Properties

Label 2057.4.a.s.1.11
Level $2057$
Weight $4$
Character 2057.1
Self dual yes
Analytic conductor $121.367$
Analytic rank $1$
Dimension $44$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2057,4,Mod(1,2057)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2057, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2057.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2057 = 11^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2057.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [44,-1,-28,139,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(121.366928882\)
Analytic rank: \(1\)
Dimension: \(44\)
Twist minimal: no (minimal twist has level 187)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 2057.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.20225 q^{2} -7.51392 q^{3} +2.25442 q^{4} -15.1991 q^{5} +24.0615 q^{6} +8.04966 q^{7} +18.3988 q^{8} +29.4590 q^{9} +48.6713 q^{10} -16.9395 q^{12} +64.4012 q^{13} -25.7770 q^{14} +114.205 q^{15} -76.9529 q^{16} -17.0000 q^{17} -94.3353 q^{18} -147.839 q^{19} -34.2651 q^{20} -60.4845 q^{21} +134.378 q^{23} -138.247 q^{24} +106.012 q^{25} -206.229 q^{26} -18.4771 q^{27} +18.1473 q^{28} -149.069 q^{29} -365.713 q^{30} -30.5687 q^{31} +99.2322 q^{32} +54.4383 q^{34} -122.348 q^{35} +66.4130 q^{36} -169.244 q^{37} +473.418 q^{38} -483.906 q^{39} -279.645 q^{40} -68.6591 q^{41} +193.687 q^{42} +46.4505 q^{43} -447.751 q^{45} -430.312 q^{46} -58.3594 q^{47} +578.218 q^{48} -278.203 q^{49} -339.478 q^{50} +127.737 q^{51} +145.187 q^{52} -422.473 q^{53} +59.1683 q^{54} +148.104 q^{56} +1110.85 q^{57} +477.357 q^{58} +674.907 q^{59} +257.465 q^{60} -393.087 q^{61} +97.8887 q^{62} +237.135 q^{63} +297.857 q^{64} -978.840 q^{65} +852.901 q^{67} -38.3251 q^{68} -1009.70 q^{69} +391.788 q^{70} -682.814 q^{71} +542.011 q^{72} +1024.32 q^{73} +541.960 q^{74} -796.569 q^{75} -333.291 q^{76} +1549.59 q^{78} -830.974 q^{79} +1169.61 q^{80} -656.559 q^{81} +219.864 q^{82} -138.563 q^{83} -136.357 q^{84} +258.385 q^{85} -148.746 q^{86} +1120.09 q^{87} +277.221 q^{89} +1433.81 q^{90} +518.408 q^{91} +302.944 q^{92} +229.691 q^{93} +186.882 q^{94} +2247.02 q^{95} -745.623 q^{96} -402.754 q^{97} +890.876 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - q^{2} - 28 q^{3} + 139 q^{4} - 24 q^{5} + 24 q^{6} + 2 q^{7} + 63 q^{8} + 356 q^{9} + 65 q^{10} - 337 q^{12} - 12 q^{13} - 151 q^{14} - 320 q^{15} + 311 q^{16} - 748 q^{17} + 55 q^{18} + 36 q^{19}+ \cdots - 2302 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.20225 −1.13217 −0.566083 0.824348i \(-0.691542\pi\)
−0.566083 + 0.824348i \(0.691542\pi\)
\(3\) −7.51392 −1.44606 −0.723028 0.690819i \(-0.757250\pi\)
−0.723028 + 0.690819i \(0.757250\pi\)
\(4\) 2.25442 0.281802
\(5\) −15.1991 −1.35945 −0.679724 0.733468i \(-0.737900\pi\)
−0.679724 + 0.733468i \(0.737900\pi\)
\(6\) 24.0615 1.63718
\(7\) 8.04966 0.434641 0.217320 0.976100i \(-0.430268\pi\)
0.217320 + 0.976100i \(0.430268\pi\)
\(8\) 18.3988 0.813120
\(9\) 29.4590 1.09108
\(10\) 48.6713 1.53912
\(11\) 0 0
\(12\) −16.9395 −0.407501
\(13\) 64.4012 1.37398 0.686988 0.726669i \(-0.258933\pi\)
0.686988 + 0.726669i \(0.258933\pi\)
\(14\) −25.7770 −0.492086
\(15\) 114.205 1.96584
\(16\) −76.9529 −1.20239
\(17\) −17.0000 −0.242536
\(18\) −94.3353 −1.23528
\(19\) −147.839 −1.78509 −0.892543 0.450961i \(-0.851081\pi\)
−0.892543 + 0.450961i \(0.851081\pi\)
\(20\) −34.2651 −0.383095
\(21\) −60.4845 −0.628515
\(22\) 0 0
\(23\) 134.378 1.21825 0.609124 0.793075i \(-0.291521\pi\)
0.609124 + 0.793075i \(0.291521\pi\)
\(24\) −138.247 −1.17582
\(25\) 106.012 0.848099
\(26\) −206.229 −1.55557
\(27\) −18.4771 −0.131701
\(28\) 18.1473 0.122483
\(29\) −149.069 −0.954532 −0.477266 0.878759i \(-0.658372\pi\)
−0.477266 + 0.878759i \(0.658372\pi\)
\(30\) −365.713 −2.22566
\(31\) −30.5687 −0.177107 −0.0885533 0.996071i \(-0.528224\pi\)
−0.0885533 + 0.996071i \(0.528224\pi\)
\(32\) 99.2322 0.548186
\(33\) 0 0
\(34\) 54.4383 0.274591
\(35\) −122.348 −0.590872
\(36\) 66.4130 0.307467
\(37\) −169.244 −0.751985 −0.375993 0.926623i \(-0.622698\pi\)
−0.375993 + 0.926623i \(0.622698\pi\)
\(38\) 473.418 2.02102
\(39\) −483.906 −1.98684
\(40\) −279.645 −1.10539
\(41\) −68.6591 −0.261530 −0.130765 0.991413i \(-0.541743\pi\)
−0.130765 + 0.991413i \(0.541743\pi\)
\(42\) 193.687 0.711584
\(43\) 46.4505 0.164736 0.0823678 0.996602i \(-0.473752\pi\)
0.0823678 + 0.996602i \(0.473752\pi\)
\(44\) 0 0
\(45\) −447.751 −1.48326
\(46\) −430.312 −1.37926
\(47\) −58.3594 −0.181119 −0.0905596 0.995891i \(-0.528866\pi\)
−0.0905596 + 0.995891i \(0.528866\pi\)
\(48\) 578.218 1.73872
\(49\) −278.203 −0.811087
\(50\) −339.478 −0.960190
\(51\) 127.737 0.350720
\(52\) 145.187 0.387189
\(53\) −422.473 −1.09493 −0.547463 0.836830i \(-0.684406\pi\)
−0.547463 + 0.836830i \(0.684406\pi\)
\(54\) 59.1683 0.149107
\(55\) 0 0
\(56\) 148.104 0.353415
\(57\) 1110.85 2.58133
\(58\) 477.357 1.08069
\(59\) 674.907 1.48924 0.744622 0.667486i \(-0.232630\pi\)
