Properties

Label 207.2.i.d.154.1
Level $207$
Weight $2$
Character 207.154
Analytic conductor $1.653$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [207,2,Mod(55,207)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("207.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(207, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 10])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 207.i (of order \(11\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.65290332184\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{11})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 7 x^{19} + 24 x^{18} - 70 x^{17} + 209 x^{16} - 527 x^{15} + 1115 x^{14} - 2187 x^{13} + \cdots + 529 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 154.1
Root \(1.76796 + 1.13620i\) of defining polynomial
Character \(\chi\) \(=\) 207.154
Dual form 207.2.i.d.82.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.460828 + 0.531824i) q^{2} +(0.214155 + 1.48948i) q^{4} +(0.700489 + 1.53386i) q^{5} +(-3.11747 + 0.915371i) q^{7} +(-2.07482 - 1.33341i) q^{8} +(-1.13855 - 0.334308i) q^{10} +(1.33800 + 1.54413i) q^{11} +(-0.227131 - 0.0666916i) q^{13} +(0.949800 - 2.07977i) q^{14} +(-1.22242 + 0.358935i) q^{16} +(0.427674 - 2.97454i) q^{17} +(0.682288 + 4.74542i) q^{19} +(-2.13464 + 1.37185i) q^{20} -1.43779 q^{22} +(0.779295 + 4.73209i) q^{23} +(1.41227 - 1.62985i) q^{25} +(0.140136 - 0.0900602i) q^{26} +(-2.03105 - 4.44738i) q^{28} +(-1.01178 + 7.03706i) q^{29} +(5.64145 + 3.62554i) q^{31} +(2.42155 - 5.30245i) q^{32} +(1.38485 + 1.59820i) q^{34} +(-3.58780 - 4.14054i) q^{35} +(4.77286 - 10.4511i) q^{37} +(-2.83815 - 1.82397i) q^{38} +(0.591865 - 4.11651i) q^{40} +(-3.40729 - 7.46093i) q^{41} +(2.42547 - 1.55876i) q^{43} +(-2.01342 + 2.32361i) q^{44} +(-2.87576 - 1.76623i) q^{46} +13.2857 q^{47} +(2.99192 - 1.92279i) q^{49} +(0.215978 + 1.50216i) q^{50} +(0.0506948 - 0.352590i) q^{52} +(0.510122 - 0.149785i) q^{53} +(-1.43123 + 3.13395i) q^{55} +(7.68874 + 2.25762i) q^{56} +(-3.27622 - 3.78096i) q^{58} +(-3.30904 - 0.971623i) q^{59} +(4.08228 + 2.62352i) q^{61} +(-4.52789 + 1.32951i) q^{62} +(0.645553 + 1.41356i) q^{64} +(-0.0568072 - 0.395103i) q^{65} +(-9.77557 + 11.2816i) q^{67} +4.52211 q^{68} +3.85540 q^{70} +(8.80741 - 10.1643i) q^{71} +(-0.632363 - 4.39818i) q^{73} +(3.35868 + 7.35449i) q^{74} +(-6.92211 + 2.03251i) q^{76} +(-5.58462 - 3.58902i) q^{77} +(-2.00690 - 0.589280i) q^{79} +(-1.40685 - 1.62359i) q^{80} +(5.53808 + 1.62613i) q^{82} +(-2.67666 + 5.86108i) q^{83} +(4.86210 - 1.42764i) q^{85} +(-0.288742 + 2.00824i) q^{86} +(-0.717150 - 4.98789i) q^{88} +(-2.11082 + 1.35654i) q^{89} +0.769120 q^{91} +(-6.88149 + 2.17415i) q^{92} +(-6.12245 + 7.06568i) q^{94} +(-6.80086 + 4.37065i) q^{95} +(0.753920 + 1.65086i) q^{97} +(-0.356175 + 2.47725i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 6 q^{4} + 6 q^{5} - 6 q^{7} - 10 q^{8} - 18 q^{10} + 16 q^{11} + 14 q^{13} + 22 q^{14} - 8 q^{16} - 11 q^{17} - 11 q^{19} - 57 q^{20} + 26 q^{22} - 4 q^{25} + 14 q^{26} - 14 q^{28} - 12 q^{29}+ \cdots - 85 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/207\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(47\)
\(\chi(n)\) \(e\left(\frac{4}{11}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.460828 + 0.531824i −0.325855 + 0.376056i −0.894913 0.446241i \(-0.852762\pi\)
0.569058 + 0.822297i \(0.307308\pi\)
\(3\) 0 0
\(4\) 0.214155 + 1.48948i 0.107078 + 0.744742i
\(5\) 0.700489 + 1.53386i 0.313268 + 0.685962i 0.999127 0.0417726i \(-0.0133005\pi\)
−0.685859 + 0.727735i \(0.740573\pi\)
\(6\) 0 0
\(7\) −3.11747 + 0.915371i −1.17829 + 0.345978i −0.811515 0.584331i \(-0.801357\pi\)
−0.366777 + 0.930309i \(0.619539\pi\)
\(8\) −2.07482 1.33341i −0.733559 0.471430i
\(9\) 0 0
\(10\) −1.13855 0.334308i −0.360040 0.105717i
\(11\) 1.33800 + 1.54413i 0.403422 + 0.465573i 0.920716 0.390234i \(-0.127606\pi\)
−0.517294 + 0.855808i \(0.673061\pi\)
\(12\) 0 0
\(13\) −0.227131 0.0666916i −0.0629947 0.0184969i 0.250083 0.968224i \(-0.419542\pi\)
−0.313078 + 0.949727i \(0.601360\pi\)
\(14\) 0.949800 2.07977i 0.253845 0.555843i
\(15\) 0 0
\(16\) −1.22242 + 0.358935i −0.305605 + 0.0897336i
\(17\) 0.427674 2.97454i 0.103726 0.721431i −0.869891 0.493244i \(-0.835811\pi\)
0.973617 0.228187i \(-0.0732799\pi\)
\(18\) 0 0
\(19\) 0.682288 + 4.74542i 0.156528 + 1.08867i 0.904970 + 0.425474i \(0.139893\pi\)
−0.748443 + 0.663199i \(0.769198\pi\)
\(20\) −2.13464 + 1.37185i −0.477321 + 0.306755i
\(21\) 0 0
\(22\) −1.43779 −0.306539
\(23\) 0.779295 + 4.73209i 0.162494 + 0.986710i
\(24\) 0 0
\(25\) 1.41227 1.62985i 0.282454 0.325969i
\(26\) 0.140136 0.0900602i 0.0274830 0.0176623i
\(27\) 0 0
\(28\) −2.03105 4.44738i −0.383833 0.840477i
\(29\) −1.01178 + 7.03706i −0.187882 + 1.30675i 0.649597 + 0.760279i \(0.274938\pi\)
−0.837479 + 0.546470i \(0.815971\pi\)
\(30\) 0 0
\(31\) 5.64145 + 3.62554i 1.01323 + 0.651166i 0.938228 0.346017i \(-0.112466\pi\)
0.0750062 + 0.997183i \(0.476102\pi\)
\(32\) 2.42155 5.30245i 0.428073 0.937349i
\(33\) 0 0
\(34\) 1.38485 + 1.59820i 0.237499 + 0.274089i
\(35\) −3.58780 4.14054i −0.606449 0.699880i
\(36\) 0 0
\(37\) 4.77286 10.4511i 0.784653 1.71815i 0.0932958 0.995638i \(-0.470260\pi\)
0.691358 0.722513i \(-0.257013\pi\)
\(38\) −2.83815 1.82397i −0.460408 0.295886i
\(39\) 0 0
\(40\) 0.591865 4.11651i 0.0935821 0.650878i
\(41\) −3.40729 7.46093i −0.532130 1.16520i −0.964640 0.263573i \(-0.915099\pi\)
0.432510 0.901629i \(-0.357628\pi\)
\(42\) 0 0
\(43\) 2.42547 1.55876i 0.369881 0.237708i −0.342474 0.939527i \(-0.611265\pi\)
0.712355 + 0.701819i \(0.247629\pi\)
\(44\) −2.01342 + 2.32361i −0.303535 + 0.350298i
\(45\) 0 0
\(46\) −2.87576 1.76623i −0.424008 0.260417i
\(47\) 13.2857 1.93793 0.968963 0.247206i \(-0.0795125\pi\)
0.968963 + 0.247206i \(0.0795125\pi\)
\(48\) 0 0
\(49\) 2.99192 1.92279i 0.427417 0.274684i
\(50\) 0.215978 + 1.50216i 0.0305439 + 0.212437i
\(51\) 0 0
\(52\) 0.0506948 0.352590i 0.00703010 0.0488954i
\(53\) 0.510122 0.149785i 0.0700706 0.0205746i −0.246509 0.969140i \(-0.579284\pi\)
0.316580 + 0.948566i \(0.397465\pi\)
\(54\) 0 0
\(55\) −1.43123 + 3.13395i −0.192986 + 0.422581i
\(56\) 7.68874 + 2.25762i 1.02745 + 0.301687i
\(57\) 0 0
\(58\) −3.27622 3.78096i −0.430189 0.496465i
\(59\) −3.30904 0.971623i −0.430801 0.126495i 0.0591410 0.998250i \(-0.481164\pi\)
−0.489942 + 0.871755i \(0.662982\pi\)
