + 0.993635i \(0.535934\pi\)
\(42\) 0 0
\(43\) 4.14147e6 0.184734 0.0923669 0.995725i \(-0.470557\pi\)
0.0923669 + 0.995725i \(0.470557\pi\)
\(44\) 0 0
\(45\) −2.87601e7 −1.04553
\(46\) 0 0
\(47\) 2.04292e7 0.610677 0.305339 0.952244i \(-0.401230\pi\)
0.305339 + 0.952244i \(0.401230\pi\)
\(48\) 0 0
\(49\) 7.80686e7 1.93461
\(50\) 0 0
\(51\) 3.45140e7 0.714381
\(52\) 0 0
\(53\) 5.05420e7 0.879855 0.439927 0.898033i \(-0.355004\pi\)
0.439927 + 0.898033i \(0.355004\pi\)
\(54\) 0 0
\(55\) 1.87959e8 2.76968
\(56\) 0 0
\(57\) 5.19020e7 0.651249
\(58\) 0 0
\(59\) 6.13428e7 0.659067 0.329533 0.944144i \(-0.393109\pi\)
0.329533 + 0.944144i \(0.393109\pi\)
\(60\) 0 0
\(61\) 1.31190e8 1.21316 0.606578 0.795024i \(-0.292542\pi\)
0.606578 + 0.795024i \(0.292542\pi\)
\(62\) 0 0
\(63\) −1.33577e8 −1.06832
\(64\) 0 0
\(65\) 6.69188e7 0.464984
\(66\) 0 0
\(67\) −3.22558e8 −1.95556 −0.977782 0.209626i \(-0.932775\pi\)
−0.977782 + 0.209626i \(0.932775\pi\)
\(68\) 0 0
\(69\) −1.98714e8 −1.05538
\(70\) 0 0
\(71\) 5.50167e7 0.256940 0.128470 0.991713i \(-0.458993\pi\)
0.128470 + 0.991713i \(0.458993\pi\)
\(72\) 0 0
\(73\) 1.03200e8 0.425330 0.212665 0.977125i \(-0.431786\pi\)
0.212665 + 0.977125i \(0.431786\pi\)
\(74\) 0 0
\(75\) 6.32227e8 2.30727
\(76\) 0 0
\(77\) 8.72979e8 2.83006
\(78\) 0 0
\(79\) −6.04613e8 −1.74645 −0.873223 0.487320i \(-0.837975\pi\)
−0.873223 + 0.487320i \(0.837975\pi\)
\(80\) 0 0
\(81\) −4.78354e8 −1.23472
\(82\) 0 0
\(83\) 5.67238e8 1.31194 0.655970 0.754787i \(-0.272260\pi\)
0.655970 + 0.754787i \(0.272260\pi\)
\(84\) 0 0
\(85\) −4.52357e8 −0.939932
\(86\) 0 0
\(87\) −5.31391e8 −0.994438
\(88\) 0 0
\(89\) 1.37799e8 0.232805 0.116402 0.993202i \(-0.462864\pi\)
0.116402 + 0.993202i \(0.462864\pi\)
\(90\) 0 0
\(91\) 3.10806e8 0.475120
\(92\) 0 0
\(93\) −1.42758e9 −1.97891
\(94\) 0 0
\(95\) −6.80252e8 −0.856867
\(96\) 0 0
\(97\) −1.19935e7 −0.0137554 −0.00687768 0.999976i \(-0.502189\pi\)
−0.00687768 + 0.999976i \(0.502189\pi\)
\(98\) 0 0
\(99\) −9.84699e8 −1.03026
\(100\) 0 0
\(101\) −4.21284e8 −0.402836 −0.201418 0.979505i \(-0.564555\pi\)
−0.201418 + 0.979505i \(0.564555\pi\)
\(102\) 0 0
\(103\) 1.32027e9 1.15584 0.577918 0.816095i \(-0.303865\pi\)
0.577918 + 0.816095i \(0.303865\pi\)
\(104\) 0 0
\(105\) 4.55806e9 3.65956
\(106\) 0 0
\(107\) 2.86202e8 0.211079 0.105540 0.994415i \(-0.466343\pi\)
0.105540 + 0.994415i \(0.466343\pi\)
\(108\) 0 0
\(109\) −1.50243e9 −1.01947 −0.509737 0.860330i \(-0.670257\pi\)
−0.509737 + 0.860330i \(0.670257\pi\)
\(110\) 0 0
\(111\) −1.36362e8 −0.0852587
\(112\) 0 0
\(113\) −1.46902e9 −0.847569 −0.423784 0.905763i \(-0.639299\pi\)
−0.423784 + 0.905763i \(0.639299\pi\)
\(114\) 0 0
\(115\) 2.60445e9 1.38859
\(116\) 0 0
\(117\) −3.50582e8 −0.172963
\(118\) 0 0
\(119\) −2.10099e9 −0.960422
\(120\) 0 0
\(121\) 4.07744e9 1.72923
\(122\) 0 0
\(123\) −7.28756e8 −0.287084
\(124\) 0 0
\(125\) −3.71007e9 −1.35921
\(126\) 0 0
\(127\) −3.62878e9 −1.23778 −0.618890 0.785478i \(-0.712417\pi\)
−0.618890 + 0.785478i \(0.712417\pi\)
\(128\) 0 0
\(129\) 7.40361e8 0.235391
\(130\) 0 0
\(131\) 2.56547e9 0.761108 0.380554 0.924759i \(-0.375733\pi\)
0.380554 + 0.924759i \(0.375733\pi\)
\(132\) 0 0
\(133\) −3.15945e9 −0.875546
\(134\) 0 0
\(135\) 3.10294e9 0.804028
\(136\) 0 0
\(137\) −2.71592e9 −0.658680 −0.329340 0.944211i \(-0.606826\pi\)
−0.329340 + 0.944211i \(0.606826\pi\)
\(138\) 0 0
\(139\) −1.38690e9 −0.315122 −0.157561 0.987509i \(-0.550363\pi\)
−0.157561 + 0.987509i \(0.550363\pi\)
\(140\) 0 0
\(141\) 3.65209e9 0.778135
\(142\) 0 0
\(143\) 2.29119e9 0.458193
\(144\) 0 0
\(145\) 6.96467e9 1.30841
\(146\) 0 0
\(147\) 1.39561e10 2.46512
\(148\) 0 0
\(149\) 2.31719e9 0.385143 0.192572 0.981283i \(-0.438317\pi\)
0.192572 + 0.981283i \(0.438317\pi\)
\(150\) 0 0
\(151\) 8.24464e9 1.29055 0.645276 0.763950i \(-0.276742\pi\)
0.645276 + 0.763950i \(0.276742\pi\)
\(152\) 0 0
\(153\) 2.36986e9 0.349632
\(154\) 0 0