0.744622 + 0.667486i \(0.232630\pi\)
\(60\) 257.465 0.553977
\(61\) −393.087 −0.825077 −0.412538 0.910940i \(-0.635358\pi\)
−0.412538 + 0.910940i \(0.635358\pi\)
\(62\) 97.8887 0.200514
\(63\) 237.135 0.474226
\(64\) 297.857 0.581752
\(65\) −978.840 −1.86785
\(66\) 0 0
\(67\) 852.901 1.55520 0.777600 0.628759i \(-0.216437\pi\)
0.777600 + 0.628759i \(0.216437\pi\)
\(68\) −38.3251 −0.0683470
\(69\) −1009.70 −1.76165
\(70\) 391.788 0.668966
\(71\) −682.814 −1.14134 −0.570670 0.821179i \(-0.693316\pi\)
−0.570670 + 0.821179i \(0.693316\pi\)
\(72\) 542.011 0.887176
\(73\) 1024.32 1.64230 0.821151 0.570711i \(-0.193333\pi\)
0.821151 + 0.570711i \(0.193333\pi\)
\(74\) 541.960 0.851373
\(75\) −796.569 −1.22640
\(76\) −333.291 −0.503041
\(77\) 0 0
\(78\) 1549.59 2.24944
\(79\) −830.974 −1.18344 −0.591721 0.806143i \(-0.701551\pi\)
−0.591721 + 0.806143i \(0.701551\pi\)
\(80\) 1169.61 1.63459
\(81\) −656.559 −0.900629
\(82\) 219.864 0.296096
\(83\) −138.563 −0.183244 −0.0916221 0.995794i \(-0.529205\pi\)
−0.0916221 + 0.995794i \(0.529205\pi\)
\(84\) −136.357 −0.177117
\(85\) 258.385 0.329715
\(86\) −148.746 −0.186508
\(87\) 1120.09 1.38031
\(88\) 0 0
\(89\) 277.221 0.330172 0.165086 0.986279i \(-0.447210\pi\)
0.165086 + 0.986279i \(0.447210\pi\)
\(90\) 1433.81 1.67930
\(91\) 518.408 0.597186
\(92\) 302.944 0.343305
\(93\) 229.691 0.256106
\(94\) 186.882 0.205057
\(95\) 2247.02 2.42673
\(96\) −745.623 −0.792707
\(97\) −402.754 −0.421582 −0.210791 0.977531i \(-0.567604\pi\)
−0.210791 + 0.977531i \(0.567604\pi\)
\(98\) 890.876 0.918286
\(99\) 0 0
\(100\) 238.996 0.238996
\(101\) 172.035 0.169486 0.0847429 0.996403i \(-0.472993\pi\)
0.0847429 + 0.996403i \(0.472993\pi\)
\(102\) −409.045 −0.397074
\(103\) 1431.96 1.36985 0.684927 0.728612i \(-0.259834\pi\)
0.684927 + 0.728612i \(0.259834\pi\)
\(104\) 1184.91 1.11721
\(105\) 919.310 0.854433
\(106\) 1352.86 1.23964
\(107\) 2004.52 1.81107 0.905534 0.424273i \(-0.139470\pi\)
0.905534 + 0.424273i \(0.139470\pi\)
\(108\) −41.6550 −0.0371135
\(109\) 1389.48 1.22099 0.610495 0.792020i \(-0.290971\pi\)
0.610495 + 0.792020i \(0.290971\pi\)
\(110\) 0 0
\(111\) 1271.68 1.08741
\(112\) −619.445 −0.522608
\(113\) 1171.49 0.975264 0.487632 0.873049i \(-0.337861\pi\)
0.487632 + 0.873049i \(0.337861\pi\)
\(114\) −3557.23 −2.92250
\(115\) −2042.42 −1.65615
\(116\) −336.064 −0.268989
\(117\) 1897.20 1.49911
\(118\) −2161.22 −1.68607
\(119\) −136.844 −0.105416
\(120\) 2101.23 1.59846
\(121\) 0 0
\(122\) 1258.76 0.934124
\(123\) 515.899 0.378187
\(124\) −68.9146 −0.0499090
\(125\) 288.594 0.206501
\(126\) −759.367 −0.536903
\(127\) −2072.96 −1.44839 −0.724196 0.689595i \(-0.757789\pi\)
−0.724196 + 0.689595i \(0.757789\pi\)
\(128\) −1747.67 −1.20683
\(129\) −349.025 −0.238217
\(130\) 3134.49 2.11472
\(131\) 575.088 0.383555 0.191777 0.981438i \(-0.438575\pi\)
0.191777 + 0.981438i \(0.438575\pi\)
\(132\) 0 0
\(133\) −1190.06 −0.775872
\(134\) −2731.20 −1.76075
\(135\) 280.835 0.179040
\(136\) −312.780 −0.197211
\(137\) −1329.55 −0.829134 −0.414567 0.910019i \(-0.636067\pi\)
−0.414567 + 0.910019i \(0.636067\pi\)
\(138\) 3233.33 1.99449
\(139\) −501.046 −0.305742 −0.152871 0.988246i \(-0.548852\pi\)
−0.152871 + 0.988246i \(0.548852\pi\)
\(140\) −275.822 −0.166509
\(141\) 438.508 0.261908
\(142\) 2186.54 1.29219
\(143\) 0 0
\(144\) −2266.96 −1.31190
\(145\) 2265.71 1.29764
\(146\) −3280.14 −1.85936
\(147\) 2090.40 1.17288
\(148\) −381.545 −0.211911
\(149\) −866.548 −0.476446 −0.238223 0.971211i \(-0.576565\pi\)
−0.238223 + 0.971211i \(0.576565\pi\)
\(150\) 2550.81 1.38849
\(151\) −2707.54 −1.45918 −0.729591 0.683884i \(-0.760290\pi\)
−0.729591 + 0.683884i \(0.760290\pi\)
\(152\) −2720.07 −1.45149
\(153\) −500.804 −0.264625
\(154\) 0 0
\(155\) 464.617 0.240767
\(156\) −1090.93 −0.559897
\(157\) 437.490 0.222392 0.111196 0.993799i \(-0.464532\pi\)
0.111196 + 0.993799i \(0.464532\pi\)
\(158\) 2660.99 1.33985
\(159\) 3174.43 1.58332
\(160\) −1508.24 −0.745230
\(161\) 1081.70 0.529501
\(162\) 2102.47 1.01966
\(163\) 1095.90 0.526612 0.263306 0.964712i \(-0.415187\pi\)
0.263306 + 0.964712i \(0.415187\pi\)
\(164\) −154.786 −0.0736998
\(165\) 0 0
\(166\) 443.714 0.207463
\(167\) −802.601 −0.371899 −0.185950 0.982559i \(-0.559536\pi\)
−0.185950 + 0.982559i \(0.559536\pi\)
\(168\) −1112.84 −0.511058
\(169\) 1950.52 0.887808
\(170\) −827.412 −0.373292
\(171\) −4355.20 −1.94766
\(172\) 104.719 0.0464228
\(173\) 27.3369 0.0120138 0.00600689 0.999982i \(-0.498088\pi\)
0.00600689 + 0.999982i \(0.498088\pi\)
\(174\) −3586.82 −1.56274
\(175\) 853.364 0.368619
\(176\) 0 0
\(177\) −5071.20 −2.15353
\(178\) −887.730 −0.373810
\(179\) 2128.07 0.888600 0.444300 0.895878i \(-0.353452\pi\)
0.444300 + 0.895878i \(0.353452\pi\)
\(180\) −1009.42 −0.417986
\(181\) 2233.48 0.917202 0.458601 0.888642i \(-0.348351\pi\)
0.458601 + 0.888642i \(0.348351\pi\)
\(182\) −1660.07 −0.676114
\(183\) 2953.63 1.19311
\(184\) 2472.39 0.990582
\(185\) 2572.35 1.02229
\(186\) −735.528 −0.289955
