Properties

Label 1587.2.a.u.1.5
Level $1587$
Weight $2$
Character 1587.1
Self dual yes
Analytic conductor $12.672$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1587,2,Mod(1,1587)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1587.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1587, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1587 = 3 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1587.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-2,10,8,8,-2,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.6722588008\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.10.5791333887977.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 12x^{8} + 22x^{7} + 49x^{6} - 84x^{5} - 73x^{4} + 132x^{3} + 17x^{2} - 74x + 23 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.703704\) of defining polynomial
Character \(\chi\) \(=\) 1587.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.703704 q^{2} +1.00000 q^{3} -1.50480 q^{4} -1.68624 q^{5} -0.703704 q^{6} +3.24908 q^{7} +2.46634 q^{8} +1.00000 q^{9} +1.18661 q^{10} +2.04318 q^{11} -1.50480 q^{12} +0.236720 q^{13} -2.28639 q^{14} -1.68624 q^{15} +1.27403 q^{16} +3.00512 q^{17} -0.703704 q^{18} -4.79422 q^{19} +2.53745 q^{20} +3.24908 q^{21} -1.43779 q^{22} +2.46634 q^{24} -2.15659 q^{25} -0.166580 q^{26} +1.00000 q^{27} -4.88921 q^{28} -7.10942 q^{29} +1.18661 q^{30} +6.70601 q^{31} -5.82922 q^{32} +2.04318 q^{33} -2.11472 q^{34} -5.47872 q^{35} -1.50480 q^{36} +11.4894 q^{37} +3.37371 q^{38} +0.236720 q^{39} -4.15885 q^{40} +8.20214 q^{41} -2.28639 q^{42} +2.88317 q^{43} -3.07458 q^{44} -1.68624 q^{45} -13.2857 q^{47} +1.27403 q^{48} +3.55650 q^{49} +1.51760 q^{50} +3.00512 q^{51} -0.356216 q^{52} +0.531658 q^{53} -0.703704 q^{54} -3.44529 q^{55} +8.01334 q^{56} -4.79422 q^{57} +5.00293 q^{58} -3.44874 q^{59} +2.53745 q^{60} +4.85262 q^{61} -4.71904 q^{62} +3.24908 q^{63} +1.55400 q^{64} -0.399166 q^{65} -1.43779 q^{66} +14.9277 q^{67} -4.52211 q^{68} +3.85540 q^{70} +13.4493 q^{71} +2.46634 q^{72} +4.44341 q^{73} -8.08512 q^{74} -2.15659 q^{75} +7.21434 q^{76} +6.63845 q^{77} -0.166580 q^{78} +2.09163 q^{79} -2.14831 q^{80} +1.00000 q^{81} -5.77188 q^{82} +6.44335 q^{83} -4.88921 q^{84} -5.06736 q^{85} -2.02890 q^{86} -7.10942 q^{87} +5.03918 q^{88} +2.50913 q^{89} +1.18661 q^{90} +0.769120 q^{91} +6.70601 q^{93} +9.34924 q^{94} +8.08420 q^{95} -5.82922 q^{96} +1.81486 q^{97} -2.50273 q^{98} +2.04318 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{2} + 10 q^{3} + 8 q^{4} + 8 q^{5} - 2 q^{6} + 19 q^{7} - 6 q^{8} + 10 q^{9} + 13 q^{10} + 3 q^{11} + 8 q^{12} - 4 q^{13} + 8 q^{15} - 4 q^{16} + 11 q^{17} - 2 q^{18} + 22 q^{19} + q^{20} + 19 q^{21}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.703704 −0.497594 −0.248797 0.968556i \(-0.580035\pi\)
−0.248797 + 0.968556i \(0.580035\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.50480 −0.752400
\(5\) −1.68624 −0.754109 −0.377055 0.926191i \(-0.623063\pi\)
−0.377055 + 0.926191i \(0.623063\pi\)
\(6\) −0.703704 −0.287286
\(7\) 3.24908 1.22804 0.614018 0.789292i \(-0.289552\pi\)
0.614018 + 0.789292i \(0.289552\pi\)
\(8\) 2.46634 0.871984
\(9\) 1.00000 0.333333
\(10\) 1.18661 0.375240
\(11\) 2.04318 0.616042 0.308021 0.951380i \(-0.400333\pi\)
0.308021 + 0.951380i \(0.400333\pi\)
\(12\) −1.50480 −0.434399
\(13\) 0.236720 0.0656542 0.0328271 0.999461i \(-0.489549\pi\)
0.0328271 + 0.999461i \(0.489549\pi\)
\(14\) −2.28639 −0.611063
\(15\) −1.68624 −0.435385
\(16\) 1.27403 0.318506
\(17\) 3.00512 0.728850 0.364425 0.931233i \(-0.381266\pi\)
0.364425 + 0.931233i \(0.381266\pi\)
\(18\) −0.703704 −0.165865
\(19\) −4.79422 −1.09987 −0.549934 0.835208i \(-0.685347\pi\)
−0.549934 + 0.835208i \(0.685347\pi\)
\(20\) 2.53745 0.567392
\(21\) 3.24908 0.709007
\(22\) −1.43779 −0.306539
\(23\) 0 0
\(24\) 2.46634 0.503440
\(25\) −2.15659 −0.431319
\(26\) −0.166580 −0.0326691
\(27\) 1.00000 0.192450
\(28\) −4.88921 −0.923974
\(29\) −7.10942 −1.32019 −0.660093 0.751184i \(-0.729483\pi\)
−0.660093 + 0.751184i \(0.729483\pi\)
\(30\) 1.18661 0.216645
\(31\) 6.70601 1.20443 0.602217 0.798332i \(-0.294284\pi\)
0.602217 + 0.798332i \(0.294284\pi\)
\(32\) −5.82922 −1.03047
\(33\) 2.04318 0.355672
\(34\) −2.11472 −0.362671
\(35\) −5.47872 −0.926073
\(36\) −1.50480 −0.250800
\(37\) 11.4894 1.88884 0.944421 0.328738i \(-0.106623\pi\)
0.944421 + 0.328738i \(0.106623\pi\)
\(38\) 3.37371 0.547288
\(39\) 0.236720 0.0379055
\(40\) −4.15885 −0.657571
\(41\) 8.20214 1.28096 0.640480 0.767975i \(-0.278736\pi\)
0.640480 + 0.767975i \(0.278736\pi\)
\(42\) −2.28639 −0.352797
\(43\) 2.88317 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(44\) −3.07458 −0.463510
\(45\) −1.68624 −0.251370
\(46\) 0 0
\(47\) −13.2857 −1.93793 −0.968963 0.247206i \(-0.920487\pi\)
−0.968963 + 0.247206i \(0.920487\pi\)
\(48\) 1.27403 0.183890
\(49\) 3.55650 0.508072
\(50\) 1.51760 0.214622
\(51\) 3.00512 0.420802
\(52\) −0.356216 −0.0493982
\(53\) 0.531658 0.0730288 0.0365144 0.999333i \(-0.488375\pi\)
0.0365144 + 0.999333i \(0.488375\pi\)
\(54\) −0.703704 −0.0957620
\(55\) −3.44529 −0.464563
\(56\) 8.01334 1.07083
\(57\) −4.79422 −0.635010