\(155\) 1.87105e10 2.60372
\(156\) 0 0
\(157\) 6.19786e8 0.0814130 0.0407065 0.999171i \(-0.487039\pi\)
0.0407065 + 0.999171i \(0.487039\pi\)
\(158\) 0 0
\(159\) 9.03527e9 1.12113
\(160\) 0 0
\(161\) 1.20964e10 1.41886
\(162\) 0 0
\(163\) −4.01230e9 −0.445194 −0.222597 0.974911i \(-0.571453\pi\)
−0.222597 + 0.974911i \(0.571453\pi\)
\(164\) 0 0
\(165\) 3.36009e10 3.52917
\(166\) 0 0
\(167\) −8.70691e9 −0.866244 −0.433122 0.901335i \(-0.642588\pi\)
−0.433122 + 0.901335i \(0.642588\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 0 0
\(171\) 3.56378e9 0.318734
\(172\) 0 0
\(173\) −8.79323e9 −0.746347 −0.373174 0.927762i \(-0.621730\pi\)
−0.373174 + 0.927762i \(0.621730\pi\)
\(174\) 0 0
\(175\) −3.84858e10 −3.10191
\(176\) 0 0
\(177\) 1.09661e10 0.839793
\(178\) 0 0
\(179\) −1.75285e10 −1.27616 −0.638080 0.769970i \(-0.720271\pi\)
−0.638080 + 0.769970i \(0.720271\pi\)
\(180\) 0 0
\(181\) 8.13160e9 0.563148 0.281574 0.959540i \(-0.409144\pi\)
0.281574 + 0.959540i \(0.409144\pi\)
\(182\) 0 0
\(183\) 2.34525e10 1.54582
\(184\) 0 0
\(185\) 1.78722e9 0.112177
\(186\) 0 0
\(187\) −1.54879e10 −0.926204
\(188\) 0 0
\(189\) 1.44117e10 0.821556
\(190\) 0 0
\(191\) 2.60980e10 1.41892 0.709458 0.704748i \(-0.248940\pi\)
0.709458 + 0.704748i \(0.248940\pi\)
\(192\) 0 0
\(193\) −2.60832e10 −1.35317 −0.676586 0.736364i \(-0.736541\pi\)
−0.676586 + 0.736364i \(0.736541\pi\)
\(194\) 0 0
\(195\) 1.19629e10 0.592490
\(196\) 0 0
\(197\) −1.78237e10 −0.843142 −0.421571 0.906795i \(-0.638521\pi\)
−0.421571 + 0.906795i \(0.638521\pi\)
\(198\) 0 0
\(199\) −1.37597e10 −0.621969 −0.310985 0.950415i \(-0.600659\pi\)
−0.310985 + 0.950415i \(0.600659\pi\)
\(200\) 0 0
\(201\) −5.76630e10 −2.49181
\(202\) 0 0
\(203\) 3.23476e10 1.33693
\(204\) 0 0
\(205\) 9.55143e9 0.377725
\(206\) 0 0
\(207\) −1.36445e10 −0.516524
\(208\) 0 0
\(209\) −2.32907e10 −0.844353
\(210\) 0 0
\(211\) −2.34073e9 −0.0812980 −0.0406490 0.999173i \(-0.512943\pi\)
−0.0406490 + 0.999173i \(0.512943\pi\)
\(212\) 0 0
\(213\) 9.83520e9 0.327397
\(214\) 0 0
\(215\) −9.70352e9 −0.309711
\(216\) 0 0
\(217\) 8.69017e10 2.66048
\(218\) 0 0
\(219\) 1.84488e10 0.541962
\(220\) 0 0
\(221\) −5.51417e9 −0.155494
\(222\) 0 0
\(223\) 2.60853e10 0.706356 0.353178 0.935556i \(-0.385101\pi\)
0.353178 + 0.935556i \(0.385101\pi\)
\(224\) 0 0
\(225\) 4.34111e10 1.12922
\(226\) 0 0
\(227\) 1.32079e10 0.330156 0.165078 0.986281i \(-0.447212\pi\)
0.165078 + 0.986281i \(0.447212\pi\)
\(228\) 0 0
\(229\) −3.78030e10 −0.908379 −0.454190 0.890905i \(-0.650071\pi\)
−0.454190 + 0.890905i \(0.650071\pi\)
\(230\) 0 0
\(231\) 1.56060e11 3.60611
\(232\) 0 0
\(233\) 2.12787e10 0.472982 0.236491 0.971634i \(-0.424003\pi\)
0.236491 + 0.971634i \(0.424003\pi\)
\(234\) 0 0
\(235\) −4.78660e10 −1.02382
\(236\) 0 0
\(237\) −1.08085e11 −2.22535
\(238\) 0 0
\(239\) −8.35483e10 −1.65633 −0.828165 0.560484i \(-0.810615\pi\)
−0.828165 + 0.560484i \(0.810615\pi\)
\(240\) 0 0
\(241\) 9.98011e10 1.90572 0.952859 0.303414i \(-0.0981264\pi\)
0.952859 + 0.303414i \(0.0981264\pi\)
\(242\) 0 0
\(243\) −5.94473e10 −1.09372
\(244\) 0 0
\(245\) −1.82916e11 −3.24342
\(246\) 0 0
\(247\) −8.29217e9 −0.141753
\(248\) 0 0
\(249\) 1.01404e11 1.67169
\(250\) 0 0
\(251\) 3.96659e9 0.0630792 0.0315396 0.999503i \(-0.489959\pi\)
0.0315396 + 0.999503i \(0.489959\pi\)
\(252\) 0 0
\(253\) 8.91719e10 1.36831
\(254\) 0 0
\(255\) −8.08668e10 −1.19768
\(256\) 0 0
\(257\) 1.94473e10 0.278074 0.139037 0.990287i \(-0.455599\pi\)
0.139037 + 0.990287i \(0.455599\pi\)
\(258\) 0 0
\(259\) 8.30080e9 0.114623
\(260\) 0 0
\(261\) −3.64873e10 −0.486698
\(262\) 0 0
\(263\) 8.88949e10 1.14571 0.572857 0.819656i \(-0.305835\pi\)
0.572857 + 0.819656i \(0.305835\pi\)
\(264\) 0 0
\(265\) −1.18421e11 −1.47510
\(266\) 0 0
\(267\) 2.46340e10 0.296644
\(268\) 0 0
\(269\) 4.82616e10 0.561974 0.280987 0.959712i \(-0.409338\pi\)
0.280987 + 0.959712i \(0.409338\pi\)
\(270\) 0 0