\(187\) 0 0
\(188\) −131.566 −0.0510397
\(189\) −148.734 −0.0572425
\(190\) −7195.53 −2.74747
\(191\) −2175.84 −0.824286 −0.412143 0.911119i \(-0.635220\pi\)
−0.412143 + 0.911119i \(0.635220\pi\)
\(192\) −2238.07 −0.841245
\(193\) 3118.62 1.16313 0.581563 0.813502i \(-0.302441\pi\)
0.581563 + 0.813502i \(0.302441\pi\)
\(194\) 1289.72 0.477301
\(195\) 7354.93 2.70101
\(196\) −627.185 −0.228566
\(197\) 4103.79 1.48418 0.742089 0.670302i \(-0.233835\pi\)
0.742089 + 0.670302i \(0.233835\pi\)
\(198\) 0 0
\(199\) −5469.06 −1.94820 −0.974099 0.226121i \(-0.927395\pi\)
−0.974099 + 0.226121i \(0.927395\pi\)
\(200\) 1950.50 0.689606
\(201\) −6408.63 −2.24891
\(202\) −550.898 −0.191886
\(203\) −1199.96 −0.414879
\(204\) 287.972 0.0988336
\(205\) 1043.56 0.355537
\(206\) −4585.49 −1.55090
\(207\) 3958.64 1.32920
\(208\) −4955.86 −1.65205
\(209\) 0 0
\(210\) −2943.86 −0.967361
\(211\) 1296.43 0.422987 0.211493 0.977379i \(-0.432167\pi\)
0.211493 + 0.977379i \(0.432167\pi\)
\(212\) −952.430 −0.308553
\(213\) 5130.61 1.65044
\(214\) −6418.98 −2.05043
\(215\) −706.005 −0.223949
\(216\) −339.956 −0.107088
\(217\) −246.068 −0.0769778
\(218\) −4449.46 −1.38236
\(219\) −7696.69 −2.37486
\(220\) 0 0
\(221\) −1094.82 −0.333238
\(222\) −4072.25 −1.23113
\(223\) 2869.87 0.861796 0.430898 0.902401i \(-0.358197\pi\)
0.430898 + 0.902401i \(0.358197\pi\)
\(224\) 798.786 0.238264
\(225\) 3123.02 0.925340
\(226\) −3751.42 −1.10416
\(227\) 5269.34 1.54070 0.770349 0.637622i \(-0.220082\pi\)
0.770349 + 0.637622i \(0.220082\pi\)
\(228\) 2504.32 0.727425
\(229\) −1994.80 −0.575632 −0.287816 0.957686i \(-0.592929\pi\)
−0.287816 + 0.957686i \(0.592929\pi\)
\(230\) 6540.35 1.87503
\(231\) 0 0
\(232\) −2742.69 −0.776149
\(233\) 4054.91 1.14011 0.570055 0.821606i \(-0.306922\pi\)
0.570055 + 0.821606i \(0.306922\pi\)
\(234\) −6075.31 −1.69724
\(235\) 887.011 0.246222
\(236\) 1521.52 0.419672
\(237\) 6243.87 1.71132
\(238\) 438.210 0.119348
\(239\) −355.429 −0.0961958 −0.0480979 0.998843i \(-0.515316\pi\)
−0.0480979 + 0.998843i \(0.515316\pi\)
\(240\) −8788.40 −2.36370
\(241\) −6077.20 −1.62434 −0.812171 0.583419i \(-0.801715\pi\)
−0.812171 + 0.583419i \(0.801715\pi\)
\(242\) 0 0
\(243\) 5432.21 1.43406
\(244\) −886.182 −0.232508
\(245\) 4228.43 1.10263
\(246\) −1652.04 −0.428171
\(247\) −9521.03 −2.45267
\(248\) −562.428 −0.144009
\(249\) 1041.15 0.264981
\(250\) −924.152 −0.233794
\(251\) −917.973 −0.230844 −0.115422 0.993317i \(-0.536822\pi\)
−0.115422 + 0.993317i \(0.536822\pi\)
\(252\) 534.602 0.133638
\(253\) 0 0
\(254\) 6638.15 1.63982
\(255\) −1941.48 −0.476786
\(256\) 3213.63 0.784577
\(257\) 326.089 0.0791473 0.0395736 0.999217i \(-0.487400\pi\)
0.0395736 + 0.999217i \(0.487400\pi\)
\(258\) 1117.67 0.269701
\(259\) −1362.35 −0.326844
\(260\) −2206.71 −0.526363
\(261\) −4391.43 −1.04147
\(262\) −1841.58 −0.434248
\(263\) 3792.65 0.889221 0.444610 0.895724i \(-0.353342\pi\)
0.444610 + 0.895724i \(0.353342\pi\)
\(264\) 0 0
\(265\) 6421.20 1.48850
\(266\) 3810.86 0.878416
\(267\) −2083.01 −0.477447
\(268\) 1922.79 0.438259
\(269\) 2995.42 0.678937 0.339469 0.940617i \(-0.389753\pi\)
0.339469 + 0.940617i \(0.389753\pi\)
\(270\) −899.304 −0.202703
\(271\) −1454.70 −0.326077 −0.163038 0.986620i \(-0.552129\pi\)
−0.163038 + 0.986620i \(0.552129\pi\)
\(272\) 1308.20 0.291622
\(273\) −3895.28 −0.863564
\(274\) 4257.56 0.938718
\(275\) 0 0
\(276\) −2276.29 −0.496438
\(277\) 5196.24 1.12712 0.563560 0.826075i \(-0.309431\pi\)
0.563560 + 0.826075i \(0.309431\pi\)
\(278\) 1604.48 0.346151
\(279\) −900.525 −0.193237
\(280\) −2251.05 −0.480450
\(281\) 4076.28 0.865376 0.432688 0.901544i \(-0.357565\pi\)
0.432688 + 0.901544i \(0.357565\pi\)
\(282\) −1404.21 −0.296524
\(283\) −669.972 −0.140727 −0.0703634 0.997521i \(-0.522416\pi\)
−0.0703634 + 0.997521i \(0.522416\pi\)
\(284\) −1539.35 −0.321632
\(285\) −16884.0 −3.50919
\(286\) 0 0
\(287\) −552.682 −0.113672
\(288\) 2923.29 0.598112
\(289\) 289.000 0.0588235
\(290\) −7255.39 −1.46914
\(291\) 3026.26 0.609630
\(292\) 2309.25 0.462804
\(293\) −891.425 −0.177739 −0.0888696 0.996043i \(-0.528325\pi\)
−0.0888696 + 0.996043i \(0.528325\pi\)
\(294\) −6693.97 −1.32789
\(295\) −10258.0 −2.02455
\(296\) −3113.88 −0.611454
\(297\) 0 0
\(298\) 2774.91 0.539416
\(299\) 8654.09 1.67384
\(300\) −1795.80 −0.345602
\(301\) 373.910 0.0716008
\(302\) 8670.23 1.65204
\(303\) −1292.65 −0.245086
\(304\) 11376.7 2.14637
\(305\) 5974.57 1.12165
\(306\) 1603.70 0.299599
\(307\) −9723.45 −1.80764 −0.903822 0.427909i \(-0.859250\pi\)
−0.903822 + 0.427909i \(0.859250\pi\)
\(308\) 0 0
\(309\) −10759.6 −1.98088
\(310\) −1487.82 −0.272589
\(311\) 1755.25 0.320036 0.160018 0.987114i \(-0.448845\pi\)
0.160018 + 0.987114i \(0.448845\pi\)
\(312\) −8903.29 −1.61554
\(313\) −10965.5 −1.98022 −0.990109 0.140300i \(-0.955193\pi\)
−0.990109 + 0.140300i \(0.955193\pi\)
\(314\) −1400.95 −0.251784
\(315\) −3604.24 −0.644686
\(316\) −1873.36 −0.333496
