gp: [N,k,chi] = [2057,4,Mod(1,2057)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2057, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2057.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [44,-1,-28,139,-24]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(11\)
\( -1 \)
\(17\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2057))\):
\( T_{2}^{44} + T_{2}^{43} - 245 T_{2}^{42} - 261 T_{2}^{41} + 27677 T_{2}^{40} + 31257 T_{2}^{39} + \cdots - 49\!\cdots\!00 \)
T2^44 + T2^43 - 245*T2^42 - 261*T2^41 + 27677*T2^40 + 31257*T2^39 - 1912633*T2^38 - 2280678*T2^37 + 90457195*T2^36 + 113516565*T2^35 - 3103703676*T2^34 - 4088571881*T2^33 + 79915410734*T2^32 + 110307697367*T2^31 - 1575733951822*T2^30 - 2276665480778*T2^29 + 24068904917252*T2^28 + 36398404731153*T2^27 - 286315164631977*T2^26 - 453696169573039*T2^25 + 2652830464733065*T2^24 + 4416644404200751*T2^23 - 19055554234895389*T2^22 - 33495175708087490*T2^21 + 105067602190612735*T2^20 + 196572487384246371*T2^19 - 437348371442200010*T2^18 - 882539258666356459*T2^17 + 1338196887114074492*T2^16 + 2978829567900982177*T2^15 - 2879053781444512972*T2^14 - 7368294739182715982*T2^13 + 4004370240313663457*T2^12 + 12867947791856881942*T2^11 - 2896015558965103276*T2^10 - 15016896284556188344*T2^9 - 20496433089478560*T2^8 + 10794988910508353440*T2^7 + 1480878145279395584*T2^6 - 4277241346228225664*T2^5 - 739186549096222464*T2^4 + 849879303442862080*T2^3 + 117073904562703360*T2^2 - 64248980133888000*T2 - 4941378698854400
\( T_{3}^{44} + 28 T_{3}^{43} - 380 T_{3}^{42} - 17274 T_{3}^{41} + 16330 T_{3}^{40} + \cdots + 87\!\cdots\!09 \)
T3^44 + 28*T3^43 - 380*T3^42 - 17274*T3^41 + 16330*T3^40 + 4770576*T3^39 + 17790024*T3^38 - 776750576*T3^37 - 5171824726*T3^36 + 82363318218*T3^35 + 764557447562*T3^34 - 5882087865960*T3^33 - 73728960996266*T3^32 + 276317040643070*T3^31 + 5033046428877701*T3^30 - 7173521923936730*T3^29 - 252487684759392489*T3^28 - 30107797303820338*T3^27 + 9475807798082000848*T3^26 + 11779479117080513738*T3^25 - 267648389934483419423*T3^24 - 570167386382242231144*T3^23 + 5670399256693730292983*T3^22 + 16423141010259097223704*T3^21 - 88944001493108606234017*T3^20 - 323492689820323421427392*T3^19 + 1006931754514078247767725*T3^18 + 4501736891996344691857494*T3^17 - 7858168041592142581836800*T3^16 - 44178023853523557032559666*T3^15 + 38651597956031973418731197*T3^14 + 299083428727625901260951656*T3^13 - 94510599502292043487100852*T3^12 - 1343415384262452342316147612*T3^11 - 19127752745069903080960233*T3^10 + 3795467736664585860260886346*T3^9 + 590642382769262325395164690*T3^8 - 6357536250201087972601495740*T3^7 - 1020677185642521762140877182*T3^6 + 5816107755886764025291264000*T3^5 + 732187192283974465754602623*T3^4 - 2536706646670685644193667550*T3^3 - 354139113377912639786028965*T3^2 + 413917153422166631994094312*T3 + 87446528763835259805599209
\( T_{5}^{44} + 24 T_{5}^{43} - 2691 T_{5}^{42} - 68106 T_{5}^{41} + 3224114 T_{5}^{40} + \cdots - 15\!\cdots\!20 \)
T5^44 + 24*T5^43 - 2691*T5^42 - 68106*T5^41 + 3224114*T5^40 + 87105226*T5^39 - 2265590643*T5^38 - 66465918588*T5^37 + 1034498025966*T5^36 + 33778777818060*T5^35 - 320685812961690*T5^34 - 12096509517715978*T5^33 + 68122722516654544*T5^32 + 3152870073301687906*T5^31 - 9620580907331668033*T5^30 - 609959923050612867436*T5^29 + 786236238936739824269*T5^28 + 88651785443730168315376*T5^27 - 7359110788196066485939*T5^26 - 9748634073348970700092228*T5^25 - 7114901196381365357251587*T5^24 + 813697379794202476098086252*T5^23 + 1026313422587100521076018228*T5^22 - 51528423361151696989213559578*T5^21 - 82128912764707392564774071115*T5^20 + 2464838021127458310814917847142*T5^19 + 4416463361729215289292457549200*T5^18 - 88269055662310356062424203221390*T5^17 - 168316397141882033836377439835785*T5^16 + 2332517302857142014718405060511706*T5^15 + 4622010158597909982799062637792928*T5^14 - 44506699944871791580726637678158800*T5^13 - 91300684639666188924740588335382839*T5^12 + 593922835679026021685577211279318796*T5^11 + 1275544203346587933765985826999899696*T5^10 - 5279801006901277803556448726460791984*T5^9 - 12162330205939209631796076425979520544*T5^8 + 28839477882589399908811313078039968240*T5^7 + 74285236862357406023045088624652132640*T5^6 - 82322578281274596004189866217797096640*T5^5 - 260136225910981332720354040698776202240*T5^4 + 70916494791361493490201499088388380160*T5^3 + 421998204733660437347582226353868512000*T5^2 + 83825419248878212773420173336706746880*T5 - 157810167470068619089446724389610705920