\(271\) 6.58608e10 0.741763 0.370881 0.928680i \(-0.379056\pi\)
0.370881 + 0.928680i \(0.379056\pi\)
\(272\) 0 0
\(273\) 5.55621e10 0.605406
\(274\) 0 0
\(275\) −2.83708e11 −2.99140
\(276\) 0 0
\(277\) −1.32558e11 −1.35284 −0.676418 0.736518i \(-0.736469\pi\)
−0.676418 + 0.736518i \(0.736469\pi\)
\(278\) 0 0
\(279\) −9.80229e10 −0.968521
\(280\) 0 0
\(281\) 1.77381e11 1.69719 0.848593 0.529046i \(-0.177450\pi\)
0.848593 + 0.529046i \(0.177450\pi\)
\(282\) 0 0
\(283\) 3.52850e10 0.327003 0.163502 0.986543i \(-0.447721\pi\)
0.163502 + 0.986543i \(0.447721\pi\)
\(284\) 0 0
\(285\) −1.21607e11 −1.09183
\(286\) 0 0
\(287\) 4.43619e10 0.385959
\(288\) 0 0
\(289\) −8.13133e10 −0.685679
\(290\) 0 0
\(291\) −2.14404e9 −0.0175273
\(292\) 0 0
\(293\) −7.69061e10 −0.609616 −0.304808 0.952414i \(-0.598592\pi\)
−0.304808 + 0.952414i \(0.598592\pi\)
\(294\) 0 0
\(295\) −1.43727e11 −1.10494
\(296\) 0 0
\(297\) 1.06239e11 0.792286
\(298\) 0 0
\(299\) 3.17478e10 0.229717
\(300\) 0 0
\(301\) −4.50683e10 −0.316462
\(302\) 0 0
\(303\) −7.53118e10 −0.513300
\(304\) 0 0
\(305\) −3.07380e11 −2.03389
\(306\) 0 0
\(307\) −1.38440e11 −0.889484 −0.444742 0.895659i \(-0.646705\pi\)
−0.444742 + 0.895659i \(0.646705\pi\)
\(308\) 0 0
\(309\) 2.36022e11 1.47279
\(310\) 0 0
\(311\) −6.65986e10 −0.403686 −0.201843 0.979418i \(-0.564693\pi\)
−0.201843 + 0.979418i \(0.564693\pi\)
\(312\) 0 0
\(313\) −1.16628e11 −0.686838 −0.343419 0.939182i \(-0.611585\pi\)
−0.343419 + 0.939182i \(0.611585\pi\)
\(314\) 0 0
\(315\) 3.12974e11 1.79106
\(316\) 0 0
\(317\) 1.15396e11 0.641835 0.320918 0.947107i \(-0.396009\pi\)
0.320918 + 0.947107i \(0.396009\pi\)
\(318\) 0 0
\(319\) 2.38459e11 1.28930
\(320\) 0 0
\(321\) 5.11637e10 0.268961
\(322\) 0 0
\(323\) 5.60533e10 0.286543
\(324\) 0 0
\(325\) −1.01008e11 −0.502207
\(326\) 0 0
\(327\) −2.68587e11 −1.29903
\(328\) 0 0
\(329\) −2.22315e11 −1.04613
\(330\) 0 0
\(331\) −3.35395e11 −1.53578 −0.767892 0.640580i \(-0.778694\pi\)
−0.767892 + 0.640580i \(0.778694\pi\)
\(332\) 0 0
\(333\) −9.36310e9 −0.0417273
\(334\) 0 0
\(335\) 7.55759e11 3.27855
\(336\) 0 0
\(337\) −2.66081e11 −1.12377 −0.561887 0.827214i \(-0.689924\pi\)
−0.561887 + 0.827214i \(0.689924\pi\)
\(338\) 0 0
\(339\) −2.62613e11 −1.07999
\(340\) 0 0
\(341\) 6.40618e11 2.56569
\(342\) 0 0
\(343\) −4.10422e11 −1.60106
\(344\) 0 0
\(345\) 4.65591e11 1.76937
\(346\) 0 0
\(347\) 4.29253e11 1.58939 0.794696 0.607008i \(-0.207630\pi\)
0.794696 + 0.607008i \(0.207630\pi\)
\(348\) 0 0
\(349\) −2.94419e10 −0.106231 −0.0531155 0.998588i \(-0.516915\pi\)
−0.0531155 + 0.998588i \(0.516915\pi\)
\(350\) 0 0
\(351\) 3.78244e10 0.133012
\(352\) 0 0
\(353\) 1.59952e11 0.548280 0.274140 0.961690i \(-0.411607\pi\)
0.274140 + 0.961690i \(0.411607\pi\)
\(354\) 0 0
\(355\) −1.28905e11 −0.430766
\(356\) 0 0
\(357\) −3.75588e11 −1.22378
\(358\) 0 0
\(359\) −5.47928e11 −1.74100 −0.870499 0.492170i \(-0.836204\pi\)
−0.870499 + 0.492170i \(0.836204\pi\)
\(360\) 0 0
\(361\) −2.38395e11 −0.738779
\(362\) 0 0
\(363\) 7.28914e11 2.20342
\(364\) 0 0
\(365\) −2.41798e11 −0.713075
\(366\) 0 0
\(367\) 2.04029e11 0.587075 0.293538 0.955948i \(-0.405167\pi\)
0.293538 + 0.955948i \(0.405167\pi\)
\(368\) 0 0
\(369\) −5.00391e10 −0.140505
\(370\) 0 0
\(371\) −5.50008e11 −1.50725
\(372\) 0 0
\(373\) 4.85466e11 1.29858 0.649290 0.760541i \(-0.275066\pi\)
0.649290 + 0.760541i \(0.275066\pi\)
\(374\) 0 0
\(375\) −6.63241e11 −1.73193
\(376\) 0 0
\(377\) 8.48983e10 0.216453
\(378\) 0 0
\(379\) 3.51410e11 0.874859 0.437430 0.899253i \(-0.355889\pi\)
0.437430 + 0.899253i \(0.355889\pi\)
\(380\) 0 0
\(381\) −6.48708e11 −1.57720
\(382\) 0 0
\(383\) −7.81319e11 −1.85539 −0.927693 0.373345i \(-0.878211\pi\)
−0.927693 + 0.373345i \(0.878211\pi\)
\(384\) 0 0
\(385\) −2.04540e12 −4.74466
\(386\) 0 0
\(387\) 5.08359e10 0.115205
\(388\) 0 0
\(389\) −3.32630e11 −0.736525 −0.368263 0.929722i \(-0.620047\pi\)
−0.368263 + 0.929722i \(0.620047\pi\)