\(317\) −1546.79 −0.274057 −0.137029 0.990567i \(-0.543755\pi\)
−0.137029 + 0.990567i \(0.543755\pi\)
\(318\) −10165.3 −1.79259
\(319\) 0 0
\(320\) −4527.15 −0.790861
\(321\) −15061.8 −2.61891
\(322\) −3463.86 −0.599483
\(323\) 2513.27 0.432947
\(324\) −1480.16 −0.253799
\(325\) 6827.33 1.16527
\(326\) −3509.36 −0.596213
\(327\) −10440.4 −1.76562
\(328\) −1263.25 −0.212656
\(329\) −469.774 −0.0787218
\(330\) 0 0
\(331\) 3002.55 0.498595 0.249298 0.968427i \(-0.419800\pi\)
0.249298 + 0.968427i \(0.419800\pi\)
\(332\) −312.379 −0.0516386
\(333\) −4985.75 −0.820473
\(334\) 2570.13 0.421052
\(335\) −12963.3 −2.11421
\(336\) 4654.46 0.755720
\(337\) −9086.09 −1.46870 −0.734348 0.678773i \(-0.762512\pi\)
−0.734348 + 0.678773i \(0.762512\pi\)
\(338\) −6246.04 −1.00515
\(339\) −8802.51 −1.41029
\(340\) 582.506 0.0929143
\(341\) 0 0
\(342\) 13946.5 2.20508
\(343\) −5000.47 −0.787173
\(344\) 854.633 0.133950
\(345\) 15346.6 2.39488
\(346\) −87.5395 −0.0136016
\(347\) 11357.3 1.75704 0.878519 0.477708i \(-0.158532\pi\)
0.878519 + 0.477708i \(0.158532\pi\)
\(348\) 2525.16 0.388973
\(349\) 5164.14 0.792064 0.396032 0.918237i \(-0.370387\pi\)
0.396032 + 0.918237i \(0.370387\pi\)
\(350\) −2732.69 −0.417338
\(351\) −1189.95 −0.180953
\(352\) 0 0
\(353\) 9220.27 1.39021 0.695107 0.718906i \(-0.255357\pi\)
0.695107 + 0.718906i \(0.255357\pi\)
\(354\) 16239.3 2.43815
\(355\) 10378.2 1.55159
\(356\) 624.971 0.0930432
\(357\) 1028.24 0.152437
\(358\) −6814.62 −1.00604
\(359\) −6305.61 −0.927012 −0.463506 0.886094i \(-0.653409\pi\)
−0.463506 + 0.886094i \(0.653409\pi\)
\(360\) −8238.08 −1.20607
\(361\) 14997.4 2.18653
\(362\) −7152.18 −1.03843
\(363\) 0 0
\(364\) 1168.71 0.168288
\(365\) −15568.8 −2.23262
\(366\) −9458.26 −1.35080
\(367\) 537.232 0.0764122 0.0382061 0.999270i \(-0.487836\pi\)
0.0382061 + 0.999270i \(0.487836\pi\)
\(368\) −10340.8 −1.46481
\(369\) −2022.63 −0.285350
\(370\) −8237.30 −1.15740
\(371\) −3400.76 −0.475900
\(372\) 517.819 0.0721712
\(373\) −11240.0 −1.56029 −0.780144 0.625601i \(-0.784854\pi\)
−0.780144 + 0.625601i \(0.784854\pi\)
\(374\) 0 0
\(375\) −2168.48 −0.298612
\(376\) −1073.74 −0.147272
\(377\) −9600.23 −1.31150
\(378\) 476.284 0.0648080
\(379\) 14042.0 1.90314 0.951572 0.307426i \(-0.0994676\pi\)
0.951572 + 0.307426i \(0.0994676\pi\)
\(380\) 5065.72 0.683858
\(381\) 15576.1 2.09445
\(382\) 6967.60 0.933229
\(383\) −507.916 −0.0677631 −0.0338816 0.999426i \(-0.510787\pi\)
−0.0338816 + 0.999426i \(0.510787\pi\)
\(384\) 13131.9 1.74514
\(385\) 0 0
\(386\) −9986.61 −1.31685
\(387\) 1368.39 0.179739
\(388\) −907.974 −0.118803
\(389\) 6993.32 0.911505 0.455752 0.890107i \(-0.349370\pi\)
0.455752 + 0.890107i \(0.349370\pi\)
\(390\) −23552.3 −3.05800
\(391\) −2284.42 −0.295469
\(392\) −5118.60 −0.659511
\(393\) −4321.17 −0.554641
\(394\) −13141.4 −1.68034
\(395\) 12630.0 1.60883
\(396\) 0 0
\(397\) −7432.72 −0.939641 −0.469821 0.882762i \(-0.655681\pi\)
−0.469821 + 0.882762i \(0.655681\pi\)
\(398\) 17513.3 2.20569
\(399\) 8941.99 1.12195
\(400\) −8157.97 −1.01975
\(401\) −7302.47 −0.909396 −0.454698 0.890646i \(-0.650253\pi\)
−0.454698 + 0.890646i \(0.650253\pi\)
\(402\) 20522.1 2.54614
\(403\) −1968.66 −0.243340
\(404\) 387.837 0.0477615
\(405\) 9979.10 1.22436
\(406\) 3842.56 0.469712
\(407\) 0 0
\(408\) 2350.20 0.285177
\(409\) 10931.5 1.32159 0.660793 0.750568i \(-0.270220\pi\)
0.660793 + 0.750568i \(0.270220\pi\)
\(410\) −3341.73 −0.402527
\(411\) 9990.16 1.19897
\(412\) 3228.23 0.386028
\(413\) 5432.77 0.647286
\(414\) −12676.6 −1.50488
\(415\) 2106.03 0.249111
\(416\) 6390.68 0.753194
\(417\) 3764.82 0.442120
\(418\) 0 0
\(419\) 12419.2 1.44801 0.724007 0.689793i \(-0.242298\pi\)
0.724007 + 0.689793i \(0.242298\pi\)
\(420\) 2072.51 0.240781
\(421\) −11806.9 −1.36682 −0.683410 0.730035i \(-0.739504\pi\)
−0.683410 + 0.730035i \(0.739504\pi\)
\(422\) −4151.51 −0.478892
\(423\) −1719.21 −0.197615
\(424\) −7773.00 −0.890307
\(425\) −1802.21 −0.205694
\(426\) −16429.5 −1.86857
\(427\) −3164.22 −0.358612
\(428\) 4519.03 0.510363
\(429\) 0 0
\(430\) 2260.80 0.253548
\(431\) −3024.31 −0.337995 −0.168998 0.985616i \(-0.554053\pi\)
−0.168998 + 0.985616i \(0.554053\pi\)
\(432\) 1421.87 0.158355
\(433\) 8328.14 0.924307 0.462154 0.886800i \(-0.347077\pi\)
0.462154 + 0.886800i \(0.347077\pi\)
\(434\) 787.971 0.0871517
\(435\) −17024.4 −1.87645
\(436\) 3132.46 0.344077
\(437\) −19866.3 −2.17468
\(438\) 24646.7 2.68874
\(439\) −2482.62 −0.269907 −0.134953 0.990852i \(-0.543088\pi\)
−0.134953 + 0.990852i \(0.543088\pi\)
\(440\) 0 0
\(441\) −8195.59 −0.884958
\(442\) 3505.89 0.377281
\(443\) 3962.85 0.425013 0.212506 0.977160i \(-0.431837\pi\)
0.212506 + 0.977160i \(0.431837\pi\)
\(444\) 2866.90 0.306435
\(445\) −4213.50 −0.448852
\(446\) −9190.03 −0.975696
\(447\) 6511.18 0.688967
\(448\) 2397.65 0.252853
\(449\) −1760.15 −0.185003 −0.0925016 0.995713i \(-0.529486\pi\)
−0.0925016 + 0.995713i \(0.529486\pi\)
\(450\) −10000.7 −1.04764
\(451\) 0 0
\(452\) 2641.03 0.274831
