Properties

Label 2-2057-1.1-c3-0-173
Degree $2$
Conductor $2057$
Sign $-1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.20·2-s − 7.51·3-s + 2.25·4-s − 15.1·5-s + 24.0·6-s + 8.04·7-s + 18.3·8-s + 29.4·9-s + 48.6·10-s − 16.9·12-s + 64.4·13-s − 25.7·14-s + 114.·15-s − 76.9·16-s − 17·17-s − 94.3·18-s − 147.·19-s − 34.2·20-s − 60.4·21-s + 134.·23-s − 138.·24-s + 106.·25-s − 206.·26-s − 18.4·27-s + 18.1·28-s − 149.·29-s − 365.·30-s + ⋯
L(s)  = 1  − 1.13·2-s − 1.44·3-s + 0.281·4-s − 1.35·5-s + 1.63·6-s + 0.434·7-s + 0.813·8-s + 1.09·9-s + 1.53·10-s − 0.407·12-s + 1.37·13-s − 0.492·14-s + 1.96·15-s − 1.20·16-s − 0.242·17-s − 1.23·18-s − 1.78·19-s − 0.383·20-s − 0.628·21-s + 1.21·23-s − 1.17·24-s + 0.848·25-s − 1.55·26-s − 0.131·27-s + 0.122·28-s − 0.954·29-s − 2.22·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 3.20T + 8T^{2} \)
3 \( 1 + 7.51T + 27T^{2} \)
5 \( 1 + 15.1T + 125T^{2} \)
7 \( 1 - 8.04T + 343T^{2} \)
13 \( 1 - 64.4T + 2.19e3T^{2} \)
19 \( 1 + 147.T + 6.85e3T^{2} \)
23 \( 1 - 134.T + 1.21e4T^{2} \)
29 \( 1 + 149.T + 2.43e4T^{2} \)
31 \( 1 + 30.5T + 2.97e4T^{2} \)
37 \( 1 + 169.T + 5.06e4T^{2} \)
41 \( 1 + 68.6T + 6.89e4T^{2} \)
43 \( 1 - 46.4T + 7.95e4T^{2} \)
47 \( 1 + 58.3T + 1.03e5T^{2} \)
53 \( 1 + 422.T + 1.48e5T^{2} \)
59 \( 1 - 674.T + 2.05e5T^{2} \)
61 \( 1 + 393.T + 2.26e5T^{2} \)
67 \( 1 - 852.T + 3.00e5T^{2} \)
71 \( 1 + 682.T + 3.57e5T^{2} \)
73 \( 1 - 1.02e3T + 3.89e5T^{2} \)
79 \( 1 + 830.T + 4.93e5T^{2} \)
83 \( 1 + 138.T + 5.71e5T^{2} \)
89 \( 1 - 277.T + 7.04e5T^{2} \)
97 \( 1 + 402.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.532006573184033544736379768482, −7.70472174354924735547690384993, −6.91570247664308679701097022444, −6.23886391249319704256757968690, −5.09478776045905088183240661618, −4.41615041279719740362168647747, −3.62703273512345568415504672540, −1.74232427422379909658993517261, −0.73275340847257844108611821268, 0, 0.73275340847257844108611821268, 1.74232427422379909658993517261, 3.62703273512345568415504672540, 4.41615041279719740362168647747, 5.09478776045905088183240661618, 6.23886391249319704256757968690, 6.91570247664308679701097022444, 7.70472174354924735547690384993, 8.532006573184033544736379768482

Graph of the $Z$-function along the critical line