\(390\) 0 0
\(391\) −2.14609e11 −0.464357
\(392\) 0 0
\(393\) 4.58623e11 0.969816
\(394\) 0 0
\(395\) 1.41662e12 2.92796
\(396\) 0 0
\(397\) 1.97334e11 0.398698 0.199349 0.979929i \(-0.436117\pi\)
0.199349 + 0.979929i \(0.436117\pi\)
\(398\) 0 0
\(399\) −5.64807e11 −1.11564
\(400\) 0 0
\(401\) −4.44050e11 −0.857595 −0.428798 0.903401i \(-0.641063\pi\)
−0.428798 + 0.903401i \(0.641063\pi\)
\(402\) 0 0
\(403\) 2.28079e11 0.430737
\(404\) 0 0
\(405\) 1.12079e12 2.07003
\(406\) 0 0
\(407\) 6.11915e10 0.110539
\(408\) 0 0
\(409\) −1.98941e11 −0.351536 −0.175768 0.984432i \(-0.556241\pi\)
−0.175768 + 0.984432i \(0.556241\pi\)
\(410\) 0 0
\(411\) −4.85519e11 −0.839301
\(412\) 0 0
\(413\) −6.67544e11 −1.12903
\(414\) 0 0
\(415\) −1.32905e12 −2.19950
\(416\) 0 0
\(417\) −2.47933e11 −0.401534
\(418\) 0 0
\(419\) −5.54213e11 −0.878444 −0.439222 0.898379i \(-0.644746\pi\)
−0.439222 + 0.898379i \(0.644746\pi\)
\(420\) 0 0
\(421\) 3.86989e11 0.600384 0.300192 0.953879i \(-0.402949\pi\)
0.300192 + 0.953879i \(0.402949\pi\)
\(422\) 0 0
\(423\) 2.50766e11 0.380835
\(424\) 0 0
\(425\) 6.82796e11 1.01517
\(426\) 0 0
\(427\) −1.42764e12 −2.07822
\(428\) 0 0
\(429\) 4.09590e11 0.583837
\(430\) 0 0
\(431\) 9.78340e11 1.36566 0.682829 0.730578i \(-0.260749\pi\)
0.682829 + 0.730578i \(0.260749\pi\)
\(432\) 0 0
\(433\) −9.07692e10 −0.124092 −0.0620459 0.998073i \(-0.519763\pi\)
−0.0620459 + 0.998073i \(0.519763\pi\)
\(434\) 0 0
\(435\) 1.24506e12 1.66720
\(436\) 0 0
\(437\) −3.22727e11 −0.423320
\(438\) 0 0
\(439\) −1.86949e11 −0.240233 −0.120117 0.992760i \(-0.538327\pi\)
−0.120117 + 0.992760i \(0.538327\pi\)
\(440\) 0 0
\(441\) 9.58281e11 1.20648
\(442\) 0 0
\(443\) 1.60031e12 1.97418 0.987090 0.160165i \(-0.0512028\pi\)
0.987090 + 0.160165i \(0.0512028\pi\)
\(444\) 0 0
\(445\) −3.22865e11 −0.390303
\(446\) 0 0
\(447\) 4.14238e11 0.490756
\(448\) 0 0
\(449\) −4.68942e11 −0.544516 −0.272258 0.962224i \(-0.587770\pi\)
−0.272258 + 0.962224i \(0.587770\pi\)
\(450\) 0 0
\(451\) 3.27025e11 0.372209
\(452\) 0 0
\(453\) 1.47387e12 1.64444
\(454\) 0 0
\(455\) −7.28224e11 −0.796551
\(456\) 0 0
\(457\) −1.32147e12 −1.41721 −0.708603 0.705607i \(-0.750674\pi\)
−0.708603 + 0.705607i \(0.750674\pi\)
\(458\) 0 0
\(459\) −2.55685e11 −0.268874
\(460\) 0 0
\(461\) 1.51257e12 1.55977 0.779885 0.625923i \(-0.215278\pi\)
0.779885 + 0.625923i \(0.215278\pi\)
\(462\) 0 0
\(463\) −7.55476e11 −0.764022 −0.382011 0.924158i \(-0.624768\pi\)
−0.382011 + 0.924158i \(0.624768\pi\)
\(464\) 0 0
\(465\) 3.34484e12 3.31770
\(466\) 0 0
\(467\) 6.15598e11 0.598923 0.299462 0.954108i \(-0.403193\pi\)
0.299462 + 0.954108i \(0.403193\pi\)
\(468\) 0 0
\(469\) 3.51014e12 3.35002
\(470\) 0 0
\(471\) 1.10798e11 0.103738
\(472\) 0 0
\(473\) −3.32232e11 −0.305187
\(474\) 0 0
\(475\) 1.02678e12 0.925461
\(476\) 0 0
\(477\) 6.20396e11 0.548701
\(478\) 0 0
\(479\) 1.26054e12 1.09408 0.547039 0.837107i \(-0.315755\pi\)
0.547039 + 0.837107i \(0.315755\pi\)
\(480\) 0 0
\(481\) 2.17860e10 0.0185577
\(482\) 0 0
\(483\) 2.16245e12 1.80794
\(484\) 0 0
\(485\) 2.81009e10 0.0230612
\(486\) 0 0
\(487\) 7.25359e11 0.584350 0.292175 0.956365i \(-0.405621\pi\)
0.292175 + 0.956365i \(0.405621\pi\)
\(488\) 0 0
\(489\) −7.17270e11 −0.567274
\(490\) 0 0
\(491\) 2.15372e11 0.167233 0.0836166 0.996498i \(-0.473353\pi\)
0.0836166 + 0.996498i \(0.473353\pi\)
\(492\) 0 0
\(493\) −5.73895e11 −0.437543
\(494\) 0 0
\(495\) 2.30716e12 1.72725
\(496\) 0 0
\(497\) −5.98703e11 −0.440157
\(498\) 0 0
\(499\) 1.51150e12 1.09133 0.545665 0.838004i \(-0.316277\pi\)
0.545665 + 0.838004i \(0.316277\pi\)
\(500\) 0 0
\(501\) −1.55651e12 −1.10378
\(502\) 0 0
\(503\) 1.93478e12 1.34765 0.673823 0.738893i \(-0.264651\pi\)
0.673823 + 0.738893i \(0.264651\pi\)
\(504\) 0 0
\(505\) 9.87073e11 0.675364
\(506\) 0 0
\(507\) 1.45826e11 0.0980166
\(508\) 0 0
\(509\) 7.92174e11 0.523107 0.261553 0.965189i \(-0.415765\pi\)