\(58\) 5.00293 0.656917
\(59\) −3.44874 −0.448988 −0.224494 0.974475i \(-0.572073\pi\)
−0.224494 + 0.974475i \(0.572073\pi\)
\(60\) 2.53745 0.327584
\(61\) 4.85262 0.621314 0.310657 0.950522i \(-0.399451\pi\)
0.310657 + 0.950522i \(0.399451\pi\)
\(62\) −4.71904 −0.599319
\(63\) 3.24908 0.409345
\(64\) 1.55400 0.194249
\(65\) −0.399166 −0.0495104
\(66\) −1.43779 −0.176980
\(67\) 14.9277 1.82371 0.911855 0.410513i \(-0.134650\pi\)
0.911855 + 0.410513i \(0.134650\pi\)
\(68\) −4.52211 −0.548387
\(69\) 0 0
\(70\) 3.85540 0.460808
\(71\) 13.4493 1.59614 0.798068 0.602567i \(-0.205855\pi\)
0.798068 + 0.602567i \(0.205855\pi\)
\(72\) 2.46634 0.290661
\(73\) 4.44341 0.520061 0.260031 0.965600i \(-0.416267\pi\)
0.260031 + 0.965600i \(0.416267\pi\)
\(74\) −8.08512 −0.939876
\(75\) −2.15659 −0.249022
\(76\) 7.21434 0.827542
\(77\) 6.63845 0.756522
\(78\) −0.166580 −0.0188615
\(79\) 2.09163 0.235327 0.117663 0.993054i \(-0.462460\pi\)
0.117663 + 0.993054i \(0.462460\pi\)
\(80\) −2.14831 −0.240189
\(81\) 1.00000 0.111111
\(82\) −5.77188 −0.637398
\(83\) 6.44335 0.707250 0.353625 0.935387i \(-0.384949\pi\)
0.353625 + 0.935387i \(0.384949\pi\)
\(84\) −4.88921 −0.533457
\(85\) −5.06736 −0.549632
\(86\) −2.02890 −0.218781
\(87\) −7.10942 −0.762210
\(88\) 5.03918 0.537179
\(89\) 2.50913 0.265967 0.132984 0.991118i \(-0.457544\pi\)
0.132984 + 0.991118i \(0.457544\pi\)
\(90\) 1.18661 0.125080
\(91\) 0.769120 0.0806257
\(92\) 0 0
\(93\) 6.70601 0.695380
\(94\) 9.34924 0.964300
\(95\) 8.08420 0.829422
\(96\) −5.82922 −0.594942
\(97\) 1.81486 0.184271 0.0921356 0.995746i \(-0.470631\pi\)
0.0921356 + 0.995746i \(0.470631\pi\)
\(98\) −2.50273 −0.252814
\(99\) 2.04318 0.205347
\(100\) 3.24525 0.324525
\(101\) −2.39938 −0.238747 −0.119373 0.992849i \(-0.538089\pi\)
−0.119373 + 0.992849i \(0.538089\pi\)
\(102\) −2.11472 −0.209388
\(103\) 4.11009 0.404979 0.202490 0.979284i \(-0.435097\pi\)
0.202490 + 0.979284i \(0.435097\pi\)
\(104\) 0.583831 0.0572494
\(105\) −5.47872 −0.534669
\(106\) −0.374130 −0.0363387
\(107\) 13.4565 1.30089 0.650446 0.759552i \(-0.274582\pi\)
0.650446 + 0.759552i \(0.274582\pi\)
\(108\) −1.50480 −0.144800
\(109\) 15.8269 1.51594 0.757972 0.652287i \(-0.226190\pi\)
0.757972 + 0.652287i \(0.226190\pi\)
\(110\) 2.42447 0.231164
\(111\) 11.4894 1.09052
\(112\) 4.13941 0.391137
\(113\) −12.9344 −1.21676 −0.608382 0.793644i \(-0.708181\pi\)
−0.608382 + 0.793644i \(0.708181\pi\)
\(114\) 3.37371 0.315977
\(115\) 0 0
\(116\) 10.6983 0.993309
\(117\) 0.236720 0.0218847
\(118\) 2.42689 0.223414
\(119\) 9.76388 0.895054
\(120\) −4.15885 −0.379649
\(121\) −6.82542 −0.620492
\(122\) −3.41481 −0.309162
\(123\) 8.20214 0.739562
\(124\) −10.0912 −0.906217
\(125\) 12.0677 1.07937
\(126\) −2.28639 −0.203688
\(127\) 5.32226 0.472274 0.236137 0.971720i \(-0.424119\pi\)
0.236137 + 0.971720i \(0.424119\pi\)
\(128\) 10.5649 0.933813
\(129\) 2.88317 0.253849
\(130\) 0.280895 0.0246361
\(131\) 4.54109 0.396757 0.198379 0.980125i \(-0.436432\pi\)
0.198379 + 0.980125i \(0.436432\pi\)
\(132\) −3.07458 −0.267608
\(133\) −15.5768 −1.35068
\(134\) −10.5047 −0.907467
\(135\) −1.68624 −0.145128
\(136\) 7.41167 0.635545
\(137\) −16.4974 −1.40947 −0.704734 0.709471i \(-0.748934\pi\)
−0.704734 + 0.709471i \(0.748934\pi\)
\(138\) 0 0
\(139\) 3.46582 0.293967 0.146984 0.989139i \(-0.453044\pi\)
0.146984 + 0.989139i \(0.453044\pi\)
\(140\) 8.24439 0.696778
\(141\) −13.2857 −1.11886
\(142\) −9.46432 −0.794228
\(143\) 0.483661 0.0404457
\(144\) 1.27403 0.106169
\(145\) 11.9882 0.995565
\(146\) −3.12684 −0.258779
\(147\) 3.55650 0.293335
\(148\) −17.2892 −1.42117
\(149\) 3.06922 0.251440 0.125720 0.992066i \(-0.459876\pi\)
0.125720 + 0.992066i \(0.459876\pi\)
\(150\) 1.51760 0.123912
\(151\) 1.89569 0.154269 0.0771346 0.997021i \(-0.475423\pi\)
0.0771346 + 0.997021i \(0.475423\pi\)
\(152\) −11.8242 −0.959068
\(153\) 3.00512 0.242950
\(154\) −4.67150 −0.376441
\(155\) −11.3079 −0.908275
\(156\) −0.356216 −0.0285201
\(157\) 2.15782 0.172213 0.0861066 0.996286i \(-0.472557\pi\)
0.0861066 + 0.996286i \(0.472557\pi\)
\(158\) −1.47189 −0.117097
\(159\) 0.531658 0.0421632
\(160\) 9.82947 0.777088
\(161\) 0 0
\(162\) −0.703704 −0.0552882
\(163\) −12.0963 −0.947457 −0.473728 0.880671i \(-0.657092\pi\)
−0.473728 + 0.880671i \(0.657092\pi\)
\(164\) −12.3426 −0.963794
\(165\) −3.44529 −0.268216
\(166\) −4.53421 −0.351923
\(167\) −13.1686 −1.01901 −0.509507 0.860467i \(-0.670172\pi\)
−0.509507 + 0.860467i \(0.670172\pi\)
\(168\) 8.01334 0.618242
\(169\) −12.9440 −0.995690
\(170\) 3.56592 0.273494
\(171\) −4.79422 −0.366623
\(172\) −4.33859 −0.330814
\(173\) −17.6417 −1.34127 −0.670636 0.741787i \(-0.733979\pi\)
−0.670636 + 0.741787i \(0.733979\pi\)
\(174\) 5.00293 0.379271
\(175\) −7.00694 −0.529675
\(176\) 2.60306 0.196213
\(177\) −3.44874 −0.259223
\(178\) −1.76569 −0.132344
\(179\) 10.7685 0.804879 0.402439 0.915447i \(-0.368162\pi\)
0.402439 + 0.915447i \(0.368162\pi\)
\(180\) 2.53745 0.189131
\(181\) −1.42664 −0.106041 −0.0530205 0.998593i \(-0.516885\pi\)
−0.0530205 + 0.998593i \(0.516885\pi\)
\(182\) −0.541233 −0.0401189
\(183\) 4.85262 0.358716
\(184\) 0 0
\(185\) −19.3738 −1.42439