\(453\) 20344.3 2.11006
\(454\) −16873.8 −1.74433
\(455\) −7879.33 −0.811843
\(456\) 20438.4 2.09893
\(457\) 15574.7 1.59421 0.797106 0.603839i \(-0.206363\pi\)
0.797106 + 0.603839i \(0.206363\pi\)
\(458\) 6387.84 0.651712
\(459\) 314.110 0.0319421
\(460\) −4604.47 −0.466705
\(461\) −11769.0 −1.18901 −0.594507 0.804091i \(-0.702653\pi\)
−0.594507 + 0.804091i \(0.702653\pi\)
\(462\) 0 0
\(463\) 2075.70 0.208350 0.104175 0.994559i \(-0.466780\pi\)
0.104175 + 0.994559i \(0.466780\pi\)
\(464\) 11471.3 1.14772
\(465\) −3491.10 −0.348163
\(466\) −12984.8 −1.29080
\(467\) 12345.4 1.22329 0.611644 0.791133i \(-0.290509\pi\)
0.611644 + 0.791133i \(0.290509\pi\)
\(468\) 4277.07 0.422453
\(469\) 6865.56 0.675954
\(470\) −2840.43 −0.278765
\(471\) −3287.27 −0.321591
\(472\) 12417.5 1.21093
\(473\) 0 0
\(474\) −19994.5 −1.93750
\(475\) −15672.8 −1.51393
\(476\) −308.504 −0.0297064
\(477\) −12445.6 −1.19465
\(478\) 1138.17 0.108910
\(479\) −1774.24 −0.169242 −0.0846210 0.996413i \(-0.526968\pi\)
−0.0846210 + 0.996413i \(0.526968\pi\)
\(480\) 11332.8 1.07764
\(481\) −10899.5 −1.03321
\(482\) 19460.7 1.83903
\(483\) −8127.78 −0.765687
\(484\) 0 0
\(485\) 6121.49 0.573118
\(486\) −17395.3 −1.62360
\(487\) −5260.84 −0.489510 −0.244755 0.969585i \(-0.578707\pi\)
−0.244755 + 0.969585i \(0.578707\pi\)
\(488\) −7232.34 −0.670886
\(489\) −8234.53 −0.761510
\(490\) −13540.5 −1.24836
\(491\) 12836.1 1.17980 0.589901 0.807475i \(-0.299167\pi\)
0.589901 + 0.807475i \(0.299167\pi\)
\(492\) 1163.05 0.106574
\(493\) 2534.17 0.231508
\(494\) 30488.7 2.77683
\(495\) 0 0
\(496\) 2352.35 0.212951
\(497\) −5496.43 −0.496073
\(498\) −3334.03 −0.300003
\(499\) −11178.9 −1.00288 −0.501440 0.865192i \(-0.667196\pi\)
−0.501440 + 0.865192i \(0.667196\pi\)
\(500\) 650.612 0.0581925
\(501\) 6030.68 0.537787
\(502\) 2939.58 0.261354
\(503\) −3189.45 −0.282724 −0.141362 0.989958i \(-0.545148\pi\)
−0.141362 + 0.989958i \(0.545148\pi\)
\(504\) 4363.01 0.385603
\(505\) −2614.77 −0.230407
\(506\) 0 0
\(507\) −14656.0 −1.28382
\(508\) −4673.32 −0.408160
\(509\) −2937.27 −0.255780 −0.127890 0.991788i \(-0.540820\pi\)
−0.127890 + 0.991788i \(0.540820\pi\)
\(510\) 6217.11 0.539801
\(511\) 8245.46 0.713811
\(512\) 3690.52 0.318554
\(513\) 2731.64 0.235097
\(514\) −1044.22 −0.0896079
\(515\) −21764.4 −1.86225
\(516\) −786.848 −0.0671299
\(517\) 0 0
\(518\) 4362.60 0.370042
\(519\) −205.407 −0.0173726
\(520\) −18009.5 −1.51878
\(521\) −1090.04 −0.0916615 −0.0458307 0.998949i \(-0.514593\pi\)
−0.0458307 + 0.998949i \(0.514593\pi\)
\(522\) 14062.5 1.17911
\(523\) 4135.78 0.345784 0.172892 0.984941i \(-0.444689\pi\)
0.172892 + 0.984941i \(0.444689\pi\)
\(524\) 1296.49 0.108086
\(525\) −6412.11 −0.533043
\(526\) −12145.0 −1.00675
\(527\) 519.668 0.0429547
\(528\) 0 0
\(529\) 5890.40 0.484129
\(530\) −20562.3 −1.68523
\(531\) 19882.1 1.62488
\(532\) −2682.88 −0.218642
\(533\) −4421.73 −0.359336
\(534\) 6670.34 0.540550
\(535\) −30466.9 −2.46205
\(536\) 15692.4 1.26456
\(537\) −15990.2 −1.28497
\(538\) −9592.10 −0.768670
\(539\) 0 0
\(540\) 633.119 0.0504539
\(541\) 4737.32 0.376476 0.188238 0.982123i \(-0.439722\pi\)
0.188238 + 0.982123i \(0.439722\pi\)
\(542\) 4658.32 0.369173
\(543\) −16782.2 −1.32632
\(544\) −1686.95 −0.132955
\(545\) −21118.8 −1.65987
\(546\) 12473.7 0.977698
\(547\) −14315.5 −1.11899 −0.559494 0.828834i \(-0.689004\pi\)
−0.559494 + 0.828834i \(0.689004\pi\)
\(548\) −2997.37 −0.233652
\(549\) −11580.0 −0.900221
\(550\) 0 0
\(551\) 22038.3 1.70392
\(552\) −18577.4 −1.43244
\(553\) −6689.06 −0.514372
\(554\) −16639.7 −1.27609
\(555\) −19328.4 −1.47828
\(556\) −1129.57 −0.0861588
\(557\) −3777.06 −0.287324 −0.143662 0.989627i \(-0.545888\pi\)
−0.143662 + 0.989627i \(0.545888\pi\)
\(558\) 2883.71 0.218776
\(559\) 2991.47 0.226343
\(560\) 9415.00 0.710458
\(561\) 0 0
\(562\) −13053.3 −0.979750
\(563\) −9768.35 −0.731238 −0.365619 0.930765i \(-0.619143\pi\)
−0.365619 + 0.930765i \(0.619143\pi\)
\(564\) 988.581 0.0738063
\(565\) −17805.6 −1.32582
\(566\) 2145.42 0.159326
\(567\) −5285.08 −0.391450
\(568\) −12563.0 −0.928047
\(569\) −43.8685 −0.00323210 −0.00161605 0.999999i \(-0.500514\pi\)
−0.00161605 + 0.999999i \(0.500514\pi\)
\(570\) 54066.7 3.97299
\(571\) 21264.9 1.55851 0.779255 0.626707i \(-0.215598\pi\)
0.779255 + 0.626707i \(0.215598\pi\)
\(572\) 0 0
\(573\) 16349.1 1.19196
\(574\) 1769.83 0.128695
\(575\) 14245.7 1.03320
\(576\) 8774.58 0.634735
\(577\) −22057.3 −1.59143 −0.795717 0.605669i \(-0.792906\pi\)
−0.795717 + 0.605669i \(0.792906\pi\)
\(578\) −925.451 −0.0665981
\(579\) −23433.1 −1.68194
\(580\) 5107.86 0.365677
\(581\) −1115.39 −0.0796454
\(582\) −9690.84 −0.690203
\(583\) 0 0
\(584\) 18846.3 1.33539
\(585\) −28835.7 −2.03796
\(586\) 2854.57 0.201231
\(587\) −20263.7 −1.42483 −0.712413 0.701761i \(-0.752397\pi\)
−0.712413 + 0.701761i \(0.752397\pi\)
\(588\) 4712.62 0.330519
\(589\) 4519.26 0.316151
\(590\) 32848.6 2.29213
\(591\) −30835.6 −2.14620
\(592\) 13023.8 0.904180
