Properties

Label 2-2057-1.1-c3-0-334
Degree $2$
Conductor $2057$
Sign $-1$
Analytic cond. $121.366$
Root an. cond. $11.0166$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.35·2-s + 5.79·3-s + 10.9·4-s − 1.94·5-s − 25.2·6-s + 27.7·7-s − 13.0·8-s + 6.62·9-s + 8.46·10-s + 63.7·12-s − 37.7·13-s − 120.·14-s − 11.2·15-s − 31.0·16-s − 17·17-s − 28.8·18-s − 21.1·19-s − 21.3·20-s + 160.·21-s + 35.8·23-s − 75.7·24-s − 121.·25-s + 164.·26-s − 118.·27-s + 304.·28-s + 124.·29-s + 49.0·30-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.11·3-s + 1.37·4-s − 0.173·5-s − 1.71·6-s + 1.49·7-s − 0.577·8-s + 0.245·9-s + 0.267·10-s + 1.53·12-s − 0.804·13-s − 2.30·14-s − 0.193·15-s − 0.485·16-s − 0.242·17-s − 0.377·18-s − 0.255·19-s − 0.238·20-s + 1.66·21-s + 0.325·23-s − 0.644·24-s − 0.969·25-s + 1.23·26-s − 0.842·27-s + 2.05·28-s + 0.797·29-s + 0.298·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2057 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2057\)    =    \(11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(121.366\)
Root analytic conductor: \(11.0166\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2057,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
17 \( 1 + 17T \)
good2 \( 1 + 4.35T + 8T^{2} \)
3 \( 1 - 5.79T + 27T^{2} \)
5 \( 1 + 1.94T + 125T^{2} \)
7 \( 1 - 27.7T + 343T^{2} \)
13 \( 1 + 37.7T + 2.19e3T^{2} \)
19 \( 1 + 21.1T + 6.85e3T^{2} \)
23 \( 1 - 35.8T + 1.21e4T^{2} \)
29 \( 1 - 124.T + 2.43e4T^{2} \)
31 \( 1 - 207.T + 2.97e4T^{2} \)
37 \( 1 + 131.T + 5.06e4T^{2} \)
41 \( 1 - 243.T + 6.89e4T^{2} \)
43 \( 1 + 21.1T + 7.95e4T^{2} \)
47 \( 1 + 489.T + 1.03e5T^{2} \)
53 \( 1 + 683.T + 1.48e5T^{2} \)
59 \( 1 + 195.T + 2.05e5T^{2} \)
61 \( 1 - 510.T + 2.26e5T^{2} \)
67 \( 1 + 836.T + 3.00e5T^{2} \)
71 \( 1 - 607.T + 3.57e5T^{2} \)
73 \( 1 - 181.T + 3.89e5T^{2} \)
79 \( 1 + 758.T + 4.93e5T^{2} \)
83 \( 1 + 922.T + 5.71e5T^{2} \)
89 \( 1 - 514.T + 7.04e5T^{2} \)
97 \( 1 + 656.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.358527502863991042530333960257, −7.922827734270752782666426040466, −7.43308037317099874569898250259, −6.40537321756531395292323110756, −5.01727846835600386005306788131, −4.27286956617968691928121246075, −2.88424955375921414493169557179, −2.09368878109390491504789327175, −1.33555398352624556788328130817, 0, 1.33555398352624556788328130817, 2.09368878109390491504789327175, 2.88424955375921414493169557179, 4.27286956617968691928121246075, 5.01727846835600386005306788131, 6.40537321756531395292323110756, 7.43308037317099874569898250259, 7.922827734270752782666426040466, 8.358527502863991042530333960257

Graph of the $Z$-function along the critical line