\(60\) 0 0
\(61\) 4.08228 + 2.62352i 0.522683 + 0.335908i 0.775232 0.631676i \(-0.217633\pi\)
−0.252550 + 0.967584i \(0.581269\pi\)
\(62\) −4.52789 + 1.32951i −0.575042 + 0.168848i
\(63\) 0 0
\(64\) 0.645553 + 1.41356i 0.0806941 + 0.176696i
\(65\) −0.0568072 0.395103i −0.00704607 0.0490065i
\(66\) 0 0
\(67\) −9.77557 + 11.2816i −1.19428 + 1.37827i −0.286893 + 0.957963i \(0.592623\pi\)
−0.907383 + 0.420305i \(0.861923\pi\)
\(68\) 4.52211 0.548387
\(69\) 0 0
\(70\) 3.85540 0.460808
\(71\) 8.80741 10.1643i 1.04525 1.20628i 0.0672342 0.997737i \(-0.478583\pi\)
0.978013 0.208543i \(-0.0668720\pi\)
\(72\) 0 0
\(73\) −0.632363 4.39818i −0.0740124 0.514768i −0.992778 0.119965i \(-0.961722\pi\)
0.918766 0.394803i \(-0.129187\pi\)
\(74\) 3.35868 + 7.35449i 0.390439 + 0.854942i
\(75\) 0 0
\(76\) −6.92211 + 2.03251i −0.794020 + 0.233145i
\(77\) −5.58462 3.58902i −0.636426 0.409006i
\(78\) 0 0
\(79\) −2.00690 0.589280i −0.225794 0.0662992i 0.166878 0.985977i \(-0.446631\pi\)
−0.392673 + 0.919678i \(0.628449\pi\)
\(80\) −1.40685 1.62359i −0.157290 0.181523i
\(81\) 0 0
\(82\) 5.53808 + 1.62613i 0.611579 + 0.179576i
\(83\) −2.67666 + 5.86108i −0.293802 + 0.643337i −0.997759 0.0669055i \(-0.978687\pi\)
0.703957 + 0.710242i \(0.251415\pi\)
\(84\) 0 0
\(85\) 4.86210 1.42764i 0.527368 0.154849i
\(86\) −0.288742 + 2.00824i −0.0311358 + 0.216555i
\(87\) 0 0
\(88\) −0.717150 4.98789i −0.0764485 0.531711i
\(89\) −2.11082 + 1.35654i −0.223746 + 0.143793i −0.647712 0.761885i \(-0.724274\pi\)
0.423966 + 0.905678i \(0.360638\pi\)
\(90\) 0 0
\(91\) 0.769120 0.0806257
\(92\) −6.88149 + 2.17415i −0.717444 + 0.226671i
\(93\) 0 0
\(94\) −6.12245 + 7.06568i −0.631482 + 0.728769i
\(95\) −6.80086 + 4.37065i −0.697754 + 0.448419i
\(96\) 0 0
\(97\) 0.753920 + 1.65086i 0.0765490 + 0.167619i 0.944037 0.329839i \(-0.106994\pi\)
−0.867488 + 0.497458i \(0.834267\pi\)
\(98\) −0.356175 + 2.47725i −0.0359791 + 0.250240i
\(99\) 0 0
\(100\) 2.73007 + 1.75451i 0.273007 + 0.175451i
\(101\) 0.996737 2.18255i 0.0991791 0.217172i −0.853538 0.521030i \(-0.825548\pi\)
0.952717 + 0.303859i \(0.0982751\pi\)
\(102\) 0 0
\(103\) −2.69154 3.10620i −0.265205 0.306063i 0.607491 0.794326i \(-0.292176\pi\)
−0.872696 + 0.488263i \(0.837631\pi\)
\(104\) 0.382328 + 0.441230i 0.0374904 + 0.0432662i
\(105\) 0 0
\(106\) −0.155419 + 0.340320i −0.0150956 + 0.0330548i
\(107\) −11.3204 7.27515i −1.09438 0.703315i −0.136545 0.990634i \(-0.543600\pi\)
−0.957835 + 0.287319i \(0.907236\pi\)
\(108\) 0 0
\(109\) −2.25241 + 15.6658i −0.215741 + 1.50051i 0.537777 + 0.843087i \(0.319264\pi\)
−0.753518 + 0.657427i \(0.771645\pi\)
\(110\) −1.00716 2.20537i −0.0960289 0.210274i
\(111\) 0 0
\(112\) 3.48229 2.23793i 0.329046 0.211465i
\(113\) −8.47022 + 9.77515i −0.796811 + 0.919569i −0.998202 0.0599420i \(-0.980908\pi\)
0.201391 + 0.979511i \(0.435454\pi\)
\(114\) 0 0
\(115\) −6.71247 + 4.51011i −0.625941 + 0.420570i
\(116\) −10.6983 −0.993309
\(117\) 0 0
\(118\) 2.04163 1.31208i 0.187948 0.120787i
\(119\) 1.38955 + 9.66450i 0.127379 + 0.885943i
\(120\) 0 0
\(121\) 0.971358 6.75594i 0.0883053 0.614177i
\(122\) −3.27648 + 0.962062i −0.296639 + 0.0871010i
\(123\) 0 0
\(124\) −4.19204 + 9.17928i −0.376456 + 0.824324i
\(125\) 11.5789 + 3.39987i 1.03565 + 0.304094i
\(126\) 0 0
\(127\) −3.48534 4.02229i −0.309274 0.356921i 0.579740 0.814802i \(-0.303154\pi\)
−0.889014 + 0.457881i \(0.848609\pi\)
\(128\) 10.1369 + 2.97647i 0.895987 + 0.263086i
\(129\) 0 0
\(130\) 0.236304 + 0.151863i 0.0207252 + 0.0133193i
\(131\) 4.35715 1.27937i 0.380686 0.111779i −0.0857904 0.996313i \(-0.527342\pi\)
0.466476 + 0.884534i \(0.345523\pi\)
\(132\) 0 0
\(133\) −6.47083 14.1691i −0.561092 1.22862i
\(134\) −1.49497 10.3978i −0.129146 0.898230i
\(135\) 0 0
\(136\) −4.85361 + 5.60136i −0.416194 + 0.480313i
\(137\) 16.4974 1.40947 0.704734 0.709471i \(-0.251066\pi\)
0.704734 + 0.709471i \(0.251066\pi\)
\(138\) 0 0
\(139\) 3.46582 0.293967 0.146984 0.989139i \(-0.453044\pi\)
0.146984 + 0.989139i \(0.453044\pi\)
\(140\) 5.39893 6.23069i 0.456292 0.526590i
\(141\) 0 0
\(142\) 1.34691 + 9.36799i 0.113030 + 0.786144i
\(143\) −0.200920 0.439953i −0.0168018 0.0367907i
\(144\) 0 0
\(145\) −11.5026 + 3.37746i −0.955238 + 0.280483i
\(146\) 2.63047 + 1.69050i 0.217699 + 0.139907i
\(147\) 0 0
\(148\) 16.5889 + 4.87094i 1.36360 + 0.400389i
\(149\) 2.00991 + 2.31956i 0.164658 + 0.190026i 0.832082 0.554652i \(-0.187149\pi\)
−0.667424 + 0.744678i \(0.732603\pi\)
\(150\) 0 0
\(151\) −1.81890 0.534078i −0.148020 0.0434627i 0.206883 0.978366i \(-0.433668\pi\)
−0.354903 + 0.934903i \(0.615486\pi\)
\(152\) 4.91194 10.7557i 0.398411 0.872399i
\(153\) 0 0
\(154\) 4.48228 1.31611i 0.361192 0.106056i
\(155\) −1.60929 + 11.1928i −0.129261 + 0.899030i
\(156\) 0 0
\(157\) −0.307090 2.13586i −0.0245085 0.170460i 0.973891 0.227016i \(-0.0728971\pi\)
−0.998399 + 0.0565561i \(0.981988\pi\)
\(158\) 1.23823 0.795763i 0.0985084 0.0633075i
\(159\) 0 0
\(160\) 9.82947 0.777088
\(161\) −6.76105 14.0388i −0.532845 1.10641i
\(162\) 0 0
\(163\) 7.92140 9.14179i 0.620452 0.716040i −0.355341 0.934737i \(-0.615635\pi\)
0.975793 + 0.218697i \(0.0701806\pi\)
\(164\) 10.3832 6.67291i 0.810795 0.521067i
\(165\) 0 0
\(166\) −1.88358 4.12446i −0.146194 0.320120i
\(167\) −1.87408 + 13.0345i −0.145021 + 1.00864i 0.779198 + 0.626778i \(0.215627\pi\)
−0.924219 + 0.381864i \(0.875282\pi\)
\(168\) 0 0
\(169\) −10.8892 6.99804i −0.837627 0.538310i
\(170\) −1.48134 + 3.24368i −0.113613 + 0.248779i
\(171\) 0 0
\(172\) 2.84117 + 3.27889i 0.216637 + 0.250013i
\(173\) −11.5528 13.3327i −0.878346 1.01367i −0.999778 0.0210657i \(-0.993294\pi\)
0.121432 0.992600i \(-0.461251\pi\)
\(174\) 0 0
\(175\) −2.91079 + 6.37374i −0.220035 + 0.481809i
\(176\) −2.18984 1.40732i −0.165065 0.106081i
\(177\) 0 0
\(178\) 0.251283 1.74771i 0.0188345 0.130997i
\(179\) −4.47341 9.79541i −0.334359 0.732143i 0.665540 0.746362i \(-0.268201\pi\)
−0.999899 + 0.0142186i \(0.995474\pi\)
\(180\) 0 0
\(181\) −1.20016 + 0.771298i −0.0892074 + 0.0573301i −0.584484 0.811405i \(-0.698703\pi\)
0.495277 + 0.868735i \(0.335067\pi\)
\(182\) −0.354432 + 0.409037i −0.0262723 + 0.0303198i
\(183\) 0 0
\(184\) 4.69290 10.8574i 0.345965 0.800415i
\(185\) 19.3738 1.42439
\(186\) 0 0
\(187\) 5.16531 3.31954i 0.377725 0.242749i
\(188\) 2.84522 + 19.7889i 0.207509 + 1.44325i
\(189\) 0 0