\(593\) 431.868 0.0299067 0.0149534 0.999888i \(-0.495240\pi\)
0.0149534 + 0.999888i \(0.495240\pi\)
\(594\) 0 0
\(595\) 2079.91 0.143307
\(596\) −1953.56 −0.134263
\(597\) 41094.1 2.81720
\(598\) −27712.6 −1.89507
\(599\) −20230.0 −1.37993 −0.689964 0.723844i \(-0.742374\pi\)
−0.689964 + 0.723844i \(0.742374\pi\)
\(600\) −14655.9 −0.997209
\(601\) −84.8689 −0.00576019 −0.00288010 0.999996i \(-0.500917\pi\)
−0.00288010 + 0.999996i \(0.500917\pi\)
\(602\) −1197.36 −0.0810641
\(603\) 25125.6 1.69684
\(604\) −6103.92 −0.411201
\(605\) 0 0
\(606\) 4139.40 0.277478
\(607\) 16945.2 1.13309 0.566545 0.824031i \(-0.308280\pi\)
0.566545 + 0.824031i \(0.308280\pi\)
\(608\) −14670.4 −0.978559
\(609\) 9016.37 0.599938
\(610\) −19132.1 −1.26989
\(611\) −3758.42 −0.248853
\(612\) −1129.02 −0.0745718
\(613\) 16231.7 1.06948 0.534740 0.845017i \(-0.320410\pi\)
0.534740 + 0.845017i \(0.320410\pi\)
\(614\) 31136.9 2.04655
\(615\) −7841.20 −0.514126
\(616\) 0 0
\(617\) 25976.6 1.69494 0.847469 0.530845i \(-0.178125\pi\)
0.847469 + 0.530845i \(0.178125\pi\)
\(618\) 34455.0 2.24269
\(619\) −605.381 −0.0393091 −0.0196545 0.999807i \(-0.506257\pi\)
−0.0196545 + 0.999807i \(0.506257\pi\)
\(620\) 1047.44 0.0678487
\(621\) −2482.91 −0.160444
\(622\) −5620.76 −0.362334
\(623\) 2231.53 0.143506
\(624\) 37238.0 2.38896
\(625\) −17637.9 −1.12883
\(626\) 35114.4 2.24194
\(627\) 0 0
\(628\) 986.284 0.0626704
\(629\) 2877.14 0.182383
\(630\) 11541.7 0.729892
\(631\) −4607.64 −0.290693 −0.145346 0.989381i \(-0.546430\pi\)
−0.145346 + 0.989381i \(0.546430\pi\)
\(632\) −15288.9 −0.962280
\(633\) −9741.31 −0.611662
\(634\) 4953.20 0.310279
\(635\) 31507.1 1.96901
\(636\) 7156.48 0.446184
\(637\) −17916.6 −1.11441
\(638\) 0 0
\(639\) −20115.1 −1.24529
\(640\) 26563.0 1.64062
\(641\) 11220.7 0.691407 0.345704 0.938344i \(-0.387640\pi\)
0.345704 + 0.938344i \(0.387640\pi\)
\(642\) 48231.7 2.96504
\(643\) 6792.82 0.416614 0.208307 0.978064i \(-0.433205\pi\)
0.208307 + 0.978064i \(0.433205\pi\)
\(644\) 2438.59 0.149214
\(645\) 5304.87 0.323843
\(646\) −8048.11 −0.490168
\(647\) −1187.77 −0.0721729 −0.0360865 0.999349i \(-0.511489\pi\)
−0.0360865 + 0.999349i \(0.511489\pi\)
\(648\) −12079.9 −0.732320
\(649\) 0 0
\(650\) −21862.8 −1.31928
\(651\) 1848.94 0.111314
\(652\) 2470.62 0.148400
\(653\) −11524.5 −0.690639 −0.345320 0.938485i \(-0.612229\pi\)
−0.345320 + 0.938485i \(0.612229\pi\)
\(654\) 33432.9 1.99898
\(655\) −8740.81 −0.521423
\(656\) 5283.52 0.314461
\(657\) 30175.6 1.79188
\(658\) 1504.33 0.0891262
\(659\) −2262.41 −0.133735 −0.0668673 0.997762i \(-0.521300\pi\)
−0.0668673 + 0.997762i \(0.521300\pi\)
\(660\) 0 0
\(661\) 7569.36 0.445407 0.222704 0.974886i \(-0.428512\pi\)
0.222704 + 0.974886i \(0.428512\pi\)
\(662\) −9614.92 −0.564493
\(663\) 8226.40 0.481881
\(664\) −2549.39 −0.149000
\(665\) 18087.8 1.05476
\(666\) 15965.6 0.928913
\(667\) −20031.6 −1.16286
\(668\) −1809.40 −0.104802
\(669\) −21563.9 −1.24620
\(670\) 41511.8 2.39364
\(671\) 0 0
\(672\) −6002.02 −0.344543
\(673\) 12090.3 0.692490 0.346245 0.938144i \(-0.387457\pi\)
0.346245 + 0.938144i \(0.387457\pi\)
\(674\) 29095.9 1.66281
\(675\) −1958.80 −0.111695
\(676\) 4397.27 0.250186
\(677\) −18348.0 −1.04161 −0.520806 0.853675i \(-0.674368\pi\)
−0.520806 + 0.853675i \(0.674368\pi\)
\(678\) 28187.9 1.59668
\(679\) −3242.03 −0.183237
\(680\) 4753.97 0.268098
\(681\) −39593.4 −2.22794
\(682\) 0 0
\(683\) 20163.7 1.12964 0.564819 0.825215i \(-0.308946\pi\)
0.564819 + 0.825215i \(0.308946\pi\)
\(684\) −9818.44 −0.548856
\(685\) 20208.0 1.12716
\(686\) 16012.8 0.891211
\(687\) 14988.7 0.832396
\(688\) −3574.50 −0.198076
\(689\) −27207.8 −1.50440
\(690\) −49143.7 −2.71140
\(691\) 9204.28 0.506725 0.253363 0.967371i \(-0.418463\pi\)
0.253363 + 0.967371i \(0.418463\pi\)
\(692\) 61.6287 0.00338551
\(693\) 0 0
\(694\) −36368.9 −1.98926
\(695\) 7615.45 0.415641
\(696\) 20608.4 1.12235
\(697\) 1167.20 0.0634304
\(698\) −16536.9 −0.896748
\(699\) −30468.3 −1.64866
\(700\) 1923.84 0.103877
\(701\) −5532.69 −0.298098 −0.149049 0.988830i \(-0.547621\pi\)
−0.149049 + 0.988830i \(0.547621\pi\)
\(702\) 3810.51 0.204869
\(703\) 25020.8 1.34236
\(704\) 0 0
\(705\) −6664.93 −0.356051
\(706\) −29525.6 −1.57395
\(707\) 1384.82 0.0736655
\(708\) −11432.6 −0.606869
\(709\) −36674.6 −1.94265 −0.971327 0.237746i \(-0.923591\pi\)
−0.971327 + 0.237746i \(0.923591\pi\)
\(710\) −33233.5 −1.75666
\(711\) −24479.7 −1.29122
\(712\) 5100.53 0.268470
\(713\) −4107.76 −0.215760
\(714\) −3292.67 −0.172584
\(715\) 0 0
\(716\) 4797.56 0.250409
\(717\) 2670.67 0.139104
\(718\) 20192.2 1.04953
\(719\) 35385.4 1.83540 0.917699 0.397275i \(-0.130044\pi\)
0.917699 + 0.397275i \(0.130044\pi\)
\(720\) 34455.7 1.78346
\(721\) 11526.8 0.595394
\(722\) −48025.6 −2.47552
\(723\) 45663.6 2.34889
\(724\) 5035.20 0.258469
\(725\) −15803.2 −0.809538
\(726\) 0 0
\(727\) −29981.9 −1.52953 −0.764763 0.644311i \(-0.777144\pi\)
−0.764763 + 0.644311i \(0.777144\pi\)
\(728\) 9538.09 0.485584