0.261553 + 0.965189i \(0.415765\pi\)
\(510\) 0 0
\(511\) −1.12304e12 −0.728620
\(512\) 0 0
\(513\) −3.84497e11 −0.245112
\(514\) 0 0
\(515\) −3.09342e12 −1.93779
\(516\) 0 0
\(517\) −1.63885e12 −1.00886
\(518\) 0 0
\(519\) −1.57194e12 −0.951008
\(520\) 0 0
\(521\) −4.77706e11 −0.284047 −0.142024 0.989863i \(-0.545361\pi\)
−0.142024 + 0.989863i \(0.545361\pi\)
\(522\) 0 0
\(523\) 2.40926e12 1.40808 0.704039 0.710162i \(-0.251378\pi\)
0.704039 + 0.710162i \(0.251378\pi\)
\(524\) 0 0
\(525\) −6.88002e12 −3.95251
\(526\) 0 0
\(527\) −1.54176e12 −0.870704
\(528\) 0 0
\(529\) −5.65543e11 −0.313989
\(530\) 0 0
\(531\) 7.52973e11 0.411012
\(532\) 0 0
\(533\) 1.16431e11 0.0624877
\(534\) 0 0
\(535\) −6.70576e11 −0.353880
\(536\) 0 0
\(537\) −3.13352e12 −1.62610
\(538\) 0 0
\(539\) −6.26273e12 −3.19606
\(540\) 0 0
\(541\) 2.74866e12 1.37954 0.689768 0.724030i \(-0.257712\pi\)
0.689768 + 0.724030i \(0.257712\pi\)
\(542\) 0 0
\(543\) 1.45367e12 0.717572
\(544\) 0 0
\(545\) 3.52022e12 1.70917
\(546\) 0 0
\(547\) 2.92795e12 1.39836 0.699182 0.714944i \(-0.253548\pi\)
0.699182 + 0.714944i \(0.253548\pi\)
\(548\) 0 0
\(549\) 1.61034e12 0.756557
\(550\) 0 0
\(551\) −8.63019e11 −0.398876
\(552\) 0 0
\(553\) 6.57952e12 2.99179
\(554\) 0 0
\(555\) 3.19497e11 0.142938
\(556\) 0 0
\(557\) −1.25060e12 −0.550516 −0.275258 0.961370i \(-0.588763\pi\)
−0.275258 + 0.961370i \(0.588763\pi\)
\(558\) 0 0
\(559\) −1.18285e11 −0.0512359
\(560\) 0 0
\(561\) −2.76874e12 −1.18018
\(562\) 0 0
\(563\) 1.44758e12 0.607233 0.303617 0.952794i \(-0.401806\pi\)
0.303617 + 0.952794i \(0.401806\pi\)
\(564\) 0 0
\(565\) 3.44193e12 1.42097
\(566\) 0 0
\(567\) 5.20555e12 2.11516
\(568\) 0 0
\(569\) 2.86081e12 1.14415 0.572077 0.820200i \(-0.306138\pi\)
0.572077 + 0.820200i \(0.306138\pi\)
\(570\) 0 0
\(571\) −3.97308e12 −1.56410 −0.782051 0.623214i \(-0.785827\pi\)
−0.782051 + 0.623214i \(0.785827\pi\)
\(572\) 0 0
\(573\) 4.66547e12 1.80801
\(574\) 0 0
\(575\) −3.93120e12 −1.49975
\(576\) 0 0
\(577\) −4.01486e12 −1.50792 −0.753962 0.656918i \(-0.771860\pi\)
−0.753962 + 0.656918i \(0.771860\pi\)
\(578\) 0 0
\(579\) −4.66283e12 −1.72423
\(580\) 0 0
\(581\) −6.17279e12 −2.24745
\(582\) 0 0
\(583\) −4.05452e12 −1.45355
\(584\) 0 0
\(585\) 8.21418e11 0.289977
\(586\) 0 0
\(587\) 5.58149e12 1.94034 0.970172 0.242418i \(-0.0779405\pi\)
0.970172 + 0.242418i \(0.0779405\pi\)
\(588\) 0 0
\(589\) −2.31850e12 −0.793757
\(590\) 0 0
\(591\) −3.18631e12 −1.07435
\(592\) 0 0
\(593\) −1.67772e12 −0.557150 −0.278575 0.960414i \(-0.589862\pi\)
−0.278575 + 0.960414i \(0.589862\pi\)
\(594\) 0 0
\(595\) 4.92264e12 1.61017
\(596\) 0 0
\(597\) −2.45978e12 −0.792524
\(598\) 0 0
\(599\) −1.29126e12 −0.409818 −0.204909 0.978781i \(-0.565690\pi\)
−0.204909 + 0.978781i \(0.565690\pi\)
\(600\) 0 0
\(601\) 3.19814e12 0.999914 0.499957 0.866050i \(-0.333349\pi\)
0.499957 + 0.866050i \(0.333349\pi\)
\(602\) 0 0
\(603\) −3.95936e12 −1.21954
\(604\) 0 0
\(605\) −9.55349e12 −2.89910
\(606\) 0 0
\(607\) −2.45377e12 −0.733643 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(608\) 0 0
\(609\) 5.78270e12 1.70354
\(610\) 0 0
\(611\) −5.83479e11 −0.169371
\(612\) 0 0
\(613\) 6.03421e12 1.72603 0.863015 0.505179i \(-0.168573\pi\)
0.863015 + 0.505179i \(0.168573\pi\)
\(614\) 0 0
\(615\) 1.70749e12 0.481304
\(616\) 0 0
\(617\) −2.05037e12 −0.569572 −0.284786 0.958591i \(-0.591923\pi\)
−0.284786 + 0.958591i \(0.591923\pi\)
\(618\) 0 0
\(619\) 1.38918e12 0.380322 0.190161 0.981753i \(-0.439099\pi\)
0.190161 + 0.981753i \(0.439099\pi\)
\(620\) 0 0
\(621\) 1.47211e12 0.397216
\(622\) 0 0
\(623\) −1.49956e12 −0.398811
\(624\) 0 0
\(625\) 1.78536e12 0.468021
\(626\) 0 0
\(627\) −4.16362e12 −1.07589
\(628\) 0 0
\(629\) −1.47269e11 −0.0375130
\(630\) 0 0
\(631\) 6.68443e12 1.67854 0.839272 0.543712i \(-0.182982\pi\)
0.839272 + 0.543712i \(0.182982\pi\)
\(632\) 0 0
\(633\) −4.18446e11 −0.103591
\(634\) 0 0
\(635\) 8.50227e12 2.07517