\(190\) 0.809613 5.63098i 0.0587355 0.408514i
\(191\) −13.3309 + 3.91430i −0.964590 + 0.283229i −0.725849 0.687854i \(-0.758553\pi\)
−0.238741 + 0.971083i \(0.576735\pi\)
\(192\) 0 0
\(193\) 3.36305 7.36404i 0.242077 0.530075i −0.749125 0.662428i \(-0.769526\pi\)
0.991203 + 0.132353i \(0.0422532\pi\)
\(194\) −1.22539 0.359808i −0.0879780 0.0258327i
\(195\) 0 0
\(196\) 3.50470 + 4.04464i 0.250336 + 0.288903i
\(197\) 1.70543 + 0.500760i 0.121507 + 0.0356777i 0.341921 0.939729i \(-0.388923\pi\)
−0.220414 + 0.975406i \(0.570741\pi\)
\(198\) 0 0
\(199\) 5.53721 + 3.55855i 0.392522 + 0.252259i 0.721983 0.691910i \(-0.243231\pi\)
−0.329461 + 0.944169i \(0.606867\pi\)
\(200\) −5.10345 + 1.49851i −0.360868 + 0.105960i
\(201\) 0 0
\(202\) 0.701408 + 1.53587i 0.0493509 + 0.108063i
\(203\) −3.28734 22.8639i −0.230726 1.60473i
\(204\) 0 0
\(205\) 9.05724 10.4526i 0.632585 0.730042i
\(206\) 2.89229 0.201515
\(207\) 0 0
\(208\) 0.301587 0.0209113
\(209\) −6.41466 + 7.40291i −0.443711 + 0.512070i
\(210\) 0 0
\(211\) −1.94389 13.5201i −0.133823 0.930760i −0.940506 0.339776i \(-0.889649\pi\)
0.806683 0.590984i \(-0.201260\pi\)
\(212\) 0.332348 + 0.727741i 0.0228258 + 0.0499814i
\(213\) 0 0
\(214\) 9.08584 2.66784i 0.621095 0.182370i
\(215\) 4.08993 + 2.62844i 0.278931 + 0.179258i
\(216\) 0 0
\(217\) −20.9057 6.13848i −1.41917 0.416707i
\(218\) −7.29349 8.41714i −0.493978 0.570081i
\(219\) 0 0
\(220\) −4.97447 1.46064i −0.335379 0.0984761i
\(221\) −0.295514 + 0.647086i −0.0198785 + 0.0435277i
\(222\) 0 0
\(223\) −10.9392 + 3.21204i −0.732542 + 0.215094i −0.626669 0.779286i \(-0.715582\pi\)
−0.105874 + 0.994380i \(0.533764\pi\)
\(224\) −2.69539 + 18.7468i −0.180093 + 1.25257i
\(225\) 0 0
\(226\) −1.29535 9.00933i −0.0861651 0.599292i
\(227\) 1.33704 0.859266i 0.0887427 0.0570315i −0.495517 0.868598i \(-0.665021\pi\)
0.584260 + 0.811567i \(0.301385\pi\)
\(228\) 0 0
\(229\) 26.2296 1.73330 0.866650 0.498916i \(-0.166268\pi\)
0.866650 + 0.498916i \(0.166268\pi\)
\(230\) 0.694711 5.64824i 0.0458079 0.372434i
\(231\) 0 0
\(232\) 11.4825 13.2515i 0.753863 0.870005i
\(233\) 8.36970 5.37888i 0.548317 0.352382i −0.236967 0.971518i \(-0.576153\pi\)
0.785284 + 0.619136i \(0.212517\pi\)
\(234\) 0 0
\(235\) 9.30653 + 20.3785i 0.607091 + 1.32934i
\(236\) 0.738567 5.13685i 0.0480766 0.334380i
\(237\) 0 0
\(238\) −5.78015 3.71468i −0.374672 0.240787i
\(239\) −4.79659 + 10.5031i −0.310266 + 0.679387i −0.998957 0.0456678i \(-0.985458\pi\)
0.688691 + 0.725055i \(0.258186\pi\)
\(240\) 0 0
\(241\) 3.59998 + 4.15459i 0.231895 + 0.267621i 0.859757 0.510704i \(-0.170615\pi\)
−0.627862 + 0.778325i \(0.716070\pi\)
\(242\) 3.14534 + 3.62992i 0.202190 + 0.233340i
\(243\) 0 0
\(244\) −3.03345 + 6.64233i −0.194197 + 0.425232i
\(245\) 5.04510 + 3.24229i 0.322319 + 0.207142i
\(246\) 0 0
\(247\) 0.161511 1.12333i 0.0102767 0.0714760i
\(248\) −6.87068 15.0447i −0.436288 0.955338i
\(249\) 0 0
\(250\) −7.14402 + 4.59118i −0.451828 + 0.290372i
\(251\) −13.4416 + 15.5124i −0.848425 + 0.979135i −0.999957 0.00931785i \(-0.997034\pi\)
0.151532 + 0.988452i \(0.451579\pi\)
\(252\) 0 0
\(253\) −6.26428 + 7.53487i −0.393832 + 0.473713i
\(254\) 3.74529 0.235001
\(255\) 0 0
\(256\) −8.86896 + 5.69973i −0.554310 + 0.356233i
\(257\) −2.47969 17.2466i −0.154679 1.07581i −0.908244 0.418441i \(-0.862577\pi\)
0.753566 0.657373i \(-0.228332\pi\)
\(258\) 0 0
\(259\) −5.31260 + 36.9499i −0.330109 + 2.29596i
\(260\) 0.576334 0.169227i 0.0357427 0.0104950i
\(261\) 0 0
\(262\) −1.32749 + 2.90681i −0.0820129 + 0.179583i
\(263\) −18.4511 5.41773i −1.13774 0.334072i −0.341997 0.939701i \(-0.611103\pi\)
−0.795747 + 0.605630i \(0.792921\pi\)
\(264\) 0 0
\(265\) 0.587084 + 0.677531i 0.0360643 + 0.0416204i
\(266\) 10.5174 + 3.08820i 0.644865 + 0.189349i
\(267\) 0 0
\(268\) −18.8973 12.1445i −1.15433 0.741846i
\(269\) 23.0209 6.75956i 1.40361 0.412138i 0.509689 0.860359i \(-0.329760\pi\)
0.893923 + 0.448221i \(0.147942\pi\)
\(270\) 0 0
\(271\) −9.38523 20.5508i −0.570112 1.24837i −0.946738 0.322005i \(-0.895643\pi\)
0.376626 0.926365i \(-0.377084\pi\)
\(272\) 0.544868 + 3.78964i 0.0330374 + 0.229780i
\(273\) 0 0
\(274\) −7.60247 + 8.77372i −0.459282 + 0.530040i
\(275\) 4.40631 0.265711
\(276\) 0 0
\(277\) 2.08852 0.125487 0.0627435 0.998030i \(-0.480015\pi\)
0.0627435 + 0.998030i \(0.480015\pi\)
\(278\) −1.59715 + 1.84321i −0.0957907 + 0.110548i
\(279\) 0 0
\(280\) 1.92302 + 13.3749i 0.114922 + 0.799302i
\(281\) −8.14441 17.8338i −0.485855 1.06387i −0.980812 0.194956i \(-0.937544\pi\)
0.494958 0.868917i \(-0.335184\pi\)
\(282\) 0 0
\(283\) −4.82108 + 1.41560i −0.286583 + 0.0841484i −0.421865 0.906659i \(-0.638624\pi\)
0.135282 + 0.990807i \(0.456806\pi\)
\(284\) 17.0257 + 10.9418i 1.01029 + 0.649274i
\(285\) 0 0
\(286\) 0.326567 + 0.0958888i 0.0193103 + 0.00567002i
\(287\) 17.4516 + 20.1403i 1.03014 + 1.18884i
\(288\) 0 0
\(289\) 7.64642 + 2.24519i 0.449789 + 0.132070i
\(290\) 3.50450 7.67378i 0.205791 0.450620i
\(291\) 0 0
\(292\) 6.41559 1.88379i 0.375444 0.110240i
\(293\) 0.420981 2.92798i 0.0245940 0.171055i −0.973822 0.227310i \(-0.927007\pi\)
0.998416 + 0.0562552i \(0.0179161\pi\)
\(294\) 0 0
\(295\) −0.827619 5.75621i −0.0481858 0.335140i
\(296\) −23.8384 + 15.3200i −1.38558 + 0.890457i
\(297\) 0 0
\(298\) −2.15982 −0.125115
\(299\) 0.138589 1.12678i 0.00801481 0.0651631i
\(300\) 0 0
\(301\) −6.13449 + 7.07958i −0.353586 + 0.408060i
\(302\) 1.12224 0.721218i 0.0645775 0.0415014i
\(303\) 0 0
\(304\) −2.53734 5.55599i −0.145526 0.318658i
\(305\) −1.16452 + 8.09939i −0.0666800 + 0.463770i
\(306\) 0 0
\(307\) 19.9296 + 12.8079i 1.13744 + 0.730988i 0.967100 0.254397i \(-0.0818770\pi\)
0.170340 + 0.985385i \(0.445513\pi\)
\(308\) 4.14981 9.08681i 0.236457 0.517769i
\(309\) 0 0
\(310\) −5.21101 6.01383i −0.295966 0.341563i
\(311\) 17.1662 + 19.8109i 0.973409 + 1.12337i 0.992338 + 0.123553i \(0.0394288\pi\)
−0.0189294 + 0.999821i \(0.506026\pi\)
\(312\) 0 0
\(313\) −2.75232 + 6.02675i −0.155570 + 0.340652i −0.971328 0.237742i \(-0.923593\pi\)
0.815758 + 0.578393i \(0.196320\pi\)
\(314\) 1.27742 + 0.820947i 0.0720889 + 0.0463287i
\(315\) 0 0
\(316\) 0.447934 3.11545i 0.0251983 0.175258i
\(317\) −4.61225 10.0994i −0.259050 0.567240i 0.734761 0.678326i \(-0.237294\pi\)
−0.993811 + 0.111086i \(0.964567\pi\)
\(318\) 0 0
\(319\) −12.2199 + 7.85326i −0.684183 + 0.439698i
\(320\) −1.71600 + 1.98037i −0.0959275 + 0.110706i