\(186\) −4.71904 −0.346017
\(187\) 6.14001 0.449002
\(188\) 19.9924 1.45810
\(189\) 3.24908 0.236336
\(190\) −5.68889 −0.412715
\(191\) −13.8937 −1.00531 −0.502656 0.864487i \(-0.667644\pi\)
−0.502656 + 0.864487i \(0.667644\pi\)
\(192\) 1.55400 0.112150
\(193\) 8.09563 0.582736 0.291368 0.956611i \(-0.405890\pi\)
0.291368 + 0.956611i \(0.405890\pi\)
\(194\) −1.27712 −0.0916922
\(195\) −0.399166 −0.0285849
\(196\) −5.35183 −0.382273
\(197\) 1.77743 0.126637 0.0633183 0.997993i \(-0.479832\pi\)
0.0633183 + 0.997993i \(0.479832\pi\)
\(198\) −1.43779 −0.102180
\(199\) 6.58209 0.466592 0.233296 0.972406i \(-0.425049\pi\)
0.233296 + 0.972406i \(0.425049\pi\)
\(200\) −5.31890 −0.376103
\(201\) 14.9277 1.05292
\(202\) 1.68845 0.118799
\(203\) −23.0991 −1.62124
\(204\) −4.52211 −0.316611
\(205\) −13.8308 −0.965984
\(206\) −2.89229 −0.201515
\(207\) 0 0
\(208\) 0.301587 0.0209113
\(209\) −9.79545 −0.677565
\(210\) 3.85540 0.266048
\(211\) 13.6591 0.940331 0.470166 0.882578i \(-0.344194\pi\)
0.470166 + 0.882578i \(0.344194\pi\)
\(212\) −0.800039 −0.0549469
\(213\) 13.4493 0.921530
\(214\) −9.46942 −0.647316
\(215\) −4.86171 −0.331566
\(216\) 2.46634 0.167813
\(217\) 21.7883 1.47909
\(218\) −11.1375 −0.754325
\(219\) 4.44341 0.300258
\(220\) 5.18448 0.349537
\(221\) 0.711372 0.0478520
\(222\) −8.08512 −0.542638
\(223\) 11.4010 0.763468 0.381734 0.924272i \(-0.375327\pi\)
0.381734 + 0.924272i \(0.375327\pi\)
\(224\) −18.9396 −1.26545
\(225\) −2.15659 −0.143773
\(226\) 9.10198 0.605454
\(227\) −1.58935 −0.105489 −0.0527443 0.998608i \(-0.516797\pi\)
−0.0527443 + 0.998608i \(0.516797\pi\)
\(228\) 7.21434 0.477781
\(229\) 26.2296 1.73330 0.866650 0.498916i \(-0.166268\pi\)
0.866650 + 0.498916i \(0.166268\pi\)
\(230\) 0 0
\(231\) 6.63845 0.436778
\(232\) −17.5343 −1.15118
\(233\) −9.94908 −0.651786 −0.325893 0.945407i \(-0.605665\pi\)
−0.325893 + 0.945407i \(0.605665\pi\)
\(234\) −0.166580 −0.0108897
\(235\) 22.4030 1.46141
\(236\) 5.18967 0.337819
\(237\) 2.09163 0.135866
\(238\) −6.87088 −0.445373
\(239\) 11.5465 0.746881 0.373441 0.927654i \(-0.378178\pi\)
0.373441 + 0.927654i \(0.378178\pi\)
\(240\) −2.14831 −0.138673
\(241\) −5.49731 −0.354113 −0.177057 0.984201i \(-0.556658\pi\)
−0.177057 + 0.984201i \(0.556658\pi\)
\(242\) 4.80307 0.308753
\(243\) 1.00000 0.0641500
\(244\) −7.30222 −0.467477
\(245\) −5.99712 −0.383142
\(246\) −5.77188 −0.368002
\(247\) −1.13488 −0.0722110
\(248\) 16.5393 1.05025
\(249\) 6.44335 0.408331
\(250\) −8.49212 −0.537089
\(251\) −20.5259 −1.29558 −0.647790 0.761819i \(-0.724307\pi\)
−0.647790 + 0.761819i \(0.724307\pi\)
\(252\) −4.88921 −0.307991
\(253\) 0 0
\(254\) −3.74529 −0.235001
\(255\) −5.06736 −0.317330
\(256\) −10.5425 −0.658909
\(257\) −17.4240 −1.08688 −0.543438 0.839449i \(-0.682878\pi\)
−0.543438 + 0.839449i \(0.682878\pi\)
\(258\) −2.02890 −0.126314
\(259\) 37.3299 2.31957
\(260\) 0.600665 0.0372517
\(261\) −7.10942 −0.440062
\(262\) −3.19559 −0.197424
\(263\) −19.2301 −1.18578 −0.592888 0.805285i \(-0.702012\pi\)
−0.592888 + 0.805285i \(0.702012\pi\)
\(264\) 5.03918 0.310140
\(265\) −0.896502 −0.0550717
\(266\) 10.9614 0.672089
\(267\) 2.50913 0.153556
\(268\) −22.4632 −1.37216
\(269\) 23.9928 1.46287 0.731434 0.681912i \(-0.238851\pi\)
0.731434 + 0.681912i \(0.238851\pi\)
\(270\) 1.18661 0.0722150
\(271\) −22.5924 −1.37239 −0.686196 0.727417i \(-0.740721\pi\)
−0.686196 + 0.727417i \(0.740721\pi\)
\(272\) 3.82861 0.232143
\(273\) 0.769120 0.0465493
\(274\) 11.6093 0.701343
\(275\) −4.40631 −0.265711
\(276\) 0 0
\(277\) 2.08852 0.125487 0.0627435 0.998030i \(-0.480015\pi\)
0.0627435 + 0.998030i \(0.480015\pi\)
\(278\) −2.43891 −0.146276
\(279\) 6.70601 0.401478
\(280\) −13.5124 −0.807521
\(281\) 19.6055 1.16956 0.584782 0.811190i \(-0.301180\pi\)
0.584782 + 0.811190i \(0.301180\pi\)
\(282\) 9.34924 0.556739
\(283\) 5.02461 0.298682 0.149341 0.988786i \(-0.452285\pi\)
0.149341 + 0.988786i \(0.452285\pi\)
\(284\) −20.2385 −1.20093
\(285\) 8.08420 0.478867
\(286\) −0.340354 −0.0201255
\(287\) 26.6494 1.57306
\(288\) −5.82922 −0.343490
\(289\) −7.96923 −0.468778
\(290\) −8.43614 −0.495387
\(291\) 1.81486 0.106389
\(292\) −6.68644 −0.391294
\(293\) 2.95809 0.172814 0.0864068 0.996260i \(-0.472462\pi\)
0.0864068 + 0.996260i \(0.472462\pi\)
\(294\) −2.50273 −0.145962
\(295\) 5.81541 0.338586
\(296\) 28.3367 1.64704
\(297\) 2.04318 0.118557
\(298\) −2.15982 −0.125115
\(299\) 0 0
\(300\) 3.24525 0.187364
\(301\) 9.36763 0.539941
\(302\) −1.33401 −0.0767634
\(303\) −2.39938 −0.137841
\(304\) −6.10796 −0.350315
\(305\) −8.18268 −0.468539
\(306\) −2.11472 −0.120890
\(307\) 23.6903 1.35208 0.676039 0.736866i \(-0.263695\pi\)
0.676039 + 0.736866i \(0.263695\pi\)
\(308\) −9.98954 −0.569207
\(309\) 4.11009 0.233815
\(310\) 7.95744 0.451952
\(311\) 26.2136 1.48644 0.743218 0.669049i \(-0.233299\pi\)
0.743218 + 0.669049i \(0.233299\pi\)
\(312\) 0.583831 0.0330529
\(313\) −6.62548 −0.374494 −0.187247 0.982313i \(-0.559956\pi\)
−0.187247 + 0.982313i \(0.559956\pi\)
\(314\) −1.51847 −0.0856922
\(315\) −5.47872 −0.308691
\(316\) −3.14749 −0.177060
\(317\) 11.1028 0.623593 0.311796 0.950149i \(-0.399069\pi\)
