Properties

Label 208.10.a.d
Level $208$
Weight $10$
Character orbit 208.a
Self dual yes
Analytic conductor $107.127$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [208,10,Mod(1,208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("208.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 208 = 2^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(107.127453922\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2119705.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 376x + 1820 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{3} \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1 - 52) q^{3} + ( - \beta_{2} - 18 \beta_1 - 424) q^{5} + ( - \beta_{2} - 51 \beta_1 - 5686) q^{7} + ( - 109 \beta_{2} + 126 \beta_1 + 14091) q^{9} + ( - 400 \beta_{2} - 30 \beta_1 - 24658) q^{11}+ \cdots + ( - 9250058 \beta_{2} + \cdots + 826695822) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 156 q^{3} - 1272 q^{5} - 17058 q^{7} + 42273 q^{9} - 73974 q^{11} - 85683 q^{13} - 393756 q^{15} + 374976 q^{17} - 418338 q^{19} - 284694 q^{21} - 1026168 q^{23} + 3337287 q^{25} - 4218588 q^{27}+ \cdots + 2480087466 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 376x + 1820 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 6\nu - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 9\nu^{2} + 45\nu - 2274 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 16\beta_{2} - 15\beta _1 + 4518 ) / 18 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.12938
−21.0141
16.8848
0 −249.022 0 −716.175 0 −6927.79 0 42328.8 0
1.2 0 −85.7459 0 1787.19 0 751.989 0 −12330.6 0
1.3 0 178.768 0 −2343.01 0 −10882.2 0 12274.9 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 208.10.a.d 3
4.b odd 2 1 26.10.a.e 3
12.b even 2 1 234.10.a.k 3
52.b odd 2 1 338.10.a.e 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.10.a.e 3 4.b odd 2 1
208.10.a.d 3 1.a even 1 1 trivial
234.10.a.k 3 12.b even 2 1
338.10.a.e 3 52.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 156T_{3}^{2} - 38493T_{3} - 3817152 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(208))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 156 T^{2} + \cdots - 3817152 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots - 2998915730 \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 56692128374 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 304356491675288 \) Copy content Toggle raw display
$13$ \( (T + 28561)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 24\!\cdots\!22 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 30\!\cdots\!48 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 36\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots + 15\!\cdots\!78 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 32\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 61\!\cdots\!62 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 35\!\cdots\!72 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 60\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 34\!\cdots\!88 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 10\!\cdots\!48 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 17\!\cdots\!50 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 14\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 53\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 43\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 23\!\cdots\!64 \) Copy content Toggle raw display
show more
show less