\(321\) 0 0
\(322\) 10.5819 + 2.87379i 0.589703 + 0.160150i
\(323\) 14.4072 0.801639
\(324\) 0 0
\(325\) −0.429467 + 0.276002i −0.0238225 + 0.0153098i
\(326\) 1.21142 + 8.42559i 0.0670942 + 0.466650i
\(327\) 0 0
\(328\) −2.87893 + 20.0234i −0.158962 + 1.10561i
\(329\) −41.4179 + 12.1614i −2.28344 + 0.670479i
\(330\) 0 0
\(331\) 9.32901 20.4277i 0.512769 1.12281i −0.459337 0.888262i \(-0.651913\pi\)
0.972105 0.234545i \(-0.0753599\pi\)
\(332\) −9.30320 2.73167i −0.510580 0.149920i
\(333\) 0 0
\(334\) −6.06844 7.00336i −0.332050 0.383207i
\(335\) −24.1521 7.09169i −1.31957 0.387460i
\(336\) 0 0
\(337\) −29.3824 18.8830i −1.60056 1.02862i −0.966949 0.254972i \(-0.917934\pi\)
−0.633615 0.773648i \(-0.718430\pi\)
\(338\) 8.73975 2.56622i 0.475380 0.139584i
\(339\) 0 0
\(340\) 3.16769 + 6.93628i 0.171792 + 0.376173i
\(341\) 1.94994 + 13.5621i 0.105595 + 0.734430i
\(342\) 0 0
\(343\) 7.32670 8.45547i 0.395605 0.456552i
\(344\) −7.11087 −0.383393
\(345\) 0 0
\(346\) 12.4145 0.667409
\(347\) −6.72501 + 7.76108i −0.361018 + 0.416637i −0.906980 0.421173i \(-0.861619\pi\)
0.545963 + 0.837809i \(0.316164\pi\)
\(348\) 0 0
\(349\) 4.30303 + 29.9282i 0.230336 + 1.60202i 0.696655 + 0.717406i \(0.254671\pi\)
−0.466319 + 0.884616i \(0.654420\pi\)
\(350\) −2.04833 4.48523i −0.109488 0.239745i
\(351\) 0 0
\(352\) 11.4277 3.35548i 0.609099 0.178848i
\(353\) 2.65533 + 1.70648i 0.141329 + 0.0908266i 0.609395 0.792867i \(-0.291413\pi\)
−0.468066 + 0.883694i \(0.655049\pi\)
\(354\) 0 0
\(355\) 21.7601 + 6.38934i 1.15491 + 0.339111i
\(356\) −2.47259 2.85352i −0.131047 0.151236i
\(357\) 0 0
\(358\) 7.27091 + 2.13493i 0.384280 + 0.112835i
\(359\) 9.08412 19.8915i 0.479442 1.04983i −0.503175 0.864184i \(-0.667835\pi\)
0.982617 0.185646i \(-0.0594378\pi\)
\(360\) 0 0
\(361\) −3.82312 + 1.12257i −0.201217 + 0.0590826i
\(362\) 0.142874 0.993711i 0.00750930 0.0522283i
\(363\) 0 0
\(364\) 0.164711 + 1.14559i 0.00863322 + 0.0600453i
\(365\) 6.30322 4.05083i 0.329925 0.212030i
\(366\) 0 0
\(367\) −8.13884 −0.424844 −0.212422 0.977178i \(-0.568135\pi\)
−0.212422 + 0.977178i \(0.568135\pi\)
\(368\) −2.65114 5.50488i −0.138200 0.286962i
\(369\) 0 0
\(370\) −8.92801 + 10.3035i −0.464145 + 0.535652i
\(371\) −1.45318 + 0.933901i −0.0754453 + 0.0484857i
\(372\) 0 0
\(373\) 1.83693 + 4.02231i 0.0951124 + 0.208267i 0.951208 0.308550i \(-0.0998438\pi\)
−0.856096 + 0.516818i \(0.827117\pi\)
\(374\) −0.614907 + 4.27677i −0.0317961 + 0.221147i
\(375\) 0 0
\(376\) −27.5655 17.7153i −1.42158 0.913596i
\(377\) 0.699118 1.53086i 0.0360064 0.0788430i
\(378\) 0 0
\(379\) −6.90798 7.97223i −0.354839 0.409506i 0.550065 0.835122i \(-0.314603\pi\)
−0.904904 + 0.425616i \(0.860057\pi\)
\(380\) −7.96645 9.19378i −0.408670 0.471631i
\(381\) 0 0
\(382\) 4.06153 8.89351i 0.207806 0.455032i
\(383\) 4.54448 + 2.92056i 0.232212 + 0.149234i 0.651573 0.758586i \(-0.274109\pi\)
−0.419361 + 0.907820i \(0.637746\pi\)
\(384\) 0 0
\(385\) 1.59308 11.0801i 0.0811906 0.564693i
\(386\) 2.36659 + 5.18211i 0.120456 + 0.263762i
\(387\) 0 0
\(388\) −2.29747 + 1.47649i −0.116636 + 0.0749575i
\(389\) 1.04941 1.21108i 0.0532070 0.0614042i −0.728522 0.685022i \(-0.759792\pi\)
0.781729 + 0.623618i \(0.214338\pi\)
\(390\) 0 0
\(391\) 14.4091 0.294249i 0.728698 0.0148808i
\(392\) −8.77156 −0.443030
\(393\) 0 0
\(394\) −1.05223 + 0.676225i −0.0530104 + 0.0340677i
\(395\) −0.501943 3.49109i −0.0252555 0.175656i
\(396\) 0 0
\(397\) 0.992549 6.90333i 0.0498146 0.346468i −0.949637 0.313352i \(-0.898548\pi\)
0.999452 0.0331158i \(-0.0105430\pi\)
\(398\) −4.44422 + 1.30494i −0.222769 + 0.0654108i
\(399\) 0 0
\(400\) −1.14138 + 2.49927i −0.0570688 + 0.124963i
\(401\) −0.916430 0.269088i −0.0457643 0.0134376i 0.258770 0.965939i \(-0.416683\pi\)
−0.304535 + 0.952501i \(0.598501\pi\)
\(402\) 0 0
\(403\) −1.03955 1.19971i −0.0517839 0.0597618i
\(404\) 3.46433 + 1.01722i 0.172357 + 0.0506085i
\(405\) 0 0
\(406\) 13.6745 + 8.78806i 0.678654 + 0.436144i
\(407\) 22.5240 6.61363i 1.11647 0.327826i
\(408\) 0 0
\(409\) 6.47056 + 14.1686i 0.319949 + 0.700590i 0.999453 0.0330820i \(-0.0105323\pi\)
−0.679504 + 0.733672i \(0.737805\pi\)
\(410\) 1.38512 + 9.63371i 0.0684061 + 0.475775i
\(411\) 0 0
\(412\) 4.05023 4.67421i 0.199540 0.230282i
\(413\) 11.2052 0.551373
\(414\) 0 0
\(415\) −10.8650 −0.533344
\(416\) −0.903636 + 1.04285i −0.0443044 + 0.0511300i
\(417\) 0 0
\(418\) −0.980990 6.82294i −0.0479818 0.333721i
\(419\) 12.6482 + 27.6957i 0.617905 + 1.35302i 0.917033 + 0.398811i \(0.130577\pi\)
−0.299128 + 0.954213i \(0.596696\pi\)
\(420\) 0 0
\(421\) 23.2692 6.83246i 1.13407 0.332993i 0.339765 0.940510i \(-0.389652\pi\)
0.794307 + 0.607517i \(0.207834\pi\)
\(422\) 8.08610 + 5.19662i 0.393625 + 0.252968i
\(423\) 0 0
\(424\) −1.25813 0.369422i −0.0611004 0.0179407i
\(425\) −4.24404 4.89789i −0.205866 0.237583i
\(426\) 0 0
\(427\) −15.1279 4.44194i −0.732089 0.214961i
\(428\) 8.41190 18.4195i 0.406605 0.890340i
\(429\) 0 0
\(430\) −3.28262 + 0.963865i −0.158302 + 0.0464817i
\(431\) 1.38617 9.64102i 0.0667694 0.464392i −0.928817 0.370539i \(-0.879173\pi\)
0.995586 0.0938521i \(-0.0299181\pi\)
\(432\) 0 0
\(433\) 0.888425 + 6.17913i 0.0426950 + 0.296950i 0.999970 + 0.00777039i \(0.00247342\pi\)
−0.957275 + 0.289180i \(0.906617\pi\)
\(434\) 12.8986 8.28940i 0.619150 0.397904i
\(435\) 0 0
\(436\) −23.8164 −1.14060
\(437\) −21.9241 + 6.92673i −1.04877 + 0.331351i
\(438\) 0 0
\(439\) 10.9508 12.6379i 0.522655 0.603176i −0.431639 0.902047i \(-0.642064\pi\)
0.954294 + 0.298871i \(0.0966099\pi\)
\(440\) 7.14836 4.59397i 0.340785 0.219009i
\(441\) 0 0
\(442\) −0.207955 0.455357i −0.00989140 0.0216591i
\(443\) 4.32524 30.0827i 0.205498 1.42927i −0.582117 0.813105i \(-0.697775\pi\)
0.787615 0.616168i \(-0.211316\pi\)
\(444\) 0 0
\(445\) −3.55934 2.28745i −0.168729 0.108436i
\(446\) 3.33285 7.29792i 0.157815 0.345567i
\(447\) 0 0
\(448\) −3.30643 3.81582i −0.156214 0.180280i
\(449\) 11.2761 + 13.0133i 0.532153 + 0.614137i 0.956632 0.291301i \(-0.0940880\pi\)
−0.424478 + 0.905438i \(0.639543\pi\)
\(450\) 0 0
\(451\) 6.96171 15.2440i 0.327814 0.717813i
\(452\) −16.3739 10.5228i −0.770162 0.494953i
\(453\) 0 0
\(454\) −0.159169 + 1.10705i −0.00747018 + 0.0519562i
\(455\) 0.538760 + 1.17972i 0.0252575 + 0.0553062i
\(456\) 0 0
\(457\) −9.70917 + 6.23971i −0.454176 + 0.291881i −0.747659 0.664083i \(-0.768822\pi\)