0.311796 + 0.950149i \(0.399069\pi\)
\(318\) −0.374130 −0.0209801
\(319\) −14.5258 −0.813290
\(320\) −2.62041 −0.146485
\(321\) 13.4565 0.751070
\(322\) 0 0
\(323\) −14.4072 −0.801639
\(324\) −1.50480 −0.0836000
\(325\) −0.510508 −0.0283179
\(326\) 8.51223 0.471449
\(327\) 15.8269 0.875231
\(328\) 20.2293 1.11698
\(329\) −43.1664 −2.37984
\(330\) 2.42447 0.133462
\(331\) 22.4571 1.23435 0.617177 0.786825i \(-0.288276\pi\)
0.617177 + 0.786825i \(0.288276\pi\)
\(332\) −9.69596 −0.532135
\(333\) 11.4894 0.629614
\(334\) 9.26677 0.507055
\(335\) −25.1717 −1.37528
\(336\) 4.13941 0.225823
\(337\) −34.9270 −1.90259 −0.951297 0.308276i \(-0.900248\pi\)
−0.951297 + 0.308276i \(0.900248\pi\)
\(338\) 9.10872 0.495449
\(339\) −12.9344 −0.702499
\(340\) 7.62537 0.413544
\(341\) 13.7016 0.741982
\(342\) 3.37371 0.182429
\(343\) −11.1882 −0.604105
\(344\) 7.11087 0.383393
\(345\) 0 0
\(346\) 12.4145 0.667409
\(347\) −10.2694 −0.551289 −0.275645 0.961260i \(-0.588891\pi\)
−0.275645 + 0.961260i \(0.588891\pi\)
\(348\) 10.6983 0.573487
\(349\) −30.2360 −1.61850 −0.809248 0.587467i \(-0.800125\pi\)
−0.809248 + 0.587467i \(0.800125\pi\)
\(350\) 4.93081 0.263563
\(351\) 0.236720 0.0126352
\(352\) −11.9101 −0.634813
\(353\) −3.15640 −0.167998 −0.0839990 0.996466i \(-0.526769\pi\)
−0.0839990 + 0.996466i \(0.526769\pi\)
\(354\) 2.42689 0.128988
\(355\) −22.6787 −1.20366
\(356\) −3.77574 −0.200114
\(357\) 9.76388 0.516759
\(358\) −7.57787 −0.400503
\(359\) −21.8676 −1.15413 −0.577063 0.816699i \(-0.695801\pi\)
−0.577063 + 0.816699i \(0.695801\pi\)
\(360\) −4.15885 −0.219190
\(361\) 3.98452 0.209712
\(362\) 1.00393 0.0527654
\(363\) −6.82542 −0.358241
\(364\) −1.15737 −0.0606628
\(365\) −7.49265 −0.392183
\(366\) −3.41481 −0.178495
\(367\) −8.13884 −0.424844 −0.212422 0.977178i \(-0.568135\pi\)
−0.212422 + 0.977178i \(0.568135\pi\)
\(368\) 0 0
\(369\) 8.20214 0.426987
\(370\) 13.6335 0.708770
\(371\) 1.72740 0.0896820
\(372\) −10.0912 −0.523204
\(373\) 4.42191 0.228958 0.114479 0.993426i \(-0.463480\pi\)
0.114479 + 0.993426i \(0.463480\pi\)
\(374\) −4.32075 −0.223421
\(375\) 12.0677 0.623175
\(376\) −32.7672 −1.68984
\(377\) −1.68294 −0.0866758
\(378\) −2.28639 −0.117599
\(379\) 10.5488 0.541854 0.270927 0.962600i \(-0.412670\pi\)
0.270927 + 0.962600i \(0.412670\pi\)
\(380\) −12.1651 −0.624057
\(381\) 5.32226 0.272667
\(382\) 9.77704 0.500237
\(383\) −5.40203 −0.276031 −0.138016 0.990430i \(-0.544072\pi\)
−0.138016 + 0.990430i \(0.544072\pi\)
\(384\) 10.5649 0.539137
\(385\) −11.1940 −0.570500
\(386\) −5.69693 −0.289966
\(387\) 2.88317 0.146560
\(388\) −2.73100 −0.138646
\(389\) 1.60249 0.0812494 0.0406247 0.999174i \(-0.487065\pi\)
0.0406247 + 0.999174i \(0.487065\pi\)
\(390\) 0.280895 0.0142237
\(391\) 0 0
\(392\) 8.77156 0.443030
\(393\) 4.54109 0.229068
\(394\) −1.25078 −0.0630136
\(395\) −3.52699 −0.177462
\(396\) −3.07458 −0.154503
\(397\) −6.97432 −0.350031 −0.175015 0.984566i \(-0.555998\pi\)
−0.175015 + 0.984566i \(0.555998\pi\)
\(398\) −4.63184 −0.232173
\(399\) −15.5768 −0.779815
\(400\) −2.74756 −0.137378
\(401\) −0.955119 −0.0476964 −0.0238482 0.999716i \(-0.507592\pi\)
−0.0238482 + 0.999716i \(0.507592\pi\)
\(402\) −10.5047 −0.523926
\(403\) 1.58744 0.0790761
\(404\) 3.61058 0.179633
\(405\) −1.68624 −0.0837899
\(406\) 16.2549 0.806717
\(407\) 23.4749 1.16361
\(408\) 7.41167 0.366932
\(409\) 15.5761 0.770190 0.385095 0.922877i \(-0.374169\pi\)
0.385095 + 0.922877i \(0.374169\pi\)
\(410\) 9.73278 0.480668
\(411\) −16.4974 −0.813757
\(412\) −6.18487 −0.304707
\(413\) −11.2052 −0.551373
\(414\) 0 0
\(415\) −10.8650 −0.533344
\(416\) −1.37989 −0.0676547
\(417\) 3.46582 0.169722
\(418\) 6.89310 0.337152
\(419\) −30.4472 −1.48744 −0.743721 0.668491i \(-0.766941\pi\)
−0.743721 + 0.668491i \(0.766941\pi\)
\(420\) 8.24439 0.402285
\(421\) −24.2516 −1.18195 −0.590974 0.806690i \(-0.701257\pi\)
−0.590974 + 0.806690i \(0.701257\pi\)
\(422\) −9.61197 −0.467903
\(423\) −13.2857 −0.645975
\(424\) 1.31125 0.0636799
\(425\) −6.48084 −0.314367
\(426\) −9.46432 −0.458548
\(427\) 15.7665 0.762996
\(428\) −20.2494 −0.978792
\(429\) 0.483661 0.0233514
\(430\) 3.42120 0.164985
\(431\) 9.74016 0.469167 0.234583 0.972096i \(-0.424627\pi\)
0.234583 + 0.972096i \(0.424627\pi\)
\(432\) 1.27403 0.0612966
\(433\) −6.24267 −0.300004 −0.150002 0.988686i \(-0.547928\pi\)
−0.150002 + 0.988686i \(0.547928\pi\)
\(434\) −15.3325 −0.735985
\(435\) 11.9882 0.574790
\(436\) −23.8164 −1.14060
\(437\) 0 0
\(438\) −3.12684 −0.149406
\(439\) −16.7224 −0.798116 −0.399058 0.916926i \(-0.630663\pi\)
−0.399058 + 0.916926i \(0.630663\pi\)
\(440\) −8.49727 −0.405091
\(441\) 3.55650 0.169357
\(442\) −0.500595 −0.0238109
\(443\) 30.3921 1.44397 0.721985 0.691909i \(-0.243230\pi\)
0.721985 + 0.691909i \(0.243230\pi\)
\(444\) −17.2892 −0.820510
\(445\) −4.23100 −0.200569
\(446\) −8.02294 −0.379897
\(447\) 3.06922 0.145169
\(448\) 5.04905 0.238545
\(449\) 17.2191 0.812620 0.406310 0.913735i \(-0.366815\pi\)
0.406310 + 0.913735i \(0.366815\pi\)
\(450\) 1.51760 0.0715406
\(451\) 16.7585 0.789125
\(452\) 19.4637 0.915494
\(453\) 1.89569 0.0890674
\(454\) 1.11843 0.0524905
