Properties

Label 2023.4.a.v.1.6
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.80359 q^{2} +3.56192 q^{3} +15.0745 q^{4} -13.7155 q^{5} -17.1100 q^{6} +7.00000 q^{7} -33.9829 q^{8} -14.3127 q^{9} +65.8837 q^{10} -19.4335 q^{11} +53.6941 q^{12} -0.895027 q^{13} -33.6251 q^{14} -48.8535 q^{15} +42.6440 q^{16} +68.7525 q^{18} -115.934 q^{19} -206.754 q^{20} +24.9334 q^{21} +93.3505 q^{22} +5.90718 q^{23} -121.044 q^{24} +63.1152 q^{25} +4.29934 q^{26} -147.153 q^{27} +105.521 q^{28} -0.926712 q^{29} +234.672 q^{30} -64.1625 q^{31} +67.0187 q^{32} -69.2205 q^{33} -96.0086 q^{35} -215.757 q^{36} -386.719 q^{37} +556.900 q^{38} -3.18801 q^{39} +466.092 q^{40} +8.77493 q^{41} -119.770 q^{42} -264.301 q^{43} -292.950 q^{44} +196.306 q^{45} -28.3757 q^{46} +615.968 q^{47} +151.894 q^{48} +49.0000 q^{49} -303.179 q^{50} -13.4921 q^{52} -328.843 q^{53} +706.861 q^{54} +266.540 q^{55} -237.880 q^{56} -412.948 q^{57} +4.45154 q^{58} +1.72390 q^{59} -736.441 q^{60} +111.131 q^{61} +308.210 q^{62} -100.189 q^{63} -663.083 q^{64} +12.2758 q^{65} +332.507 q^{66} -986.655 q^{67} +21.0409 q^{69} +461.186 q^{70} -716.935 q^{71} +486.388 q^{72} -116.484 q^{73} +1857.64 q^{74} +224.811 q^{75} -1747.65 q^{76} -136.034 q^{77} +15.3139 q^{78} +73.3432 q^{79} -584.884 q^{80} -137.702 q^{81} -42.1511 q^{82} -176.117 q^{83} +375.858 q^{84} +1269.59 q^{86} -3.30087 q^{87} +660.406 q^{88} -1068.22 q^{89} -942.975 q^{90} -6.26519 q^{91} +89.0477 q^{92} -228.542 q^{93} -2958.86 q^{94} +1590.10 q^{95} +238.715 q^{96} +1135.54 q^{97} -235.376 q^{98} +278.146 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.80359 −1.69833 −0.849163 0.528131i \(-0.822893\pi\)
−0.849163 + 0.528131i \(0.822893\pi\)
\(3\) 3.56192 0.685492 0.342746 0.939428i \(-0.388643\pi\)
0.342746 + 0.939428i \(0.388643\pi\)
\(4\) 15.0745 1.88431
\(5\) −13.7155 −1.22675 −0.613376 0.789791i \(-0.710189\pi\)
−0.613376 + 0.789791i \(0.710189\pi\)
\(6\) −17.1100 −1.16419
\(7\) 7.00000 0.377964
\(8\) −33.9829 −1.50185
\(9\) −14.3127 −0.530101
\(10\) 65.8837 2.08342
\(11\) −19.4335 −0.532674 −0.266337 0.963880i \(-0.585813\pi\)
−0.266337 + 0.963880i \(0.585813\pi\)
\(12\) 53.6941 1.29168
\(13\) −0.895027 −0.0190951 −0.00954753 0.999954i \(-0.503039\pi\)
−0.00954753 + 0.999954i \(0.503039\pi\)
\(14\) −33.6251 −0.641907
\(15\) −48.8535 −0.840929
\(16\) 42.6440 0.666312
\(17\) 0 0
\(18\) 68.7525 0.900284
\(19\) −115.934 −1.39985 −0.699924 0.714217i \(-0.746783\pi\)
−0.699924 + 0.714217i \(0.746783\pi\)
\(20\) −206.754 −2.31158
\(21\) 24.9334 0.259091
\(22\) 93.3505 0.904654
\(23\) 5.90718 0.0535536 0.0267768 0.999641i \(-0.491476\pi\)
0.0267768 + 0.999641i \(0.491476\pi\)
\(24\) −121.044 −1.02950
\(25\) 63.1152 0.504922
\(26\) 4.29934 0.0324296
\(27\) −147.153 −1.04887
\(28\) 105.521 0.712202
\(29\) −0.926712 −0.00593400 −0.00296700 0.999996i \(-0.500944\pi\)
−0.00296700 + 0.999996i \(0.500944\pi\)
\(30\) 234.672 1.42817
\(31\) −64.1625 −0.371739 −0.185870 0.982574i \(-0.559510\pi\)
−0.185870 + 0.982574i \(0.559510\pi\)
\(32\) 67.0187 0.370230
\(33\) −69.2205 −0.365144
\(34\) 0 0
\(35\) −96.0086 −0.463669
\(36\) −215.757 −0.998875
\(37\) −386.719 −1.71828 −0.859138 0.511745i \(-0.828999\pi\)
−0.859138 + 0.511745i \(0.828999\pi\)
\(38\) 556.900 2.37740
\(39\) −3.18801 −0.0130895
\(40\) 466.092 1.84239