0.293483 + 0.955964i \(0.405186\pi\)
\(458\) −12.0873 + 13.9495i −0.564804 + 0.651819i
\(459\) 0 0
\(460\) −8.15524 9.03225i −0.380240 0.421131i
\(461\) 36.3205 1.69162 0.845808 0.533488i \(-0.179119\pi\)
0.845808 + 0.533488i \(0.179119\pi\)
\(462\) 0 0
\(463\) −12.4043 + 7.97178i −0.576478 + 0.370480i −0.796155 0.605093i \(-0.793136\pi\)
0.219677 + 0.975573i \(0.429500\pi\)
\(464\) −1.28903 8.96539i −0.0598417 0.416208i
\(465\) 0 0
\(466\) −0.996376 + 6.92995i −0.0461562 + 0.321024i
\(467\) −7.78126 + 2.28478i −0.360074 + 0.105727i −0.456765 0.889587i \(-0.650992\pi\)
0.0966917 + 0.995314i \(0.469174\pi\)
\(468\) 0 0
\(469\) 20.1482 44.1183i 0.930356 2.03719i
\(470\) −15.1265 4.44153i −0.697732 0.204872i
\(471\) 0 0
\(472\) 5.57010 + 6.42824i 0.256385 + 0.295884i
\(473\) 5.65221 + 1.65964i 0.259889 + 0.0763102i
\(474\) 0 0
\(475\) 8.69788 + 5.58979i 0.399086 + 0.256477i
\(476\) −14.0975 + 4.13941i −0.646160 + 0.189730i
\(477\) 0 0
\(478\) −3.37538 7.39105i −0.154386 0.338059i
\(479\) −4.40254 30.6204i −0.201157 1.39908i −0.800858 0.598855i \(-0.795623\pi\)
0.599700 0.800225i \(-0.295286\pi\)
\(480\) 0 0
\(481\) −1.78106 + 2.05546i −0.0812095 + 0.0937208i
\(482\) −3.86848 −0.176205
\(483\) 0 0
\(484\) 10.2709 0.466859
\(485\) −2.00406 + 2.31281i −0.0909999 + 0.105019i
\(486\) 0 0
\(487\) −2.25517 15.6850i −0.102191 0.710757i −0.974921 0.222553i \(-0.928561\pi\)
0.872729 0.488205i \(-0.162348\pi\)
\(488\) −4.97178 10.8867i −0.225062 0.492816i
\(489\) 0 0
\(490\) −4.04925 + 1.18897i −0.182926 + 0.0537120i
\(491\) −0.632340 0.406380i −0.0285371 0.0183397i 0.526294 0.850302i \(-0.323581\pi\)
−0.554832 + 0.831963i \(0.687217\pi\)
\(492\) 0 0
\(493\) 20.4993 + 6.01913i 0.923241 + 0.271088i
\(494\) 0.522987 + 0.603559i 0.0235303 + 0.0271554i
\(495\) 0 0
\(496\) −8.19755 2.40702i −0.368081 0.108078i
\(497\) −18.1527 + 39.7489i −0.814261 + 1.78298i
\(498\) 0 0
\(499\) 29.6761 8.71370i 1.32849 0.390079i 0.460938 0.887432i \(-0.347513\pi\)
0.867548 + 0.497354i \(0.165695\pi\)
\(500\) −2.58437 + 17.9747i −0.115577 + 0.803853i
\(501\) 0 0
\(502\) −2.05561 14.2971i −0.0917465 0.638111i
\(503\) 23.5817 15.1550i 1.05145 0.675729i 0.103661 0.994613i \(-0.466944\pi\)
0.947794 + 0.318884i \(0.103308\pi\)
\(504\) 0 0
\(505\) 4.04593 0.180041
\(506\) −1.12047 6.80377i −0.0498108 0.302465i
\(507\) 0 0
\(508\) 5.24474 6.05275i 0.232698 0.268547i
\(509\) −18.7265 + 12.0348i −0.830038 + 0.533433i −0.885290 0.465040i \(-0.846040\pi\)
0.0552522 + 0.998472i \(0.482404\pi\)
\(510\) 0 0
\(511\) 5.99733 + 13.1323i 0.265306 + 0.580940i
\(512\) −1.95127 + 13.5714i −0.0862348 + 0.599776i
\(513\) 0 0
\(514\) 10.3149 + 6.62896i 0.454969 + 0.292391i
\(515\) 2.87908 6.30430i 0.126867 0.277801i
\(516\) 0 0
\(517\) 17.7763 + 20.5150i 0.781801 + 0.902247i
\(518\) −17.2027 19.8529i −0.755841 0.872288i
\(519\) 0 0
\(520\) −0.408968 + 0.895514i −0.0179344 + 0.0392709i
\(521\) 10.2196 + 6.56776i 0.447730 + 0.287739i 0.745012 0.667051i \(-0.232444\pi\)
−0.297282 + 0.954790i \(0.596080\pi\)
\(522\) 0 0
\(523\) −2.87440 + 19.9919i −0.125689 + 0.874183i 0.825242 + 0.564779i \(0.191039\pi\)
−0.950931 + 0.309404i \(0.899870\pi\)
\(524\) 2.83871 + 6.21591i 0.124010 + 0.271543i
\(525\) 0 0
\(526\) 11.3841 7.31609i 0.496369 0.318997i
\(527\) 13.1970 15.2302i 0.574870 0.663436i
\(528\) 0 0
\(529\) −21.7854 + 7.37539i −0.947191 + 0.320669i
\(530\) −0.630872 −0.0274033
\(531\) 0 0
\(532\) 19.7189 12.6726i 0.854925 0.549427i
\(533\) 0.276320 + 1.92184i 0.0119687 + 0.0832443i
\(534\) 0 0
\(535\) 3.22926 22.4600i 0.139613 0.971030i
\(536\) 35.3255 10.3725i 1.52583 0.448024i
\(537\) 0 0
\(538\) −7.01381 + 15.3581i −0.302387 + 0.662134i
\(539\) 6.97223 + 2.04723i 0.300315 + 0.0881805i
\(540\) 0 0
\(541\) 12.4594 + 14.3789i 0.535670 + 0.618196i 0.957484 0.288486i \(-0.0931519\pi\)
−0.421814 + 0.906682i \(0.638606\pi\)
\(542\) 15.2544 + 4.47909i 0.655231 + 0.192393i
\(543\) 0 0
\(544\) −14.7367 9.47070i −0.631830 0.406053i
\(545\) −25.6069 + 7.51888i −1.09688 + 0.322073i
\(546\) 0 0
\(547\) −0.147373 0.322702i −0.00630122 0.0137977i 0.906455 0.422302i \(-0.138778\pi\)
−0.912756 + 0.408504i \(0.866051\pi\)
\(548\) 3.53301 + 24.5726i 0.150923 + 1.04969i
\(549\) 0 0
\(550\) −2.03055 + 2.34338i −0.0865830 + 0.0999222i
\(551\) −34.0841 −1.45203
\(552\) 0 0
\(553\) 6.79587 0.288990
\(554\) −0.962449 + 1.11073i −0.0408905 + 0.0471902i
\(555\) 0 0
\(556\) 0.742225 + 5.16229i 0.0314774 + 0.218930i
\(557\) 4.30127 + 9.41847i 0.182251 + 0.399073i 0.978602 0.205760i \(-0.0659668\pi\)
−0.796352 + 0.604834i \(0.793240\pi\)
\(558\) 0 0
\(559\) −0.654855 + 0.192283i −0.0276974 + 0.00813270i
\(560\) 5.87198 + 3.77369i 0.248136 + 0.159468i
\(561\) 0 0
\(562\) 13.2376 + 3.88691i 0.558394 + 0.163959i
\(563\) 9.43294 + 10.8862i 0.397551 + 0.458799i 0.918868 0.394565i \(-0.129105\pi\)
−0.521317 + 0.853363i \(0.674559\pi\)
\(564\) 0 0
\(565\) −20.9270 6.14472i −0.880405 0.258510i
\(566\) 1.46884 3.21631i 0.0617399 0.135192i
\(567\) 0 0
\(568\) −31.8269 + 9.34522i −1.33543 + 0.392117i
\(569\) 2.69816 18.7661i 0.113113 0.786716i −0.851748 0.523952i \(-0.824457\pi\)
0.964860 0.262764i \(-0.0846339\pi\)
\(570\) 0 0
\(571\) −0.955235 6.64381i −0.0399754 0.278035i 0.960023 0.279922i \(-0.0903085\pi\)
−0.999998 + 0.00188690i \(0.999399\pi\)
\(572\) 0.612275 0.393485i 0.0256005 0.0164524i
\(573\) 0 0
\(574\) −18.7533 −0.782747
\(575\) 8.81315 + 5.41286i 0.367534 + 0.225732i
\(576\) 0 0
\(577\) −8.20449 + 9.46849i −0.341557 + 0.394178i −0.900377 0.435111i \(-0.856709\pi\)
0.558819 + 0.829289i \(0.311255\pi\)
\(578\) −4.71773 + 3.03190i −0.196232 + 0.126110i
\(579\) 0 0
\(580\) −7.49402 16.4096i −0.311172 0.681372i
\(581\) 2.97935 20.7219i 0.123604 0.859687i
\(582\) 0 0
\(583\) 0.913830 + 0.587283i 0.0378470 + 0.0243228i
\(584\) −4.55252 + 9.96862i −0.188384 + 0.412504i
\(585\) 0 0
\(586\) 1.36317 + 1.57319i 0.0563122 + 0.0649877i
\(587\) −4.51105 5.20603i −0.186191 0.214876i 0.654978 0.755648i \(-0.272678\pi\)
−0.841169 + 0.540772i \(0.818132\pi\)
\(588\) 0 0
\(589\) −13.3556 + 29.2447i −0.550308 + 1.20501i
\(590\) 3.44268 + 2.21248i 0.141733 + 0.0910863i
\(591\) 0 0
\(592\) −2.08317 + 14.4888i −0.0856178 + 0.595485i
\(593\) 13.5898 + 29.7575i 0.558067 + 1.22200i 0.952912 + 0.303248i \(0.0980710\pi\)
−0.394845 + 0.918748i \(0.629202\pi\)
\(594\) 0 0
\(595\) −13.8506 + 8.90124i −0.567819 + 0.364915i