\(636\) 0 0
\(637\) −2.22972e12 −0.536565
\(638\) 0 0
\(639\) 6.75322e11 0.160235
\(640\) 0 0
\(641\) −5.15458e12 −1.20596 −0.602978 0.797757i \(-0.706020\pi\)
−0.602978 + 0.797757i \(0.706020\pi\)
\(642\) 0 0
\(643\) −6.56700e11 −0.151502 −0.0757509 0.997127i \(-0.524135\pi\)
−0.0757509 + 0.997127i \(0.524135\pi\)
\(644\) 0 0
\(645\) −1.73467e12 −0.394638
\(646\) 0 0
\(647\) −6.44064e12 −1.44497 −0.722487 0.691385i \(-0.757001\pi\)
−0.722487 + 0.691385i \(0.757001\pi\)
\(648\) 0 0
\(649\) −4.92097e12 −1.08880
\(650\) 0 0
\(651\) 1.55352e13 3.39002
\(652\) 0 0
\(653\) −4.37326e12 −0.941231 −0.470615 0.882338i \(-0.655968\pi\)
−0.470615 + 0.882338i \(0.655968\pi\)
\(654\) 0 0
\(655\) −6.01093e12 −1.27602
\(656\) 0 0
\(657\) 1.26676e12 0.265247
\(658\) 0 0
\(659\) −1.68924e12 −0.348904 −0.174452 0.984666i \(-0.555815\pi\)
−0.174452 + 0.984666i \(0.555815\pi\)
\(660\) 0 0
\(661\) 3.67415e12 0.748600 0.374300 0.927308i \(-0.377883\pi\)
0.374300 + 0.927308i \(0.377883\pi\)
\(662\) 0 0
\(663\) −9.85755e11 −0.198134
\(664\) 0 0
\(665\) 7.40263e12 1.46787
\(666\) 0 0
\(667\) 3.30420e12 0.646398
\(668\) 0 0
\(669\) 4.66320e12 0.900050
\(670\) 0 0
\(671\) −1.05242e13 −2.00418
\(672\) 0 0
\(673\) −9.07116e12 −1.70449 −0.852247 0.523140i \(-0.824760\pi\)
−0.852247 + 0.523140i \(0.824760\pi\)
\(674\) 0 0
\(675\) −4.68363e12 −0.868392
\(676\) 0 0
\(677\) 3.34601e12 0.612179 0.306089 0.952003i \(-0.400979\pi\)
0.306089 + 0.952003i \(0.400979\pi\)
\(678\) 0 0
\(679\) 1.30515e11 0.0235639
\(680\) 0 0
\(681\) 2.36115e12 0.420690
\(682\) 0 0
\(683\) 3.30378e12 0.580923 0.290461 0.956887i \(-0.406191\pi\)
0.290461 + 0.956887i \(0.406191\pi\)
\(684\) 0 0
\(685\) 6.36344e12 1.10429
\(686\) 0 0
\(687\) −6.75796e12 −1.15747
\(688\) 0 0
\(689\) −1.44353e12 −0.244028
\(690\) 0 0
\(691\) −4.90706e12 −0.818785 −0.409392 0.912358i \(-0.634259\pi\)
−0.409392 + 0.912358i \(0.634259\pi\)
\(692\) 0 0
\(693\) 1.07157e13 1.76490
\(694\) 0 0
\(695\) 3.24953e12 0.528310
\(696\) 0 0
\(697\) −7.87046e11 −0.126314
\(698\) 0 0
\(699\) 3.80395e12 0.602681
\(700\) 0 0
\(701\) −7.43425e12 −1.16280 −0.581402 0.813617i \(-0.697496\pi\)
−0.581402 + 0.813617i \(0.697496\pi\)
\(702\) 0 0
\(703\) −2.21462e11 −0.0341979
\(704\) 0 0
\(705\) −8.55689e12 −1.30456
\(706\) 0 0
\(707\) 4.58449e12 0.690087
\(708\) 0 0
\(709\) −4.41374e12 −0.655992 −0.327996 0.944679i \(-0.606373\pi\)
−0.327996 + 0.944679i \(0.606373\pi\)
\(710\) 0 0
\(711\) −7.42153e12 −1.08913
\(712\) 0 0
\(713\) 8.87671e12 1.28632
\(714\) 0 0
\(715\) −5.36828e12 −0.768172
\(716\) 0 0
\(717\) −1.49357e13 −2.11052
\(718\) 0 0
\(719\) −4.26760e12 −0.595530 −0.297765 0.954639i \(-0.596241\pi\)
−0.297765 + 0.954639i \(0.596241\pi\)
\(720\) 0 0
\(721\) −1.43675e13 −1.98003
\(722\) 0 0
\(723\) 1.78412e13 2.42830
\(724\) 0 0
\(725\) −1.05126e13 −1.41315
\(726\) 0 0
\(727\) 1.33040e13 1.76635 0.883177 0.469040i \(-0.155400\pi\)
0.883177 + 0.469040i \(0.155400\pi\)
\(728\) 0 0
\(729\) −1.21181e12 −0.158913
\(730\) 0 0
\(731\) 7.99579e11 0.103570
\(732\) 0 0
\(733\) −3.02373e12 −0.386879 −0.193439 0.981112i \(-0.561964\pi\)
−0.193439 + 0.981112i \(0.561964\pi\)
\(734\) 0 0
\(735\) −3.26994e13 −4.13282
\(736\) 0 0
\(737\) 2.58759e13 3.23067
\(738\) 0 0
\(739\) 8.35198e12 1.03012 0.515062 0.857153i \(-0.327769\pi\)
0.515062 + 0.857153i \(0.327769\pi\)
\(740\) 0 0
\(741\) −1.48237e12 −0.180624
\(742\) 0 0
\(743\) −9.08574e12 −1.09373 −0.546866 0.837220i \(-0.684179\pi\)
−0.546866 + 0.837220i \(0.684179\pi\)
\(744\) 0 0
\(745\) −5.42920e12 −0.645702
\(746\) 0 0
\(747\) 6.96276e12 0.818161
\(748\) 0 0
\(749\) −3.11451e12 −0.361594
\(750\) 0 0
\(751\) 7.46214e11 0.0856019 0.0428010 0.999084i \(-0.486372\pi\)
0.0428010 + 0.999084i \(0.486372\pi\)
\(752\) 0 0
\(753\) 7.09098e11 0.0803765
\(754\) 0 0
\(755\) −1.93173e13 −2.16364
\(756\) 0 0
\(757\) −8.87740e12 −0.982549 −0.491274 0.871005i \(-0.663469\pi\)
−0.491274 + 0.871005i \(0.663469\pi\)