\(729\) −23090.2 −1.17310
\(730\) 49855.2 2.52770
\(731\) −789.658 −0.0399542
\(732\) 6658.71 0.336220
\(733\) −8092.56 −0.407784 −0.203892 0.978993i \(-0.565359\pi\)
−0.203892 + 0.978993i \(0.565359\pi\)
\(734\) −1720.35 −0.0865113
\(735\) −31772.1 −1.59447
\(736\) 13334.6 0.667826
\(737\) 0 0
\(738\) 6476.97 0.323063
\(739\) −18934.7 −0.942520 −0.471260 0.881994i \(-0.656201\pi\)
−0.471260 + 0.881994i \(0.656201\pi\)
\(740\) 5799.14 0.288082
\(741\) 71540.3 3.54669
\(742\) 10890.1 0.538798
\(743\) −5254.38 −0.259441 −0.129720 0.991551i \(-0.541408\pi\)
−0.129720 + 0.991551i \(0.541408\pi\)
\(744\) 4226.04 0.208245
\(745\) 13170.7 0.647703
\(746\) 35993.4 1.76651
\(747\) −4081.94 −0.199933
\(748\) 0 0
\(749\) 16135.7 0.787165
\(750\) 6944.00 0.338079
\(751\) −23450.8 −1.13946 −0.569728 0.821834i \(-0.692951\pi\)
−0.569728 + 0.821834i \(0.692951\pi\)
\(752\) 4490.93 0.217776
\(753\) 6897.58 0.333814
\(754\) 30742.3 1.48484
\(755\) 41152.2 1.98368
\(756\) −335.309 −0.0161310
\(757\) −3004.72 −0.144265 −0.0721323 0.997395i \(-0.522980\pi\)
−0.0721323 + 0.997395i \(0.522980\pi\)
\(758\) −44966.2 −2.15468
\(759\) 0 0
\(760\) 41342.5 1.97323
\(761\) −3501.96 −0.166815 −0.0834074 0.996516i \(-0.526580\pi\)
−0.0834074 + 0.996516i \(0.526580\pi\)
\(762\) −49878.5 −2.37127
\(763\) 11184.8 0.530692
\(764\) −4905.26 −0.232285
\(765\) 7611.76 0.359744
\(766\) 1626.47 0.0767192
\(767\) 43464.8 2.04618
\(768\) −24146.9 −1.13454
\(769\) 12838.6 0.602042 0.301021 0.953617i \(-0.402673\pi\)
0.301021 + 0.953617i \(0.402673\pi\)
\(770\) 0 0
\(771\) −2450.21 −0.114451
\(772\) 7030.67 0.327771
\(773\) 18940.3 0.881289 0.440645 0.897682i \(-0.354750\pi\)
0.440645 + 0.897682i \(0.354750\pi\)
\(774\) −4381.92 −0.203494
\(775\) −3240.66 −0.150204
\(776\) −7410.18 −0.342797
\(777\) 10236.6 0.472634
\(778\) −22394.4 −1.03198
\(779\) 10150.5 0.466855
\(780\) 16581.1 0.761151
\(781\) 0 0
\(782\) 7315.30 0.334520
\(783\) 2754.36 0.125712
\(784\) 21408.5 0.975243
\(785\) −6649.45 −0.302330
\(786\) 13837.5 0.627947
\(787\) 23712.2 1.07401 0.537006 0.843579i \(-0.319555\pi\)
0.537006 + 0.843579i \(0.319555\pi\)
\(788\) 9251.65 0.418244
\(789\) −28497.7 −1.28586
\(790\) −40444.6 −1.82146
\(791\) 9430.12 0.423890
\(792\) 0 0
\(793\) −25315.3 −1.13363
\(794\) 23801.4 1.06383
\(795\) −48248.4 −2.15245
\(796\) −12329.5 −0.549006
\(797\) 6432.08 0.285867 0.142933 0.989732i \(-0.454347\pi\)
0.142933 + 0.989732i \(0.454347\pi\)
\(798\) −28634.5 −1.27024
\(799\) 992.111 0.0439278
\(800\) 10519.8 0.464916
\(801\) 8166.66 0.360243
\(802\) 23384.3 1.02959
\(803\) 0 0
\(804\) −14447.7 −0.633746
\(805\) −16440.8 −0.719829
\(806\) 6304.15 0.275502
\(807\) −22507.4 −0.981781
\(808\) 3165.23 0.137812
\(809\) 23868.4 1.03729 0.518645 0.854990i \(-0.326437\pi\)
0.518645 + 0.854990i \(0.326437\pi\)
\(810\) −31955.6 −1.38618
\(811\) −7398.37 −0.320335 −0.160168 0.987090i \(-0.551203\pi\)
−0.160168 + 0.987090i \(0.551203\pi\)
\(812\) −2705.20 −0.116914
\(813\) 10930.5 0.471525
\(814\) 0 0
\(815\) −16656.7 −0.715902
\(816\) −9829.71 −0.421702
\(817\) −6867.20 −0.294067
\(818\) −35005.5 −1.49626
\(819\) 15271.8 0.651575
\(820\) 2352.61 0.100191
\(821\) 11135.5 0.473362 0.236681 0.971587i \(-0.423940\pi\)
0.236681 + 0.971587i \(0.423940\pi\)
\(822\) −31991.0 −1.35744
\(823\) −30744.2 −1.30216 −0.651079 0.759010i \(-0.725683\pi\)
−0.651079 + 0.759010i \(0.725683\pi\)
\(824\) 26346.3 1.11386
\(825\) 0 0
\(826\) −17397.1 −0.732836
\(827\) −36921.4 −1.55246 −0.776230 0.630450i \(-0.782870\pi\)
−0.776230 + 0.630450i \(0.782870\pi\)
\(828\) 8924.43 0.374572
\(829\) 34719.1 1.45458 0.727288 0.686333i \(-0.240781\pi\)
0.727288 + 0.686333i \(0.240781\pi\)
\(830\) −6744.05 −0.282035
\(831\) −39044.2 −1.62988
\(832\) 19182.3 0.799313
\(833\) 4729.45 0.196718
\(834\) −12055.9 −0.500554
\(835\) 12198.8 0.505578
\(836\) 0 0
\(837\) 564.821 0.0233250
\(838\) −39769.4 −1.63939
\(839\) 27476.2 1.13061 0.565306 0.824881i \(-0.308758\pi\)
0.565306 + 0.824881i \(0.308758\pi\)
\(840\) 16914.2 0.694757
\(841\) −2167.41 −0.0888685
\(842\) 37808.5 1.54747
\(843\) −30628.9 −1.25138
\(844\) 2922.70 0.119199
\(845\) −29646.1 −1.20693
\(846\) 5505.35 0.223733
\(847\) 0 0
\(848\) 32510.5 1.31653
\(849\) 5034.12 0.203499
\(850\) 5771.13 0.232880
\(851\) −22742.6 −0.916105
\(852\) 11566.5 0.465098
\(853\) 30769.3 1.23508 0.617539 0.786540i \(-0.288130\pi\)
0.617539 + 0.786540i \(0.288130\pi\)
\(854\) 10132.6 0.406009
\(855\) 66195.1 2.64775
\(856\) 36880.8 1.47262
\(857\) 29390.4 1.17148 0.585739 0.810500i \(-0.300804\pi\)
0.585739 + 0.810500i \(0.300804\pi\)
\(858\) 0 0
\(859\) −17187.3 −0.682680 −0.341340 0.939940i \(-0.610881\pi\)
−0.341340 + 0.939940i \(0.610881\pi\)
\(860\) −1591.63 −0.0631094
\(861\) 4152.81 0.164376
\(862\) 9684.61 0.382667
\(863\) −29747.6 −1.17337 −0.586685 0.809815i \(-0.699567\pi\)
−0.586685 + 0.809815i \(0.699567\pi\)
\(864\) −1833.52 −0.0721964
\(865\) −415.495 −0.0163321
\(866\) −26668.8 −1.04647