\(596\) −3.02451 + 3.49047i −0.123889 + 0.142975i
\(597\) 0 0
\(598\) 0.535381 + 0.592955i 0.0218934 + 0.0242477i
\(599\) −26.8624 −1.09757 −0.548784 0.835964i \(-0.684909\pi\)
−0.548784 + 0.835964i \(0.684909\pi\)
\(600\) 0 0
\(601\) −25.9428 + 16.6724i −1.05823 + 0.680083i −0.949429 0.313981i \(-0.898337\pi\)
−0.108800 + 0.994064i \(0.534701\pi\)
\(602\) −0.938145 6.52494i −0.0382359 0.265937i
\(603\) 0 0
\(604\) 0.405973 2.82360i 0.0165188 0.114891i
\(605\) 11.0431 3.24254i 0.448965 0.131828i
\(606\) 0 0
\(607\) −14.9460 + 32.7272i −0.606640 + 1.32836i 0.318209 + 0.948021i \(0.396919\pi\)
−0.924849 + 0.380335i \(0.875809\pi\)
\(608\) 26.8145 + 7.87346i 1.08747 + 0.319311i
\(609\) 0 0
\(610\) −3.77081 4.35174i −0.152676 0.176197i
\(611\) −3.01760 0.886048i −0.122079 0.0358457i
\(612\) 0 0
\(613\) 17.5091 + 11.2524i 0.707187 + 0.454481i 0.844158 0.536094i \(-0.180101\pi\)
−0.136972 + 0.990575i \(0.543737\pi\)
\(614\) −15.9957 + 4.69675i −0.645533 + 0.189546i
\(615\) 0 0
\(616\) 6.80146 + 14.8931i 0.274039 + 0.600061i
\(617\) −2.59278 18.0332i −0.104382 0.725990i −0.973050 0.230595i \(-0.925933\pi\)
0.868668 0.495394i \(-0.164976\pi\)
\(618\) 0 0
\(619\) 13.8159 15.9444i 0.555310 0.640862i −0.406802 0.913516i \(-0.633356\pi\)
0.962112 + 0.272655i \(0.0879017\pi\)
\(620\) −17.0162 −0.683386
\(621\) 0 0
\(622\) −18.4466 −0.739642
\(623\) 5.33866 6.16114i 0.213889 0.246841i
\(624\) 0 0
\(625\) 1.36140 + 9.46875i 0.0544561 + 0.378750i
\(626\) −1.93682 4.24105i −0.0774109 0.169506i
\(627\) 0 0
\(628\) 3.11557 0.914812i 0.124325 0.0365050i
\(629\) −29.0460 18.6667i −1.15814 0.744291i
\(630\) 0 0
\(631\) −28.2607 8.29809i −1.12504 0.330342i −0.334284 0.942472i \(-0.608494\pi\)
−0.790757 + 0.612131i \(0.790313\pi\)
\(632\) 3.37821 + 3.89867i 0.134378 + 0.155081i
\(633\) 0 0
\(634\) 7.49657 + 2.20119i 0.297727 + 0.0874205i
\(635\) 3.72818 8.16358i 0.147948 0.323962i
\(636\) 0 0
\(637\) −0.807791 + 0.237189i −0.0320059 + 0.00939777i
\(638\) 1.45473 10.1178i 0.0575931 0.400569i
\(639\) 0 0
\(640\) 2.53533 + 17.6336i 0.100218 + 0.697030i
\(641\) −33.4698 + 21.5097i −1.32198 + 0.849584i −0.995420 0.0955936i \(-0.969525\pi\)
−0.326558 + 0.945177i \(0.605889\pi\)
\(642\) 0 0
\(643\) −33.1070 −1.30561 −0.652806 0.757525i \(-0.726408\pi\)
−0.652806 + 0.757525i \(0.726408\pi\)
\(644\) 19.4626 13.0770i 0.766936 0.515304i
\(645\) 0 0
\(646\) −6.63925 + 7.66211i −0.261218 + 0.301462i
\(647\) −26.5632 + 17.0711i −1.04431 + 0.671134i −0.946048 0.324027i \(-0.894963\pi\)
−0.0982575 + 0.995161i \(0.531327\pi\)
\(648\) 0 0
\(649\) −2.92718 6.40963i −0.114902 0.251600i
\(650\) 0.0511261 0.355590i 0.00200533 0.0139474i
\(651\) 0 0
\(652\) 15.3130 + 9.84104i 0.599702 + 0.385405i
\(653\) −5.87583 + 12.8663i −0.229939 + 0.503496i −0.989071 0.147441i \(-0.952896\pi\)
0.759132 + 0.650937i \(0.225624\pi\)
\(654\) 0 0
\(655\) 5.01451 + 5.78706i 0.195933 + 0.226119i
\(656\) 6.84313 + 7.89739i 0.267179 + 0.308341i
\(657\) 0 0
\(658\) 12.6188 27.6313i 0.491932 1.07718i
\(659\) 4.37949 + 2.81453i 0.170601 + 0.109638i 0.623155 0.782099i \(-0.285851\pi\)
−0.452554 + 0.891737i \(0.649487\pi\)
\(660\) 0 0
\(661\) 1.49548 10.4013i 0.0581673 0.404563i −0.939848 0.341593i \(-0.889034\pi\)
0.998015 0.0629700i \(-0.0200572\pi\)
\(662\) 6.56486 + 14.3750i 0.255151 + 0.558702i
\(663\) 0 0
\(664\) 13.3688 8.59160i 0.518810 0.333419i
\(665\) 17.2007 19.8507i 0.667015 0.769776i
\(666\) 0 0
\(667\) −34.0885 + 0.696124i −1.31991 + 0.0269540i
\(668\) −19.8161 −0.766706
\(669\) 0 0
\(670\) 14.9015 9.57660i 0.575695 0.369976i
\(671\) 1.41102 + 9.81385i 0.0544718 + 0.378860i
\(672\) 0 0
\(673\) 3.94517 27.4393i 0.152075 1.05771i −0.760659 0.649152i \(-0.775124\pi\)
0.912734 0.408554i \(-0.133967\pi\)
\(674\) 23.5827 6.92450i 0.908370 0.266722i
\(675\) 0 0
\(676\) 8.09149 17.7179i 0.311211 0.681457i
\(677\) 26.6582 + 7.82754i 1.02456 + 0.300837i 0.750496 0.660876i \(-0.229815\pi\)
0.274061 + 0.961712i \(0.411633\pi\)
\(678\) 0 0
\(679\) −3.86147 4.45637i −0.148189 0.171020i
\(680\) −11.9916 3.52105i −0.459857 0.135026i
\(681\) 0 0
\(682\) −8.11124 5.21278i −0.310596 0.199608i
\(683\) −10.3732 + 3.04585i −0.396921 + 0.116546i −0.474100 0.880471i \(-0.657227\pi\)
0.0771798 + 0.997017i \(0.475408\pi\)
\(684\) 0 0
\(685\) 11.5563 + 25.3047i 0.441542 + 0.966842i
\(686\) 1.12047 + 7.79303i 0.0427797 + 0.297539i
\(687\) 0 0
\(688\) −2.40545 + 2.77604i −0.0917070 + 0.105836i
\(689\) −0.125854 −0.00479464
\(690\) 0 0
\(691\) 6.10633 0.232296 0.116148 0.993232i \(-0.462945\pi\)
0.116148 + 0.993232i \(0.462945\pi\)
\(692\) 17.3847 20.0630i 0.660868 0.762682i
\(693\) 0 0
\(694\) −1.02845 7.15305i −0.0390395 0.271526i
\(695\) 2.42777 + 5.31608i 0.0920907 + 0.201650i
\(696\) 0 0
\(697\) −23.6500 + 6.94427i −0.895809 + 0.263033i
\(698\) −17.8995 11.5033i −0.677507 0.435407i
\(699\) 0 0
\(700\) −10.1169 2.97060i −0.382385 0.112278i
\(701\) −12.3067 14.2027i −0.464819 0.536430i 0.474144 0.880447i \(-0.342758\pi\)
−0.938963 + 0.344017i \(0.888212\pi\)
\(702\) 0 0
\(703\) 52.8513 + 15.5186i 1.99333 + 0.585293i
\(704\) −1.31898 + 2.88817i −0.0497110 + 0.108852i
\(705\) 0 0
\(706\) −2.13120 + 0.625776i −0.0802086 + 0.0235514i
\(707\) −1.10945 + 7.71641i −0.0417253 + 0.290206i
\(708\) 0 0
\(709\) −2.12480 14.7783i −0.0797985 0.555011i −0.990024 0.140898i \(-0.955001\pi\)
0.910226 0.414113i \(-0.135908\pi\)
\(710\) −13.4257 + 8.62815i −0.503856 + 0.323809i
\(711\) 0 0
\(712\) 6.18838 0.231919
\(713\) −12.7600 + 29.5212i −0.477867 + 1.10558i
\(714\) 0 0
\(715\) 0.534083 0.616365i 0.0199736 0.0230507i
\(716\) 13.6321 8.76082i 0.509455 0.327407i
\(717\) 0 0
\(718\) 6.39253 + 13.9977i 0.238567 + 0.522389i
\(719\) 2.17016 15.0938i 0.0809333 0.562904i −0.908497 0.417892i \(-0.862769\pi\)
0.989430 0.145012i \(-0.0463219\pi\)
\(720\) 0 0
\(721\) 11.2341 + 7.21972i 0.418380 + 0.268876i
\(722\) 1.16479 2.55054i 0.0433491 0.0949213i
\(723\) 0 0
\(724\) −1.40586 1.62245i −0.0522483 0.0602977i
\(725\) 10.0404 + 11.5873i 0.372892 + 0.430340i
\(726\) 0 0
\(727\) −9.70715 + 21.2557i −0.360018 + 0.788330i 0.639786 + 0.768553i \(0.279023\pi\)
−0.999804 + 0.0197768i \(0.993704\pi\)
\(728\) −1.59579 1.02555i −0.0591437 0.0380094i
\(729\) 0 0
\(730\) −0.750370 + 5.21894i −0.0277724 + 0.193162i
\(731\) −3.59927 7.88130i −0.133124 0.291500i
\(732\) 0 0