\(758\) 0 0
\(759\) 1.59410e13 1.74353
\(760\) 0 0
\(761\) 1.73096e12 0.187092 0.0935462 0.995615i \(-0.470180\pi\)
0.0935462 + 0.995615i \(0.470180\pi\)
\(762\) 0 0
\(763\) 1.63498e13 1.74643
\(764\) 0 0
\(765\) −5.55262e12 −0.586167
\(766\) 0 0
\(767\) −1.75201e12 −0.182792
\(768\) 0 0
\(769\) 1.57031e12 0.161926 0.0809628 0.996717i \(-0.474201\pi\)
0.0809628 + 0.996717i \(0.474201\pi\)
\(770\) 0 0
\(771\) 3.47654e12 0.354326
\(772\) 0 0
\(773\) 1.11736e13 1.12560 0.562800 0.826593i \(-0.309724\pi\)
0.562800 + 0.826593i \(0.309724\pi\)
\(774\) 0 0
\(775\) −2.82420e13 −2.81215
\(776\) 0 0
\(777\) 1.48391e12 0.146054
\(778\) 0 0
\(779\) −1.18356e12 −0.115152
\(780\) 0 0
\(781\) −4.41349e12 −0.424475
\(782\) 0 0
\(783\) 3.93663e12 0.374280
\(784\) 0 0
\(785\) −1.45217e12 −0.136491
\(786\) 0 0
\(787\) −3.15643e12 −0.293298 −0.146649 0.989189i \(-0.546849\pi\)
−0.146649 + 0.989189i \(0.546849\pi\)
\(788\) 0 0
\(789\) 1.58915e13 1.45989
\(790\) 0 0
\(791\) 1.59862e13 1.45195
\(792\) 0 0
\(793\) −3.74692e12 −0.336469
\(794\) 0 0
\(795\) −2.11698e13 −1.87959
\(796\) 0 0
\(797\) 1.96411e13 1.72426 0.862131 0.506686i \(-0.169130\pi\)
0.862131 + 0.506686i \(0.169130\pi\)
\(798\) 0 0
\(799\) 3.94420e12 0.342372
\(800\) 0 0
\(801\) 1.69146e12 0.145183
\(802\) 0 0
\(803\) −8.27877e12 −0.702661
\(804\) 0 0
\(805\) −2.83421e13 −2.37876
\(806\) 0 0
\(807\) 8.62761e12 0.716077
\(808\) 0 0
\(809\) 2.00366e13 1.64458 0.822292 0.569066i \(-0.192695\pi\)
0.822292 + 0.569066i \(0.192695\pi\)
\(810\) 0 0
\(811\) −1.11737e13 −0.906994 −0.453497 0.891258i \(-0.649824\pi\)
−0.453497 + 0.891258i \(0.649824\pi\)
\(812\) 0 0
\(813\) 1.17738e13 0.945166
\(814\) 0 0
\(815\) 9.40088e12 0.746379
\(816\) 0 0
\(817\) 1.20240e12 0.0944170
\(818\) 0 0
\(819\) 3.81510e12 0.296298
\(820\) 0 0
\(821\) −1.01042e13 −0.776175 −0.388087 0.921623i \(-0.626864\pi\)
−0.388087 + 0.921623i \(0.626864\pi\)
\(822\) 0 0
\(823\) −2.46694e12 −0.187438 −0.0937192 0.995599i \(-0.529876\pi\)
−0.0937192 + 0.995599i \(0.529876\pi\)
\(824\) 0 0
\(825\) −5.07178e13 −3.81169
\(826\) 0 0
\(827\) −1.01053e13 −0.751229 −0.375615 0.926776i \(-0.622568\pi\)
−0.375615 + 0.926776i \(0.622568\pi\)
\(828\) 0 0
\(829\) −2.96694e12 −0.218179 −0.109090 0.994032i \(-0.534794\pi\)
−0.109090 + 0.994032i \(0.534794\pi\)
\(830\) 0 0
\(831\) −2.36970e13 −1.72381
\(832\) 0 0
\(833\) 1.50724e13 1.08463
\(834\) 0 0
\(835\) 2.04004e13 1.45228
\(836\) 0 0
\(837\) 1.05757e13 0.744810
\(838\) 0 0
\(839\) 2.10306e13 1.46529 0.732644 0.680612i \(-0.238286\pi\)
0.732644 + 0.680612i \(0.238286\pi\)
\(840\) 0 0
\(841\) −5.67124e12 −0.390927
\(842\) 0 0
\(843\) 3.17100e13 2.16258
\(844\) 0 0
\(845\) −1.91127e12 −0.128963
\(846\) 0 0
\(847\) −4.43715e13 −2.96230
\(848\) 0 0
\(849\) 6.30782e12 0.416673
\(850\) 0 0
\(851\) 8.47899e11 0.0554193
\(852\) 0 0
\(853\) −1.45181e13 −0.938944 −0.469472 0.882947i \(-0.655556\pi\)
−0.469472 + 0.882947i \(0.655556\pi\)
\(854\) 0 0
\(855\) −8.34999e12 −0.534366
\(856\) 0 0
\(857\) 6.94178e12 0.439600 0.219800 0.975545i \(-0.429460\pi\)
0.219800 + 0.975545i \(0.429460\pi\)
\(858\) 0 0
\(859\) 2.82565e12 0.177072 0.0885358 0.996073i \(-0.471781\pi\)
0.0885358 + 0.996073i \(0.471781\pi\)
\(860\) 0 0
\(861\) 7.93047e12 0.491796
\(862\) 0 0
\(863\) −1.81122e12 −0.111153 −0.0555766 0.998454i \(-0.517700\pi\)
−0.0555766 + 0.998454i \(0.517700\pi\)
\(864\) 0 0
\(865\) 2.06027e13 1.25127
\(866\) 0 0
\(867\) −1.45362e13 −0.873704
\(868\) 0 0
\(869\) 4.85026e13 2.88520
\(870\) 0 0
\(871\) 9.21259e12 0.542376
\(872\) 0 0
\(873\) −1.47218e11 −0.00857822
\(874\) 0 0
\(875\) 4.03738e13 2.32843
\(876\) 0 0
\(877\) 3.34755e13 1.91086 0.955430 0.295217i \(-0.0953919\pi\)
0.955430 + 0.295217i \(0.0953919\pi\)
\(878\) 0 0
\(879\) −1.37483e13 −0.776783
\(880\) 0 0
\(881\) −1.66782e12 −0.0932731 −0.0466366 0.998912i \(-0.514850\pi\)
−0.0466366 + 0.998912i \(0.514850\pi\)
\(882\) 0 0