\(455\) −1.29692 −0.0608006
\(456\) −11.8242 −0.553718
\(457\) −11.5413 −0.539880 −0.269940 0.962877i \(-0.587004\pi\)
−0.269940 + 0.962877i \(0.587004\pi\)
\(458\) −18.4579 −0.862480
\(459\) 3.00512 0.140267
\(460\) 0 0
\(461\) −36.3205 −1.69162 −0.845808 0.533488i \(-0.820881\pi\)
−0.845808 + 0.533488i \(0.820881\pi\)
\(462\) −4.67150 −0.217338
\(463\) −14.7451 −0.685261 −0.342631 0.939470i \(-0.611318\pi\)
−0.342631 + 0.939470i \(0.611318\pi\)
\(464\) −9.05759 −0.420488
\(465\) −11.3079 −0.524393
\(466\) 7.00121 0.324325
\(467\) −8.10976 −0.375275 −0.187637 0.982238i \(-0.560083\pi\)
−0.187637 + 0.982238i \(0.560083\pi\)
\(468\) −0.356216 −0.0164661
\(469\) 48.5013 2.23958
\(470\) −15.7651 −0.727188
\(471\) 2.15782 0.0994273
\(472\) −8.50578 −0.391510
\(473\) 5.89083 0.270860
\(474\) −1.47189 −0.0676061
\(475\) 10.3392 0.474394
\(476\) −14.6927 −0.673439
\(477\) 0.531658 0.0243429
\(478\) −8.12532 −0.371644
\(479\) −30.9352 −1.41347 −0.706733 0.707480i \(-0.749832\pi\)
−0.706733 + 0.707480i \(0.749832\pi\)
\(480\) 9.82947 0.448652
\(481\) 2.71976 0.124010
\(482\) 3.86848 0.176205
\(483\) 0 0
\(484\) 10.2709 0.466859
\(485\) −3.06029 −0.138961
\(486\) −0.703704 −0.0319207
\(487\) 15.8463 0.718066 0.359033 0.933325i \(-0.383107\pi\)
0.359033 + 0.933325i \(0.383107\pi\)
\(488\) 11.9682 0.541776
\(489\) −12.0963 −0.547014
\(490\) 4.22020 0.190649
\(491\) 0.751664 0.0339221 0.0169611 0.999856i \(-0.494601\pi\)
0.0169611 + 0.999856i \(0.494601\pi\)
\(492\) −12.3426 −0.556447
\(493\) −21.3647 −0.962218
\(494\) 0.798623 0.0359318
\(495\) −3.44529 −0.154854
\(496\) 8.54362 0.383620
\(497\) 43.6978 1.96011
\(498\) −4.53421 −0.203183
\(499\) −30.9290 −1.38457 −0.692285 0.721624i \(-0.743396\pi\)
−0.692285 + 0.721624i \(0.743396\pi\)
\(500\) −18.1595 −0.812119
\(501\) −13.1686 −0.588328
\(502\) 14.4441 0.644673
\(503\) −28.0316 −1.24987 −0.624933 0.780678i \(-0.714874\pi\)
−0.624933 + 0.780678i \(0.714874\pi\)
\(504\) 8.01334 0.356942
\(505\) 4.04593 0.180041
\(506\) 0 0
\(507\) −12.9440 −0.574862
\(508\) −8.00893 −0.355339
\(509\) 22.2602 0.986668 0.493334 0.869840i \(-0.335778\pi\)
0.493334 + 0.869840i \(0.335778\pi\)
\(510\) 3.56592 0.157902
\(511\) 14.4370 0.638654
\(512\) −13.7109 −0.605944
\(513\) −4.79422 −0.211670
\(514\) 12.2613 0.540823
\(515\) −6.93060 −0.305399
\(516\) −4.33859 −0.190996
\(517\) −27.1452 −1.19384
\(518\) −26.2692 −1.15420
\(519\) −17.6417 −0.774383
\(520\) −0.984480 −0.0431723
\(521\) −12.1481 −0.532218 −0.266109 0.963943i \(-0.585738\pi\)
−0.266109 + 0.963943i \(0.585738\pi\)
\(522\) 5.00293 0.218972
\(523\) 20.1975 0.883173 0.441586 0.897219i \(-0.354416\pi\)
0.441586 + 0.897219i \(0.354416\pi\)
\(524\) −6.83344 −0.298520
\(525\) −7.00694 −0.305808
\(526\) 13.5323 0.590035
\(527\) 20.1524 0.877851
\(528\) 2.60306 0.113284
\(529\) 0 0
\(530\) 0.630872 0.0274033
\(531\) −3.44874 −0.149663
\(532\) 23.4400 1.01625
\(533\) 1.94161 0.0841004
\(534\) −1.76569 −0.0764087
\(535\) −22.6909 −0.981015
\(536\) 36.8168 1.59025
\(537\) 10.7685 0.464697
\(538\) −16.8839 −0.727914
\(539\) 7.26658 0.312994
\(540\) 2.53745 0.109195
\(541\) −19.0260 −0.817991 −0.408996 0.912536i \(-0.634121\pi\)
−0.408996 + 0.912536i \(0.634121\pi\)
\(542\) 15.8984 0.682893
\(543\) −1.42664 −0.0612228
\(544\) −17.5175 −0.751058
\(545\) −26.6880 −1.14319
\(546\) −0.541233 −0.0231626
\(547\) −0.354761 −0.0151685 −0.00758424 0.999971i \(-0.502414\pi\)
−0.00758424 + 0.999971i \(0.502414\pi\)
\(548\) 24.8253 1.06048
\(549\) 4.85262 0.207105
\(550\) 3.10074 0.132216
\(551\) 34.0841 1.45203
\(552\) 0 0
\(553\) 6.79587 0.288990
\(554\) −1.46970 −0.0624416
\(555\) −19.3738 −0.822374
\(556\) −5.21537 −0.221181
\(557\) −10.3542 −0.438720 −0.219360 0.975644i \(-0.570397\pi\)
−0.219360 + 0.975644i \(0.570397\pi\)
\(558\) −4.71904 −0.199773
\(559\) 0.682502 0.0288667
\(560\) −6.98004 −0.294960
\(561\) 6.14001 0.259231
\(562\) −13.7964 −0.581968
\(563\) 14.4045 0.607078 0.303539 0.952819i \(-0.401832\pi\)
0.303539 + 0.952819i \(0.401832\pi\)
\(564\) 19.9924 0.841832
\(565\) 21.8105 0.917573
\(566\) −3.53584 −0.148622
\(567\) 3.24908 0.136448
\(568\) 33.1706 1.39181
\(569\) 18.9591 0.794806 0.397403 0.917644i \(-0.369912\pi\)
0.397403 + 0.917644i \(0.369912\pi\)
\(570\) −5.68889 −0.238281
\(571\) 6.71213 0.280894 0.140447 0.990088i \(-0.455146\pi\)
0.140447 + 0.990088i \(0.455146\pi\)
\(572\) −0.727813 −0.0304314
\(573\) −13.8937 −0.580417
\(574\) −18.7533 −0.782747
\(575\) 0 0
\(576\) 1.55400 0.0647498
\(577\) 12.5286 0.521573 0.260786 0.965397i \(-0.416018\pi\)
0.260786 + 0.965397i \(0.416018\pi\)
\(578\) 5.60798 0.233261
\(579\) 8.09563 0.336443
\(580\) −18.0398 −0.749063
\(581\) 20.9349 0.868528
\(582\) −1.27712 −0.0529385
\(583\) 1.08627 0.0449888
\(584\) 10.9590 0.453485
\(585\) −0.399166 −0.0165035
\(586\) −2.08162 −0.0859910
\(587\) −6.88857 −0.284322 −0.142161 0.989844i \(-0.545405\pi\)
−0.142161 + 0.989844i \(0.545405\pi\)
\(588\) −5.35183 −0.220706
\(589\) −32.1501 −1.32472
\(590\) −4.09233 −0.168478
\(591\) 1.77743 0.0731137
\(592\) 14.6378 0.601608
\(593\) −32.7138 −1.34340 −0.671698 0.740825i \(-0.734435\pi\)
−0.671698 + 0.740825i \(0.734435\pi\)
