Properties

Label 207.2
Level 207
Weight 2
Dimension 1155
Nonzero newspaces 8
Newform subspaces 18
Sturm bound 6336
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 207 = 3^{2} \cdot 23 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 18 \)
Sturm bound: \(6336\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(207))\).

Total New Old
Modular forms 1760 1343 417
Cusp forms 1409 1155 254
Eisenstein series 351 188 163

Trace form

\( 1155 q - 33 q^{2} - 44 q^{3} - 33 q^{4} - 33 q^{5} - 44 q^{6} - 33 q^{7} - 33 q^{8} - 44 q^{9} - 99 q^{10} - 33 q^{11} - 44 q^{12} - 33 q^{13} - 33 q^{14} - 44 q^{15} - 55 q^{16} - 44 q^{17} - 44 q^{18}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(207))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
207.2.a \(\chi_{207}(1, \cdot)\) 207.2.a.a 1 1
207.2.a.b 2
207.2.a.c 2
207.2.a.d 2
207.2.a.e 2
207.2.c \(\chi_{207}(206, \cdot)\) 207.2.c.a 8 1
207.2.e \(\chi_{207}(70, \cdot)\) 207.2.e.a 16 2
207.2.e.b 28
207.2.g \(\chi_{207}(68, \cdot)\) 207.2.g.a 12 2
207.2.g.b 32
207.2.i \(\chi_{207}(55, \cdot)\) 207.2.i.a 10 10
207.2.i.b 10
207.2.i.c 10
207.2.i.d 20
207.2.i.e 40
207.2.k \(\chi_{207}(17, \cdot)\) 207.2.k.a 80 10
207.2.m \(\chi_{207}(4, \cdot)\) 207.2.m.a 440 20
207.2.o \(\chi_{207}(5, \cdot)\) 207.2.o.a 440 20

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(207))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(207)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(69))\)\(^{\oplus 2}\)