\(867\) −2171.52 −0.0850621
\(868\) −554.739 −0.0216925
\(869\) 0 0
\(870\) 54516.4 2.12446
\(871\) 54927.8 2.13681
\(872\) 25564.7 0.992811
\(873\) −11864.7 −0.459978
\(874\) 63616.9 2.46210
\(875\) 2323.09 0.0897539
\(876\) −17351.5 −0.669240
\(877\) −13793.9 −0.531113 −0.265557 0.964095i \(-0.585556\pi\)
−0.265557 + 0.964095i \(0.585556\pi\)
\(878\) 7949.98 0.305580
\(879\) 6698.10 0.257021
\(880\) 0 0
\(881\) −203.857 −0.00779584 −0.00389792 0.999992i \(-0.501241\pi\)
−0.00389792 + 0.999992i \(0.501241\pi\)
\(882\) 26244.4 1.00192
\(883\) −37137.3 −1.41537 −0.707684 0.706529i \(-0.750260\pi\)
−0.707684 + 0.706529i \(0.750260\pi\)
\(884\) −2468.18 −0.0939071
\(885\) 77077.6 2.92761
\(886\) −12690.0 −0.481186
\(887\) −2336.32 −0.0884396 −0.0442198 0.999022i \(-0.514080\pi\)
−0.0442198 + 0.999022i \(0.514080\pi\)
\(888\) 23397.4 0.884197
\(889\) −16686.6 −0.629530
\(890\) 13492.7 0.508175
\(891\) 0 0
\(892\) 6469.87 0.242856
\(893\) 8627.82 0.323313
\(894\) −20850.4 −0.780025
\(895\) −32344.7 −1.20801
\(896\) −14068.2 −0.524536
\(897\) −65026.2 −2.42047
\(898\) 5636.43 0.209455
\(899\) 4556.85 0.169054
\(900\) 7040.60 0.260763
\(901\) 7182.04 0.265559
\(902\) 0 0
\(903\) −2809.53 −0.103539
\(904\) 21554.1 0.793006
\(905\) −33946.9 −1.24689
\(906\) −65147.4 −2.38894
\(907\) 37160.4 1.36041 0.680204 0.733023i \(-0.261891\pi\)
0.680204 + 0.733023i \(0.261891\pi\)
\(908\) 11879.3 0.434172
\(909\) 5067.97 0.184922
\(910\) 25231.6 0.919142
\(911\) −13365.0 −0.486061 −0.243030 0.970019i \(-0.578141\pi\)
−0.243030 + 0.970019i \(0.578141\pi\)
\(912\) −85483.4 −3.10377
\(913\) 0 0
\(914\) −49874.2 −1.80491
\(915\) −44892.5 −1.62197
\(916\) −4497.10 −0.162214
\(917\) 4629.26 0.166709
\(918\) −1005.86 −0.0361638
\(919\) 28237.4 1.01357 0.506783 0.862074i \(-0.330835\pi\)
0.506783 + 0.862074i \(0.330835\pi\)
\(920\) −37578.1 −1.34664
\(921\) 73061.3 2.61395
\(922\) 37687.2 1.34616
\(923\) −43974.1 −1.56817
\(924\) 0 0
\(925\) −17941.9 −0.637758
\(926\) −6646.92 −0.235887
\(927\) 42184.1 1.49461
\(928\) −14792.5 −0.523261
\(929\) −1805.88 −0.0637773 −0.0318887 0.999491i \(-0.510152\pi\)
−0.0318887 + 0.999491i \(0.510152\pi\)
\(930\) 11179.4 0.394178
\(931\) 41129.3 1.44786
\(932\) 9141.45 0.321285
\(933\) −13188.8 −0.462790
\(934\) −39533.0 −1.38497
\(935\) 0 0
\(936\) 34906.2 1.21896
\(937\) 17968.8 0.626485 0.313243 0.949673i \(-0.398585\pi\)
0.313243 + 0.949673i \(0.398585\pi\)
\(938\) −21985.3 −0.765292
\(939\) 82394.1 2.86350
\(940\) 1999.69 0.0693859
\(941\) 35610.4 1.23365 0.616826 0.787100i \(-0.288418\pi\)
0.616826 + 0.787100i \(0.288418\pi\)
\(942\) 10526.7 0.364094
\(943\) −9226.26 −0.318609
\(944\) −51936.1 −1.79065
\(945\) 2260.63 0.0778181
\(946\) 0 0
\(947\) −34102.4 −1.17020 −0.585099 0.810962i \(-0.698944\pi\)
−0.585099 + 0.810962i \(0.698944\pi\)
\(948\) 14076.3 0.482254
\(949\) 65967.7 2.25648
\(950\) 50188.2 1.71402
\(951\) 11622.4 0.396302
\(952\) −2517.77 −0.0857158
\(953\) −24539.1 −0.834101 −0.417050 0.908883i \(-0.636936\pi\)
−0.417050 + 0.908883i \(0.636936\pi\)
\(954\) 39854.1 1.35254
\(955\) 33070.9 1.12057
\(956\) −801.285 −0.0271082
\(957\) 0 0
\(958\) 5681.55 0.191610
\(959\) −10702.4 −0.360376
\(960\) 34016.7 1.14363
\(961\) −28856.6 −0.968633
\(962\) 34902.9 1.16977
\(963\) 59051.3 1.97601
\(964\) −13700.5 −0.457743
\(965\) −47400.2 −1.58121
\(966\) 26027.2 0.866886
\(967\) 10527.3 0.350090 0.175045 0.984560i \(-0.443993\pi\)
0.175045 + 0.984560i \(0.443993\pi\)
\(968\) 0 0
\(969\) −18884.5 −0.626065
\(970\) −19602.5 −0.648866
\(971\) −28288.6 −0.934937 −0.467469 0.884010i \(-0.654834\pi\)
−0.467469 + 0.884010i \(0.654834\pi\)
\(972\) 12246.5 0.404121
\(973\) −4033.25 −0.132888
\(974\) 16846.5 0.554207
\(975\) −51300.0 −1.68504
\(976\) 30249.2 0.992063
\(977\) −9510.74 −0.311439 −0.155719 0.987801i \(-0.549770\pi\)
−0.155719 + 0.987801i \(0.549770\pi\)
\(978\) 26369.1 0.862157
\(979\) 0 0
\(980\) 9532.65 0.310724
\(981\) 40932.7 1.33219
\(982\) −41104.3 −1.33573
\(983\) −48169.6 −1.56294 −0.781470 0.623943i \(-0.785530\pi\)
−0.781470 + 0.623943i \(0.785530\pi\)
\(984\) 9491.93 0.307512
\(985\) −62373.9 −2.01766
\(986\) −8115.06 −0.262106
\(987\) 3529.84 0.113836
\(988\) −21464.4 −0.691166
\(989\) 6241.91 0.200689
\(990\) 0 0
\(991\) −45023.8 −1.44322 −0.721609 0.692301i \(-0.756597\pi\)
−0.721609 + 0.692301i \(0.756597\pi\)
\(992\) −3033.40 −0.0970873
\(993\) −22560.9 −0.720996
\(994\) 17600.9 0.561638
\(995\) 83124.8 2.64847
\(996\) 2347.19 0.0746723
\(997\) 41968.5 1.33315 0.666577 0.745436i \(-0.267759\pi\)
0.666577 + 0.745436i \(0.267759\pi\)
\(998\) 35797.7 1.13543
\(999\) 3127.13 0.0990369
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2057.4.a.s.1.11 44
11.7 odd 10 187.4.g.a.137.17 yes 88
11.8 odd 10 187.4.g.a.86.17 88
11.10 odd 2 2057.4.a.t.1.34 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
187.4.g.a.86.17 88 11.8 odd 10
187.4.g.a.137.17 yes 88 11.7 odd 10
2057.4.a.s.1.11 44 1.1 even 1 trivial
2057.4.a.t.1.34 44 11.10 odd 2