\(594\) −1.43779 −0.0589934
\(595\) −16.4642 −0.674968
\(596\) −4.61856 −0.189183
\(597\) 6.58209 0.269387
\(598\) 0 0
\(599\) 26.8624 1.09757 0.548784 0.835964i \(-0.315091\pi\)
0.548784 + 0.835964i \(0.315091\pi\)
\(600\) −5.31890 −0.217143
\(601\) −30.8383 −1.25792 −0.628960 0.777438i \(-0.716519\pi\)
−0.628960 + 0.777438i \(0.716519\pi\)
\(602\) −6.59204 −0.268671
\(603\) 14.9277 0.607903
\(604\) −2.85264 −0.116072
\(605\) 11.5093 0.467919
\(606\) 1.68845 0.0685886
\(607\) −35.9785 −1.46032 −0.730161 0.683275i \(-0.760555\pi\)
−0.730161 + 0.683275i \(0.760555\pi\)
\(608\) 27.9466 1.13338
\(609\) −23.0991 −0.936021
\(610\) 5.75818 0.233142
\(611\) −3.14500 −0.127233
\(612\) −4.52211 −0.182796
\(613\) 20.8131 0.840634 0.420317 0.907377i \(-0.361919\pi\)
0.420317 + 0.907377i \(0.361919\pi\)
\(614\) −16.6710 −0.672786
\(615\) −13.8308 −0.557711
\(616\) 16.3727 0.659675
\(617\) −18.2187 −0.733455 −0.366728 0.930328i \(-0.619522\pi\)
−0.366728 + 0.930328i \(0.619522\pi\)
\(618\) −2.89229 −0.116345
\(619\) −21.0975 −0.847981 −0.423991 0.905667i \(-0.639371\pi\)
−0.423991 + 0.905667i \(0.639371\pi\)
\(620\) 17.0162 0.683386
\(621\) 0 0
\(622\) −18.4466 −0.739642
\(623\) 8.15236 0.326618
\(624\) 0.301587 0.0120731
\(625\) −9.56612 −0.382645
\(626\) 4.66238 0.186346
\(627\) −9.79545 −0.391193
\(628\) −3.24710 −0.129573
\(629\) 34.5270 1.37668
\(630\) 3.85540 0.153603
\(631\) 29.4538 1.17254 0.586268 0.810117i \(-0.300596\pi\)
0.586268 + 0.810117i \(0.300596\pi\)
\(632\) 5.15868 0.205201
\(633\) 13.6591 0.542901
\(634\) −7.81305 −0.310296
\(635\) −8.97460 −0.356146
\(636\) −0.800039 −0.0317236
\(637\) 0.841894 0.0333570
\(638\) 10.2219 0.404688
\(639\) 13.4493 0.532046
\(640\) −17.8149 −0.704197
\(641\) 39.7856 1.57144 0.785719 0.618583i \(-0.212293\pi\)
0.785719 + 0.618583i \(0.212293\pi\)
\(642\) −9.46942 −0.373728
\(643\) −33.1070 −1.30561 −0.652806 0.757525i \(-0.726408\pi\)
−0.652806 + 0.757525i \(0.726408\pi\)
\(644\) 0 0
\(645\) −4.86171 −0.191430
\(646\) 10.1384 0.398891
\(647\) 31.5757 1.24137 0.620684 0.784061i \(-0.286855\pi\)
0.620684 + 0.784061i \(0.286855\pi\)
\(648\) 2.46634 0.0968871
\(649\) −7.04640 −0.276595
\(650\) 0.359247 0.0140908
\(651\) 21.7883 0.853952
\(652\) 18.2025 0.712867
\(653\) 14.1445 0.553516 0.276758 0.960940i \(-0.410740\pi\)
0.276758 + 0.960940i \(0.410740\pi\)
\(654\) −11.1375 −0.435510
\(655\) −7.65737 −0.299198
\(656\) 10.4497 0.407994
\(657\) 4.44341 0.173354
\(658\) 30.3764 1.18420
\(659\) −5.20591 −0.202794 −0.101397 0.994846i \(-0.532331\pi\)
−0.101397 + 0.994846i \(0.532331\pi\)
\(660\) 5.18448 0.201805
\(661\) −10.5082 −0.408723 −0.204361 0.978895i \(-0.565512\pi\)
−0.204361 + 0.978895i \(0.565512\pi\)
\(662\) −15.8031 −0.614207
\(663\) 0.711372 0.0276274
\(664\) 15.8915 0.616710
\(665\) 26.2662 1.01856
\(666\) −8.08512 −0.313292
\(667\) 0 0
\(668\) 19.8161 0.766706
\(669\) 11.4010 0.440789
\(670\) 17.7134 0.684329
\(671\) 9.91477 0.382755
\(672\) −18.9396 −0.730611
\(673\) −27.7214 −1.06858 −0.534291 0.845300i \(-0.679422\pi\)
−0.534291 + 0.845300i \(0.679422\pi\)
\(674\) 24.5783 0.946719
\(675\) −2.15659 −0.0830074
\(676\) 19.4781 0.749157
\(677\) 27.7836 1.06781 0.533905 0.845544i \(-0.320724\pi\)
0.533905 + 0.845544i \(0.320724\pi\)
\(678\) 9.10198 0.349559
\(679\) 5.89662 0.226292
\(680\) −12.4978 −0.479271
\(681\) −1.58935 −0.0609039
\(682\) −9.64185 −0.369206
\(683\) −10.8112 −0.413677 −0.206839 0.978375i \(-0.566318\pi\)
−0.206839 + 0.978375i \(0.566318\pi\)
\(684\) 7.21434 0.275847
\(685\) 27.8186 1.06289
\(686\) 7.87317 0.300599
\(687\) 26.2296 1.00072
\(688\) 3.67323 0.140040
\(689\) 0.125854 0.00479464
\(690\) 0 0
\(691\) 6.10633 0.232296 0.116148 0.993232i \(-0.462945\pi\)
0.116148 + 0.993232i \(0.462945\pi\)
\(692\) 26.5472 1.00917
\(693\) 6.63845 0.252174
\(694\) 7.22660 0.274318
\(695\) −5.84421 −0.221684
\(696\) −17.5343 −0.664635
\(697\) 24.6485 0.933627
\(698\) 21.2772 0.805354
\(699\) −9.94908 −0.376309
\(700\) 10.5441 0.398528
\(701\) −18.7929 −0.709799 −0.354899 0.934905i \(-0.615485\pi\)
−0.354899 + 0.934905i \(0.615485\pi\)
\(702\) −0.166580 −0.00628718
\(703\) −55.0826 −2.07748
\(704\) 3.17509 0.119666
\(705\) 22.4030 0.843744
\(706\) 2.22117 0.0835948
\(707\) −7.79576 −0.293190
\(708\) 5.18967 0.195040
\(709\) 14.9303 0.560718 0.280359 0.959895i \(-0.409546\pi\)
0.280359 + 0.959895i \(0.409546\pi\)
\(710\) 15.9591 0.598935
\(711\) 2.09163 0.0784422
\(712\) 6.18838 0.231919
\(713\) 0 0
\(714\) −6.87088 −0.257136
\(715\) −0.815568 −0.0305005
\(716\) −16.2045 −0.605591
\(717\) 11.5465 0.431212
\(718\) 15.3883 0.574286
\(719\) 15.2490 0.568692 0.284346 0.958722i \(-0.408224\pi\)
0.284346 + 0.958722i \(0.408224\pi\)
\(720\) −2.14831 −0.0800629
\(721\) 13.3540 0.497329
\(722\) −2.80393 −0.104351
\(723\) −5.49731 −0.204447
\(724\) 2.14680 0.0797853
\(725\) 15.3321 0.569421
\(726\) 4.80307 0.178259
\(727\) −23.3673 −0.866647 −0.433323 0.901239i \(-0.642659\pi\)
−0.433323 + 0.901239i \(0.642659\pi\)
\(728\) 1.89691 0.0703043
\(729\) 1.00000 0.0370370
\(730\) 5.27261 0.195148
\(731\) 8.66427 0.320460
\(732\) −7.30222 −0.269898
\(733\) 53.6845 1.98288 0.991441 0.130557i \(-0.0416765\pi\)