\(733\) 45.1623 29.0240i 1.66811 1.07203i 0.763469 0.645845i \(-0.223495\pi\)
0.904637 0.426182i \(-0.140142\pi\)
\(734\) 3.75061 4.32843i 0.138437 0.159765i
\(735\) 0 0
\(736\) 26.9788 + 7.32681i 0.994451 + 0.270070i
\(737\) −30.5000 −1.12348
\(738\) 0 0
\(739\) −7.10502 + 4.56612i −0.261362 + 0.167967i −0.664759 0.747058i \(-0.731466\pi\)
0.403397 + 0.915025i \(0.367829\pi\)
\(740\) 4.14902 + 28.8570i 0.152521 + 1.06081i
\(741\) 0 0
\(742\) 0.172994 1.20320i 0.00635083 0.0441710i
\(743\) 10.3844 3.04914i 0.380968 0.111862i −0.0856409 0.996326i \(-0.527294\pi\)
0.466609 + 0.884464i \(0.345476\pi\)
\(744\) 0 0
\(745\) −2.14995 + 4.70774i −0.0787682 + 0.172478i
\(746\) −2.98567 0.876671i −0.109313 0.0320972i
\(747\) 0 0
\(748\) 6.05058 + 6.98274i 0.221231 + 0.255314i
\(749\) 41.9503 + 12.3177i 1.53283 + 0.450080i
\(750\) 0 0
\(751\) 12.6562 + 8.13365i 0.461832 + 0.296801i 0.750791 0.660540i \(-0.229673\pi\)
−0.288959 + 0.957342i \(0.593309\pi\)
\(752\) −16.2408 + 4.76871i −0.592239 + 0.173897i
\(753\) 0 0
\(754\) 0.491972 + 1.07727i 0.0179166 + 0.0392318i
\(755\) −0.454922 3.16405i −0.0165563 0.115152i
\(756\) 0 0
\(757\) −2.37325 + 2.73887i −0.0862572 + 0.0995461i −0.797237 0.603666i \(-0.793706\pi\)
0.710980 + 0.703212i \(0.248252\pi\)
\(758\) 7.42321 0.269623
\(759\) 0 0
\(760\) 19.9384 0.723242
\(761\) −0.554520 + 0.639950i −0.0201013 + 0.0231982i −0.765711 0.643185i \(-0.777613\pi\)
0.745610 + 0.666383i \(0.232158\pi\)
\(762\) 0 0
\(763\) −7.31824 50.8995i −0.264938 1.84269i
\(764\) −8.68518 19.0179i −0.314219 0.688043i
\(765\) 0 0
\(766\) −3.64745 + 1.07099i −0.131788 + 0.0386963i
\(767\) 0.686786 + 0.441371i 0.0247984 + 0.0159370i
\(768\) 0 0
\(769\) −38.4180 11.2806i −1.38539 0.406787i −0.497748 0.867322i \(-0.665840\pi\)
−0.887642 + 0.460535i \(0.847658\pi\)
\(770\) 5.15852 + 5.95325i 0.185900 + 0.214540i
\(771\) 0 0
\(772\) 11.6888 + 3.43215i 0.420690 + 0.123526i
\(773\) −16.2066 + 35.4876i −0.582913 + 1.27640i 0.356719 + 0.934212i \(0.383896\pi\)
−0.939631 + 0.342189i \(0.888832\pi\)
\(774\) 0 0
\(775\) 13.8763 4.07445i 0.498452 0.146359i
\(776\) 0.637011 4.43051i 0.0228674 0.159046i
\(777\) 0 0
\(778\) 0.160485 + 1.11620i 0.00575367 + 0.0400177i
\(779\) 33.0805 21.2595i 1.18523 0.761702i
\(780\) 0 0
\(781\) 27.4793 0.983287
\(782\) −6.48362 + 7.79869i −0.231854 + 0.278880i
\(783\) 0 0
\(784\) −2.96722 + 3.42436i −0.105972 + 0.122299i
\(785\) 3.06099 1.96718i 0.109252 0.0702117i
\(786\) 0 0
\(787\) −16.1795 35.4281i −0.576735 1.26287i −0.943133 0.332416i \(-0.892136\pi\)
0.366398 0.930458i \(-0.380591\pi\)
\(788\) −0.380646 + 2.64745i −0.0135600 + 0.0943116i
\(789\) 0 0
\(790\) 2.08795 + 1.34185i 0.0742861 + 0.0477408i
\(791\) 17.4577 38.2271i 0.620726 1.35920i
\(792\) 0 0
\(793\) −0.752245 0.868136i −0.0267130 0.0308284i
\(794\) 3.21396 + 3.70911i 0.114059 + 0.131631i
\(795\) 0 0
\(796\) −4.11458 + 9.00966i −0.145837 + 0.319339i
\(797\) −18.7123 12.0257i −0.662823 0.425971i 0.165508 0.986208i \(-0.447073\pi\)
−0.828332 + 0.560238i \(0.810710\pi\)
\(798\) 0 0
\(799\) 5.68197 39.5189i 0.201014 1.39808i
\(800\) −5.22229 11.4352i −0.184636 0.404296i
\(801\) 0 0
\(802\) 0.565424 0.363376i 0.0199658 0.0128313i
\(803\) 5.94527 6.86121i 0.209804 0.242127i
\(804\) 0 0
\(805\) 16.7975 20.2045i 0.592033 0.712115i
\(806\) 1.11709 0.0393478
\(807\) 0 0
\(808\) −4.97827 + 3.19934i −0.175135 + 0.112552i
\(809\) −7.67660 53.3919i −0.269895 1.87716i −0.449296 0.893383i \(-0.648325\pi\)
0.179401 0.983776i \(-0.442584\pi\)
\(810\) 0 0
\(811\) 7.03044 48.8978i 0.246872 1.71703i −0.369206 0.929347i \(-0.620370\pi\)
0.616078 0.787685i \(-0.288720\pi\)
\(812\) 33.3515 9.79288i 1.17041 0.343663i
\(813\) 0 0
\(814\) −6.86239 + 15.0265i −0.240527 + 0.526680i
\(815\) 19.5711 + 5.74658i 0.685544 + 0.201294i
\(816\) 0 0
\(817\) 9.05183 + 10.4464i 0.316683 + 0.365472i
\(818\) −10.5170 3.08807i −0.367718 0.107972i
\(819\) 0 0
\(820\) 17.5086 + 11.2521i 0.611428 + 0.392941i
\(821\) 16.8019 4.93349i 0.586391 0.172180i 0.0249388 0.999689i \(-0.492061\pi\)
0.561453 + 0.827509i \(0.310243\pi\)
\(822\) 0 0
\(823\) −5.65453 12.3817i −0.197105 0.431599i 0.785111 0.619355i \(-0.212606\pi\)
−0.982216 + 0.187756i \(0.939879\pi\)
\(824\) 1.44263 + 10.0337i 0.0502564 + 0.349541i
\(825\) 0 0
\(826\) −5.16369 + 5.95921i −0.179668 + 0.207347i
\(827\) 22.5564 0.784365 0.392182 0.919888i \(-0.371720\pi\)
0.392182 + 0.919888i \(0.371720\pi\)
\(828\) 0 0
\(829\) −49.2936 −1.71204 −0.856019 0.516944i \(-0.827070\pi\)
−0.856019 + 0.516944i \(0.827070\pi\)
\(830\) 5.00691 5.77829i 0.173793 0.200567i
\(831\) 0 0
\(832\) −0.0523521 0.364117i −0.00181498 0.0126235i
\(833\) −4.43985 9.72191i −0.153832 0.336844i
\(834\) 0 0
\(835\) −21.3059 + 6.25597i −0.737320 + 0.216497i
\(836\) −12.4002 7.96915i −0.428871 0.275619i
\(837\) 0 0
\(838\) −20.5579 6.03634i −0.710161 0.208522i
\(839\) −3.73033 4.30503i −0.128785 0.148626i 0.687694 0.726000i \(-0.258623\pi\)
−0.816480 + 0.577374i \(0.804077\pi\)
\(840\) 0 0
\(841\) −20.6712 6.06961i −0.712800 0.209297i
\(842\) −7.08944 + 15.5237i −0.244318 + 0.534982i
\(843\) 0 0
\(844\) 19.7216 5.79079i 0.678847 0.199327i
\(845\) 3.10625 21.6045i 0.106858 0.743216i
\(846\) 0 0
\(847\) 3.15602 + 21.9506i 0.108442 + 0.754231i
\(848\) −0.569819 + 0.366201i −0.0195677 + 0.0125754i
\(849\) 0 0
\(850\) 4.56059 0.156427
\(851\) 53.1751 + 14.4411i 1.82282 + 0.495035i
\(852\) 0 0
\(853\) −23.2854 + 26.8727i −0.797275 + 0.920105i −0.998229 0.0594960i \(-0.981051\pi\)
0.200953 + 0.979601i \(0.435596\pi\)
\(854\) 9.33368 5.99839i 0.319392 0.205261i
\(855\) 0 0
\(856\) 13.7870 + 30.1892i 0.471229 + 1.03185i
\(857\) −3.63010 + 25.2479i −0.124002 + 0.862451i 0.828949 + 0.559325i \(0.188940\pi\)
−0.952950 + 0.303126i \(0.901970\pi\)
\(858\) 0 0
\(859\) −28.7873 18.5005i −0.982209 0.631227i −0.0521507 0.998639i \(-0.516608\pi\)
−0.930058 + 0.367412i \(0.880244\pi\)
\(860\) −3.03914 + 6.65478i −0.103634 + 0.226926i
\(861\) 0 0
\(862\) 4.48854 + 5.18005i 0.152880 + 0.176433i
\(863\) −18.4346 21.2747i −0.627522 0.724199i 0.349595 0.936901i \(-0.386319\pi\)
−0.977117 + 0.212702i \(0.931774\pi\)
\(864\) 0 0
\(865\) 12.3578 27.0598i 0.420178 0.920061i
\(866\) −3.69562 2.37503i −0.125582 0.0807069i
\(867\) 0 0
\(868\) 4.66609 32.4534i 0.158377 1.10154i
\(869\) −1.77531 3.88738i −0.0602232 0.131870i
\(870\) 0 0
\(871\) 2.97272 1.91045i 0.100727 0.0647332i