\(883\) 1.05950e12 0.0586512 0.0293256 0.999570i \(-0.490664\pi\)
0.0293256 + 0.999570i \(0.490664\pi\)
\(884\) 0 0
\(885\) −2.56937e13 −1.40793
\(886\) 0 0
\(887\) 2.50470e13 1.35862 0.679312 0.733849i \(-0.262278\pi\)
0.679312 + 0.733849i \(0.262278\pi\)
\(888\) 0 0
\(889\) 3.94891e13 2.12041
\(890\) 0 0
\(891\) 3.83740e13 2.03980
\(892\) 0 0
\(893\) 5.93126e12 0.312116
\(894\) 0 0
\(895\) 4.10694e13 2.13951
\(896\) 0 0
\(897\) 5.67548e12 0.292710
\(898\) 0 0
\(899\) 2.37376e13 1.21204
\(900\) 0 0
\(901\) 9.75796e12 0.493285
\(902\) 0 0
\(903\) −8.05675e12 −0.403241
\(904\) 0 0
\(905\) −1.90525e13 −0.944131
\(906\) 0 0
\(907\) 1.28009e13 0.628070 0.314035 0.949411i \(-0.398319\pi\)
0.314035 + 0.949411i \(0.398319\pi\)
\(908\) 0 0
\(909\) −5.17119e12 −0.251219
\(910\) 0 0
\(911\) −1.98066e12 −0.0952747 −0.0476373 0.998865i \(-0.515169\pi\)
−0.0476373 + 0.998865i \(0.515169\pi\)
\(912\) 0 0
\(913\) −4.55043e13 −2.16737
\(914\) 0 0
\(915\) −5.49496e13 −2.59161
\(916\) 0 0
\(917\) −2.79180e13 −1.30383
\(918\) 0 0
\(919\) 3.44433e12 0.159289 0.0796444 0.996823i \(-0.474622\pi\)
0.0796444 + 0.996823i \(0.474622\pi\)
\(920\) 0 0
\(921\) −2.47485e13 −1.13339
\(922\) 0 0
\(923\) −1.57133e12 −0.0712624
\(924\) 0 0
\(925\) −2.69766e12 −0.121157
\(926\) 0 0
\(927\) 1.62062e13 0.720811
\(928\) 0 0
\(929\) 3.95599e13 1.74255 0.871274 0.490797i \(-0.163294\pi\)
0.871274 + 0.490797i \(0.163294\pi\)
\(930\) 0 0
\(931\) 2.26658e13 0.988776
\(932\) 0 0
\(933\) −1.19057e13 −0.514383
\(934\) 0 0
\(935\) 3.62885e13 1.55280
\(936\) 0 0
\(937\) −2.52511e13 −1.07017 −0.535084 0.844799i \(-0.679720\pi\)
−0.535084 + 0.844799i \(0.679720\pi\)
\(938\) 0 0
\(939\) −2.08493e13 −0.875180
\(940\) 0 0
\(941\) −8.69444e12 −0.361483 −0.180742 0.983531i \(-0.557850\pi\)
−0.180742 + 0.983531i \(0.557850\pi\)
\(942\) 0 0
\(943\) 4.53142e12 0.186609
\(944\) 0 0
\(945\) −3.37668e13 −1.37736
\(946\) 0 0
\(947\) −2.11484e13 −0.854481 −0.427241 0.904138i \(-0.640514\pi\)
−0.427241 + 0.904138i \(0.640514\pi\)
\(948\) 0 0
\(949\) −2.94749e12 −0.117965
\(950\) 0 0
\(951\) 2.06290e13 0.817837
\(952\) 0 0
\(953\) −1.01534e13 −0.398744 −0.199372 0.979924i \(-0.563890\pi\)
−0.199372 + 0.979924i \(0.563890\pi\)
\(954\) 0 0
\(955\) −6.11479e13 −2.37885
\(956\) 0 0
\(957\) 4.26287e13 1.64285
\(958\) 0 0
\(959\) 2.95552e13 1.12837
\(960\) 0 0
\(961\) 3.73314e13 1.41195
\(962\) 0 0
\(963\) 3.51309e12 0.131635
\(964\) 0 0
\(965\) 6.11133e13 2.26862
\(966\) 0 0
\(967\) −6.43077e12 −0.236507 −0.118254 0.992983i \(-0.537730\pi\)
−0.118254 + 0.992983i \(0.537730\pi\)
\(968\) 0 0
\(969\) 1.00205e13 0.365118
\(970\) 0 0
\(971\) −1.74913e12 −0.0631446 −0.0315723 0.999501i \(-0.510051\pi\)
−0.0315723 + 0.999501i \(0.510051\pi\)
\(972\) 0 0
\(973\) 1.50925e13 0.539827
\(974\) 0 0
\(975\) −1.80570e13 −0.639920
\(976\) 0 0
\(977\) 1.50942e13 0.530012 0.265006 0.964247i \(-0.414626\pi\)
0.265006 + 0.964247i \(0.414626\pi\)
\(978\) 0 0
\(979\) −1.10544e13 −0.384602
\(980\) 0 0
\(981\) −1.84422e13 −0.635772
\(982\) 0 0
\(983\) 4.41201e13 1.50711 0.753557 0.657383i \(-0.228336\pi\)
0.753557 + 0.657383i \(0.228336\pi\)
\(984\) 0 0
\(985\) 4.17613e13 1.41355
\(986\) 0 0
\(987\) −3.97427e13 −1.33300
\(988\) 0 0
\(989\) −4.60357e12 −0.153007
\(990\) 0 0
\(991\) −3.75113e13 −1.23547 −0.617733 0.786388i \(-0.711949\pi\)
−0.617733 + 0.786388i \(0.711949\pi\)
\(992\) 0 0
\(993\) −5.99577e13 −1.95692
\(994\) 0 0
\(995\) 3.22391e13 1.04275
\(996\) 0 0
\(997\) 5.56595e12 0.178407 0.0892034 0.996013i \(-0.471568\pi\)
0.0892034 + 0.996013i \(0.471568\pi\)
\(998\) 0 0
\(999\) 1.01019e12 0.0320891
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 208.10.a.d.1.3 3
4.3 odd 2 26.10.a.e.1.1 3
12.11 even 2 234.10.a.k.1.3 3
52.51 odd 2 338.10.a.e.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
26.10.a.e.1.1 3 4.3 odd 2
208.10.a.d.1.3 3 1.1 even 1 trivial
234.10.a.k.1.3 3 12.11 even 2
338.10.a.e.1.1 3 52.51 odd 2