0.991441 + 0.130557i \(0.0416765\pi\)
\(734\) 5.72733 0.211400
\(735\) −5.99712 −0.221207
\(736\) 0 0
\(737\) 30.5000 1.12348
\(738\) −5.77188 −0.212466
\(739\) −8.44575 −0.310682 −0.155341 0.987861i \(-0.549648\pi\)
−0.155341 + 0.987861i \(0.549648\pi\)
\(740\) 29.1538 1.07171
\(741\) −1.13488 −0.0416910
\(742\) −1.21558 −0.0446252
\(743\) 10.8228 0.397051 0.198526 0.980096i \(-0.436385\pi\)
0.198526 + 0.980096i \(0.436385\pi\)
\(744\) 16.5393 0.606360
\(745\) −5.17543 −0.189613
\(746\) −3.11171 −0.113928
\(747\) 6.44335 0.235750
\(748\) −9.23949 −0.337829
\(749\) 43.7213 1.59754
\(750\) −8.49212 −0.310088
\(751\) 15.0445 0.548980 0.274490 0.961590i \(-0.411491\pi\)
0.274490 + 0.961590i \(0.411491\pi\)
\(752\) −16.9264 −0.617242
\(753\) −20.5259 −0.748004
\(754\) 1.18429 0.0431293
\(755\) −3.19659 −0.116336
\(756\) −4.88921 −0.177819
\(757\) 3.62405 0.131718 0.0658592 0.997829i \(-0.479021\pi\)
0.0658592 + 0.997829i \(0.479021\pi\)
\(758\) −7.42321 −0.269623
\(759\) 0 0
\(760\) 19.9384 0.723242
\(761\) −0.846775 −0.0306956 −0.0153478 0.999882i \(-0.504886\pi\)
−0.0153478 + 0.999882i \(0.504886\pi\)
\(762\) −3.74529 −0.135678
\(763\) 51.4229 1.86163
\(764\) 20.9072 0.756397
\(765\) −5.06736 −0.183211
\(766\) 3.80143 0.137351
\(767\) −0.816385 −0.0294779
\(768\) −10.5425 −0.380421
\(769\) 40.0399 1.44388 0.721938 0.691957i \(-0.243251\pi\)
0.721938 + 0.691957i \(0.243251\pi\)
\(770\) 7.87728 0.283877
\(771\) −17.4240 −0.627508
\(772\) −12.1823 −0.438451
\(773\) 39.0132 1.40321 0.701603 0.712568i \(-0.252468\pi\)
0.701603 + 0.712568i \(0.252468\pi\)
\(774\) −2.02890 −0.0729271
\(775\) −14.4621 −0.519495
\(776\) 4.47607 0.160681
\(777\) 37.3299 1.33920
\(778\) −1.12768 −0.0404292
\(779\) −39.3229 −1.40889
\(780\) 0.600665 0.0215073
\(781\) 27.4793 0.983287
\(782\) 0 0
\(783\) −7.10942 −0.254070
\(784\) 4.53108 0.161824
\(785\) −3.63861 −0.129868
\(786\) −3.19559 −0.113983
\(787\) −38.9477 −1.38834 −0.694168 0.719813i \(-0.744227\pi\)
−0.694168 + 0.719813i \(0.744227\pi\)
\(788\) −2.67468 −0.0952814
\(789\) −19.2301 −0.684608
\(790\) 2.48196 0.0883041
\(791\) −42.0248 −1.49423
\(792\) 5.03918 0.179060
\(793\) 1.14871 0.0407919
\(794\) 4.90786 0.174173
\(795\) −0.896502 −0.0317957
\(796\) −9.90473 −0.351064
\(797\) 22.2433 0.787900 0.393950 0.919132i \(-0.371108\pi\)
0.393950 + 0.919132i \(0.371108\pi\)
\(798\) 10.9614 0.388031
\(799\) −39.9253 −1.41246
\(800\) 12.5713 0.444462
\(801\) 2.50913 0.0886558
\(802\) 0.672121 0.0237334
\(803\) 9.07868 0.320380
\(804\) −22.4632 −0.792217
\(805\) 0 0
\(806\) −1.11709 −0.0393478
\(807\) 23.9928 0.844588
\(808\) −5.91769 −0.208183
\(809\) −53.9409 −1.89646 −0.948231 0.317581i \(-0.897129\pi\)
−0.948231 + 0.317581i \(0.897129\pi\)
\(810\) 1.18661 0.0416934
\(811\) −49.4006 −1.73469 −0.867345 0.497708i \(-0.834175\pi\)
−0.867345 + 0.497708i \(0.834175\pi\)
\(812\) 34.7595 1.21982
\(813\) −22.5924 −0.792350
\(814\) −16.5194 −0.579003
\(815\) 20.3973 0.714486
\(816\) 3.82861 0.134028
\(817\) −13.8225 −0.483589
\(818\) −10.9610 −0.383242
\(819\) 0.769120 0.0268752
\(820\) 20.8126 0.726806
\(821\) 17.5113 0.611147 0.305574 0.952168i \(-0.401152\pi\)
0.305574 + 0.952168i \(0.401152\pi\)
\(822\) 11.6093 0.404921
\(823\) −13.6118 −0.474476 −0.237238 0.971452i \(-0.576242\pi\)
−0.237238 + 0.971452i \(0.576242\pi\)
\(824\) 10.1369 0.353135
\(825\) −4.40631 −0.153408
\(826\) 7.88517 0.274360
\(827\) −22.5564 −0.784365 −0.392182 0.919888i \(-0.628280\pi\)
−0.392182 + 0.919888i \(0.628280\pi\)
\(828\) 0 0
\(829\) −49.2936 −1.71204 −0.856019 0.516944i \(-0.827070\pi\)
−0.856019 + 0.516944i \(0.827070\pi\)
\(830\) 7.64577 0.265389
\(831\) 2.08852 0.0724500
\(832\) 0.367861 0.0127533
\(833\) 10.6877 0.370308
\(834\) −2.43891 −0.0844527
\(835\) 22.2054 0.768448
\(836\) 14.7402 0.509800
\(837\) 6.70601 0.231793
\(838\) 21.4258 0.740142
\(839\) −5.69638 −0.196661 −0.0983304 0.995154i \(-0.531350\pi\)
−0.0983304 + 0.995154i \(0.531350\pi\)
\(840\) −13.5124 −0.466222
\(841\) 21.5439 0.742892
\(842\) 17.0659 0.588131
\(843\) 19.6055 0.675248
\(844\) −20.5542 −0.707506
\(845\) 21.8266 0.750859
\(846\) 9.34924 0.321433
\(847\) −22.1763 −0.761987
\(848\) 0.677345 0.0232601
\(849\) 5.02461 0.172444
\(850\) 4.56059 0.156427
\(851\) 0 0
\(852\) −20.2385 −0.693360
\(853\) 35.5577 1.21747 0.608737 0.793372i \(-0.291677\pi\)
0.608737 + 0.793372i \(0.291677\pi\)
\(854\) −11.0950 −0.379662
\(855\) 8.08420 0.276474
\(856\) 33.1884 1.13436
\(857\) −25.5075 −0.871320 −0.435660 0.900111i \(-0.643485\pi\)
−0.435660 + 0.900111i \(0.643485\pi\)
\(858\) −0.340354 −0.0116195
\(859\) −34.2195 −1.16755 −0.583777 0.811914i \(-0.698426\pi\)
−0.583777 + 0.811914i \(0.698426\pi\)
\(860\) 7.31590 0.249470
\(861\) 26.6494 0.908209
\(862\) −6.85419 −0.233455
\(863\) −28.1505 −0.958253 −0.479126 0.877746i \(-0.659046\pi\)
−0.479126 + 0.877746i \(0.659046\pi\)
\(864\) −5.82922 −0.198314
\(865\) 29.7481 1.01147
\(866\) 4.39299 0.149280
\(867\) −7.96923 −0.270649
\(868\) −32.7871 −1.11287
\(869\) 4.27358 0.144971
\(870\) −8.43614 −0.286012
\(871\) 3.53368 0.119734
\(872\) 39.0346 1.32188
\(873\) 1.81486 0.0614237
\(874\) 0 0