\(872\) 25.5622 29.5004i 0.865647 0.999009i
\(873\) 0 0
\(874\) 6.41942 14.8518i 0.217140 0.502369i
\(875\) −39.2090 −1.32551
\(876\) 0 0
\(877\) −12.5229 + 8.04799i −0.422869 + 0.271761i −0.734721 0.678369i \(-0.762687\pi\)
0.311852 + 0.950131i \(0.399051\pi\)
\(878\) 1.67471 + 11.6478i 0.0565186 + 0.393095i
\(879\) 0 0
\(880\) 0.624675 4.34471i 0.0210578 0.146460i
\(881\) 25.0561 7.35715i 0.844163 0.247869i 0.169073 0.985604i \(-0.445923\pi\)
0.675090 + 0.737735i \(0.264105\pi\)
\(882\) 0 0
\(883\) −14.3890 + 31.5074i −0.484227 + 1.06031i 0.497052 + 0.867721i \(0.334416\pi\)
−0.981279 + 0.192589i \(0.938311\pi\)
\(884\) −1.02711 0.301587i −0.0345455 0.0101435i
\(885\) 0 0
\(886\) 14.0055 + 16.1632i 0.470525 + 0.543014i
\(887\) −52.5394 15.4270i −1.76410 0.517987i −0.771164 0.636636i \(-0.780325\pi\)
−0.992936 + 0.118650i \(0.962143\pi\)
\(888\) 0 0
\(889\) 14.5473 + 9.34899i 0.487901 + 0.313555i
\(890\) 2.85677 0.838822i 0.0957590 0.0281174i
\(891\) 0 0
\(892\) −7.12696 15.6059i −0.238628 0.522523i
\(893\) 9.06471 + 63.0465i 0.303339 + 2.10977i
\(894\) 0 0
\(895\) 11.8912 13.7232i 0.397479 0.458715i
\(896\) −34.3261 −1.14676
\(897\) 0 0
\(898\) −12.1172 −0.404355
\(899\) −31.2210 + 36.0310i −1.04128 + 1.20170i
\(900\) 0 0
\(901\) −0.227376 1.58143i −0.00757499 0.0526852i
\(902\) 4.89899 + 10.7273i 0.163118 + 0.357179i
\(903\) 0 0
\(904\) 30.6084 8.98744i 1.01802 0.298918i
\(905\) −2.02376 1.30059i −0.0672722 0.0432332i
\(906\) 0 0
\(907\) 9.75887 + 2.86546i 0.324038 + 0.0951461i 0.439706 0.898142i \(-0.355083\pi\)
−0.115668 + 0.993288i \(0.536901\pi\)
\(908\) 1.56620 + 1.80749i 0.0519761 + 0.0599836i
\(909\) 0 0
\(910\) −0.875680 0.257123i −0.0290285 0.00852354i
\(911\) −12.8358 + 28.1066i −0.425271 + 0.931213i 0.568800 + 0.822476i \(0.307408\pi\)
−0.994071 + 0.108737i \(0.965319\pi\)
\(912\) 0 0
\(913\) −12.6317 + 3.70899i −0.418047 + 0.122750i
\(914\) 1.15583 8.03900i 0.0382316 0.265907i
\(915\) 0 0
\(916\) 5.61721 + 39.0686i 0.185598 + 1.29086i
\(917\) −12.4122 + 7.97681i −0.409886 + 0.263417i
\(918\) 0 0
\(919\) 1.12747 0.0371917 0.0185959 0.999827i \(-0.494080\pi\)
0.0185959 + 0.999827i \(0.494080\pi\)
\(920\) 19.9410 0.407216i 0.657434 0.0134255i
\(921\) 0 0
\(922\) −16.7375 + 19.3161i −0.551221 + 0.636143i
\(923\) −2.67831 + 1.72124i −0.0881575 + 0.0566554i
\(924\) 0 0
\(925\) −10.2931 22.5388i −0.338436 0.741071i
\(926\) 1.47668 10.2705i 0.0485268 0.337511i
\(927\) 0 0
\(928\) 34.8636 + 22.4055i 1.14445 + 0.735495i
\(929\) −4.61059 + 10.0958i −0.151269 + 0.331232i −0.970062 0.242856i \(-0.921916\pi\)
0.818794 + 0.574088i \(0.194643\pi\)
\(930\) 0 0
\(931\) 11.1658 + 12.8860i 0.365944 + 0.422322i
\(932\) 9.80417 + 11.3146i 0.321146 + 0.370623i
\(933\) 0 0
\(934\) 2.37072 5.19115i 0.0775723 0.169860i
\(935\) 8.70994 + 5.59754i 0.284846 + 0.183059i
\(936\) 0 0
\(937\) −5.05507 + 35.1588i −0.165142 + 1.14859i 0.723613 + 0.690206i \(0.242480\pi\)
−0.888755 + 0.458382i \(0.848429\pi\)
\(938\) 14.1783 + 31.0462i 0.462939 + 1.01370i
\(939\) 0 0
\(940\) −28.3603 + 18.2261i −0.925012 + 0.594469i
\(941\) 37.5077 43.2862i 1.22272 1.41109i 0.340499 0.940245i \(-0.389404\pi\)
0.882217 0.470844i \(-0.156050\pi\)
\(942\) 0 0
\(943\) 32.6505 21.9379i 1.06325 0.714396i
\(944\) 4.39379 0.143006
\(945\) 0 0
\(946\) −3.48733 + 2.24117i −0.113383 + 0.0728668i
\(947\) −3.46314 24.0867i −0.112537 0.782712i −0.965437 0.260637i \(-0.916067\pi\)
0.852900 0.522075i \(-0.174842\pi\)
\(948\) 0 0
\(949\) −0.149693 + 1.04113i −0.00485923 + 0.0337967i
\(950\) −6.98101 + 2.04981i −0.226494 + 0.0665046i
\(951\) 0 0
\(952\) 10.0036 21.9049i 0.324220 0.709942i
\(953\) −47.7219 14.0124i −1.54586 0.453906i −0.606002 0.795463i \(-0.707228\pi\)
−0.939861 + 0.341557i \(0.889046\pi\)
\(954\) 0 0
\(955\) −15.3421 17.7058i −0.496460 0.572945i
\(956\) −16.6714 4.89516i −0.539191 0.158321i
\(957\) 0 0
\(958\) 18.3135 + 11.7693i 0.591681 + 0.380250i
\(959\) −51.4301 + 15.1012i −1.66077 + 0.487645i
\(960\) 0 0
\(961\) 5.80356 + 12.7080i 0.187212 + 0.409936i
\(962\) −0.272377 1.89443i −0.00878180 0.0610787i
\(963\) 0 0
\(964\) −5.41725 + 6.25183i −0.174478 + 0.201358i
\(965\) 13.6512 0.439447
\(966\) 0 0
\(967\) 46.0629 1.48128 0.740641 0.671901i \(-0.234522\pi\)
0.740641 + 0.671901i \(0.234522\pi\)
\(968\) −11.0238 + 12.7221i −0.354318 + 0.408905i
\(969\) 0 0
\(970\) −0.306481 2.13162i −0.00984050 0.0684422i
\(971\) 10.3764 + 22.7210i 0.332993 + 0.729153i 0.999872 0.0160132i \(-0.00509738\pi\)
−0.666879 + 0.745166i \(0.732370\pi\)
\(972\) 0 0
\(973\) −10.8046 + 3.17251i −0.346379 + 0.101706i
\(974\) 9.38093 + 6.02876i 0.300584 + 0.193174i
\(975\) 0 0
\(976\) −5.93193 1.74177i −0.189876 0.0557528i
\(977\) −15.7122 18.1328i −0.502678 0.580121i 0.446531 0.894768i \(-0.352659\pi\)
−0.949209 + 0.314647i \(0.898114\pi\)
\(978\) 0 0
\(979\) −4.91894 1.44433i −0.157210 0.0461611i
\(980\) −3.74890 + 8.20894i −0.119754 + 0.262225i
\(981\) 0 0
\(982\) 0.507523 0.149022i 0.0161957 0.00475549i
\(983\) 0.868902 6.04334i 0.0277137 0.192753i −0.971261 0.238015i \(-0.923503\pi\)
0.998975 + 0.0452623i \(0.0144123\pi\)
\(984\) 0 0
\(985\) 0.426542 + 2.96667i 0.0135908 + 0.0945258i
\(986\) −12.6478 + 8.12822i −0.402787 + 0.258855i
\(987\) 0 0
\(988\) 1.70778 0.0543316
\(989\) 9.26634 + 10.2628i 0.294652 + 0.326339i
\(990\) 0 0
\(991\) 10.5406 12.1645i 0.334833 0.386418i −0.563219 0.826308i \(-0.690437\pi\)
0.898052 + 0.439890i \(0.144983\pi\)
\(992\) 32.8853 21.1341i 1.04411 0.671008i
\(993\) 0 0
\(994\) −12.7741 27.9715i −0.405171 0.887201i
\(995\) −1.57955 + 10.9860i −0.0500751 + 0.348280i
\(996\) 0 0
\(997\) 14.2420 + 9.15281i 0.451050 + 0.289872i 0.746376 0.665524i \(-0.231792\pi\)
−0.295326 + 0.955397i \(0.595428\pi\)
\(998\) −9.04144 + 19.7980i −0.286202 + 0.626694i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 207.2.i.d.154.1 20
3.2 odd 2 69.2.e.c.16.2 yes 20
23.6 even 11 4761.2.a.bt.1.6 10
23.13 even 11 inner 207.2.i.d.82.1 20
23.17 odd 22 4761.2.a.bu.1.6 10
69.17 even 22 1587.2.a.t.1.5 10
69.29 odd 22 1587.2.a.u.1.5 10
69.59 odd 22 69.2.e.c.13.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.13.2 20 69.59 odd 22
69.2.e.c.16.2 yes 20 3.2 odd 2
207.2.i.d.82.1 20 23.13 even 11 inner
207.2.i.d.154.1 20 1.1 even 1 trivial
1587.2.a.t.1.5 10 69.17 even 22
1587.2.a.u.1.5 10 69.29 odd 22
4761.2.a.bt.1.6 10 23.6 even 11
4761.2.a.bu.1.6 10 23.17 odd 22