\(875\) 39.2090 1.32551
\(876\) −6.68644 −0.225914
\(877\) −14.8860 −0.502665 −0.251333 0.967901i \(-0.580869\pi\)
−0.251333 + 0.967901i \(0.580869\pi\)
\(878\) 11.7676 0.397138
\(879\) 2.95809 0.0997740
\(880\) −4.38939 −0.147966
\(881\) 26.1139 0.879801 0.439901 0.898046i \(-0.355014\pi\)
0.439901 + 0.898046i \(0.355014\pi\)
\(882\) −2.50273 −0.0842712
\(883\) −34.6376 −1.16565 −0.582824 0.812599i \(-0.698052\pi\)
−0.582824 + 0.812599i \(0.698052\pi\)
\(884\) −1.07047 −0.0360039
\(885\) 5.81541 0.195483
\(886\) −21.3870 −0.718511
\(887\) −54.7575 −1.83858 −0.919288 0.393586i \(-0.871234\pi\)
−0.919288 + 0.393586i \(0.871234\pi\)
\(888\) 28.3367 0.950919
\(889\) 17.2924 0.579969
\(890\) 2.97737 0.0998017
\(891\) 2.04318 0.0684491
\(892\) −17.1562 −0.574434
\(893\) 63.6948 2.13146
\(894\) −2.15982 −0.0722352
\(895\) −18.1583 −0.606967
\(896\) 34.3261 1.14676
\(897\) 0 0
\(898\) −12.1172 −0.404355
\(899\) −47.6758 −1.59008
\(900\) 3.24525 0.108175
\(901\) 1.59770 0.0532270
\(902\) −11.7930 −0.392664
\(903\) 9.36763 0.311735
\(904\) −31.9006 −1.06100
\(905\) 2.40565 0.0799666
\(906\) −1.33401 −0.0443194
\(907\) −10.1709 −0.337718 −0.168859 0.985640i \(-0.554008\pi\)
−0.168859 + 0.985640i \(0.554008\pi\)
\(908\) 2.39165 0.0793697
\(909\) −2.39938 −0.0795823
\(910\) 0.912649 0.0302540
\(911\) 30.8989 1.02372 0.511862 0.859068i \(-0.328956\pi\)
0.511862 + 0.859068i \(0.328956\pi\)
\(912\) −6.10796 −0.202255
\(913\) 13.1649 0.435695
\(914\) 8.12167 0.268641
\(915\) −8.18268 −0.270511
\(916\) −39.4703 −1.30414
\(917\) 14.7544 0.487232
\(918\) −2.11472 −0.0697961
\(919\) 1.12747 0.0371917 0.0185959 0.999827i \(-0.494080\pi\)
0.0185959 + 0.999827i \(0.494080\pi\)
\(920\) 0 0
\(921\) 23.6903 0.780622
\(922\) 25.5589 0.841738
\(923\) 3.18371 0.104793
\(924\) −9.98954 −0.328632
\(925\) −24.7779 −0.814693
\(926\) 10.3762 0.340982
\(927\) 4.11009 0.134993
\(928\) 41.4424 1.36041
\(929\) 11.0988 0.364139 0.182069 0.983286i \(-0.441720\pi\)
0.182069 + 0.983286i \(0.441720\pi\)
\(930\) 7.95744 0.260935
\(931\) −17.0507 −0.558813
\(932\) 14.9714 0.490404
\(933\) 26.2136 0.858194
\(934\) 5.70687 0.186735
\(935\) −10.3535 −0.338597
\(936\) 0.583831 0.0190831
\(937\) 35.5204 1.16040 0.580200 0.814474i \(-0.302974\pi\)
0.580200 + 0.814474i \(0.302974\pi\)
\(938\) −34.1305 −1.11440
\(939\) −6.62548 −0.216214
\(940\) −33.7120 −1.09956
\(941\) 57.2758 1.86714 0.933569 0.358398i \(-0.116677\pi\)
0.933569 + 0.358398i \(0.116677\pi\)
\(942\) −1.51847 −0.0494744
\(943\) 0 0
\(944\) −4.39379 −0.143006
\(945\) −5.47872 −0.178223
\(946\) −4.14540 −0.134779
\(947\) −24.3344 −0.790761 −0.395381 0.918517i \(-0.629387\pi\)
−0.395381 + 0.918517i \(0.629387\pi\)
\(948\) −3.14749 −0.102226
\(949\) 1.05184 0.0341442
\(950\) −7.27573 −0.236056
\(951\) 11.1028 0.360031
\(952\) 24.0811 0.780472
\(953\) −49.7366 −1.61113 −0.805563 0.592511i \(-0.798137\pi\)
−0.805563 + 0.592511i \(0.798137\pi\)
\(954\) −0.374130 −0.0121129
\(955\) 23.4281 0.758115
\(956\) −17.3752 −0.561954
\(957\) −14.5258 −0.469553
\(958\) 21.7692 0.703332
\(959\) −53.6014 −1.73088
\(960\) −2.62041 −0.0845733
\(961\) 13.9705 0.450662
\(962\) −1.91391 −0.0617068
\(963\) 13.4565 0.433631
\(964\) 8.27236 0.266435
\(965\) −13.6512 −0.439447
\(966\) 0 0
\(967\) 46.0629 1.48128 0.740641 0.671901i \(-0.234522\pi\)
0.740641 + 0.671901i \(0.234522\pi\)
\(968\) −16.8338 −0.541059
\(969\) −14.4072 −0.462827
\(970\) 2.15354 0.0691460
\(971\) −24.9783 −0.801591 −0.400796 0.916167i \(-0.631266\pi\)
−0.400796 + 0.916167i \(0.631266\pi\)
\(972\) −1.50480 −0.0482665
\(973\) 11.2607 0.361002
\(974\) −11.1511 −0.357305
\(975\) −0.510508 −0.0163493
\(976\) 6.18236 0.197893
\(977\) −23.9932 −0.767610 −0.383805 0.923414i \(-0.625387\pi\)
−0.383805 + 0.923414i \(0.625387\pi\)
\(978\) 8.51223 0.272191
\(979\) 5.12661 0.163847
\(980\) 9.02447 0.288276
\(981\) 15.8269 0.505315
\(982\) −0.528949 −0.0168794
\(983\) 6.10549 0.194735 0.0973674 0.995249i \(-0.468958\pi\)
0.0973674 + 0.995249i \(0.468958\pi\)
\(984\) 20.2293 0.644886
\(985\) −2.99717 −0.0954979
\(986\) 15.0344 0.478794
\(987\) −43.1664 −1.37400
\(988\) 1.70778 0.0543316
\(989\) 0 0
\(990\) 2.42447 0.0770546
\(991\) −16.0959 −0.511304 −0.255652 0.966769i \(-0.582290\pi\)
−0.255652 + 0.966769i \(0.582290\pi\)
\(992\) −39.0908 −1.24113
\(993\) 22.4571 0.712654
\(994\) −30.7503 −0.975341
\(995\) −11.0990 −0.351861
\(996\) −9.69596 −0.307228
\(997\) 16.9296 0.536164 0.268082 0.963396i \(-0.413610\pi\)
0.268082 + 0.963396i \(0.413610\pi\)
\(998\) 21.7648 0.688954
\(999\) 11.4894 0.363508
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1587.2.a.u.1.5 10
3.2 odd 2 4761.2.a.bt.1.6 10
23.4 even 11 69.2.e.c.16.2 yes 20
23.6 even 11 69.2.e.c.13.2 20
23.22 odd 2 1587.2.a.t.1.5 10
69.29 odd 22 207.2.i.d.82.1 20
69.50 odd 22 207.2.i.d.154.1 20
69.68 even 2 4761.2.a.bu.1.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.e.c.13.2 20 23.6 even 11
69.2.e.c.16.2 yes 20 23.4 even 11
207.2.i.d.82.1 20 69.29 odd 22
207.2.i.d.154.1 20 69.50 odd 22
1587.2.a.t.1.5 10 23.22 odd 2
1587.2.a.u.1.5 10 1.1 even 1 trivial
4761.2.a.bt.1.6 10 3.2 odd 2
4761.2.a.bu.1.6 10 69.68 even 2