\(41\) 8.77493 0.0334247 0.0167124 0.999860i \(-0.494680\pi\)
0.0167124 + 0.999860i \(0.494680\pi\)
\(42\) −119.770 −0.440022
\(43\) −264.301 −0.937337 −0.468669 0.883374i \(-0.655266\pi\)
−0.468669 + 0.883374i \(0.655266\pi\)
\(44\) −292.950 −1.00372
\(45\) 196.306 0.650303
\(46\) −28.3757 −0.0909515
\(47\) 615.968 1.91166 0.955832 0.293914i \(-0.0949581\pi\)
0.955832 + 0.293914i \(0.0949581\pi\)
\(48\) 151.894 0.456752
\(49\) 49.0000 0.142857
\(50\) −303.179 −0.857521
\(51\) 0 0
\(52\) −13.4921 −0.0359810
\(53\) −328.843 −0.852264 −0.426132 0.904661i \(-0.640124\pi\)
−0.426132 + 0.904661i \(0.640124\pi\)
\(54\) 706.861 1.78133
\(55\) 266.540 0.653459
\(56\) −237.880 −0.567644
\(57\) −412.948 −0.959584
\(58\) 4.45154 0.0100779
\(59\) 1.72390 0.00380394 0.00190197 0.999998i \(-0.499395\pi\)
0.00190197 + 0.999998i \(0.499395\pi\)
\(60\) −736.441 −1.58457
\(61\) 111.131 0.233260 0.116630 0.993175i \(-0.462791\pi\)
0.116630 + 0.993175i \(0.462791\pi\)
\(62\) 308.210 0.631335
\(63\) −100.189 −0.200359
\(64\) −663.083 −1.29508
\(65\) 12.2758 0.0234249
\(66\) 332.507 0.620133
\(67\) −986.655 −1.79909 −0.899545 0.436827i \(-0.856102\pi\)
−0.899545 + 0.436827i \(0.856102\pi\)
\(68\) 0 0
\(69\) 21.0409 0.0367106
\(70\) 461.186 0.787461
\(71\) −716.935 −1.19837 −0.599187 0.800609i \(-0.704509\pi\)
−0.599187 + 0.800609i \(0.704509\pi\)
\(72\) 486.388 0.796130
\(73\) −116.484 −0.186759 −0.0933797 0.995631i \(-0.529767\pi\)
−0.0933797 + 0.995631i \(0.529767\pi\)
\(74\) 1857.64 2.91819
\(75\) 224.811 0.346120
\(76\) −1747.65 −2.63775
\(77\) −136.034 −0.201332
\(78\) 15.3139 0.0222302
\(79\) 73.3432 0.104453 0.0522263 0.998635i \(-0.483368\pi\)
0.0522263 + 0.998635i \(0.483368\pi\)
\(80\) −584.884 −0.817400
\(81\) −137.702 −0.188892
\(82\) −42.1511 −0.0567660
\(83\) −176.117 −0.232907 −0.116454 0.993196i \(-0.537153\pi\)
−0.116454 + 0.993196i \(0.537153\pi\)
\(84\) 375.858 0.488209
\(85\) 0 0
\(86\) 1269.59 1.59190
\(87\) −3.30087 −0.00406771
\(88\) 660.406 0.799994
\(89\) −1068.22 −1.27225 −0.636127 0.771585i \(-0.719464\pi\)
−0.636127 + 0.771585i \(0.719464\pi\)
\(90\) −942.975 −1.10443
\(91\) −6.26519 −0.00721726
\(92\) 89.0477 0.100912
\(93\) −228.542 −0.254824
\(94\) −2958.86 −3.24663
\(95\) 1590.10 1.71727
\(96\) 238.715 0.253789
\(97\) 1135.54 1.18863 0.594313 0.804234i \(-0.297424\pi\)
0.594313 + 0.804234i \(0.297424\pi\)
\(98\) −235.376 −0.242618
\(99\) 278.146 0.282371
\(100\) 951.428 0.951428
\(101\) 1439.41 1.41809 0.709044 0.705165i \(-0.249127\pi\)
0.709044 + 0.705165i \(0.249127\pi\)
\(102\) 0 0
\(103\) 684.574 0.654885 0.327442 0.944871i \(-0.393813\pi\)
0.327442 + 0.944871i \(0.393813\pi\)
\(104\) 30.4156 0.0286778
\(105\) −341.975 −0.317841
\(106\) 1579.63 1.44742
\(107\) −1557.65 −1.40733 −0.703663 0.710534i \(-0.748453\pi\)
−0.703663 + 0.710534i \(0.748453\pi\)
\(108\) −2218.25 −1.97640
\(109\) 807.009 0.709151 0.354576 0.935027i \(-0.384625\pi\)
0.354576 + 0.935027i \(0.384625\pi\)
\(110\) −1280.35 −1.10979
\(111\) −1377.46 −1.17786
\(112\) 298.508 0.251842
\(113\) 275.155 0.229065 0.114533 0.993419i \(-0.463463\pi\)
0.114533 + 0.993419i \(0.463463\pi\)
\(114\) 1983.63 1.62969
\(115\) −81.0200 −0.0656970
\(116\) −13.9697 −0.0111815
\(117\) 12.8103 0.0101223
\(118\) −8.28091 −0.00646033
\(119\) 0 0
\(120\) 1660.18 1.26294
\(121\) −953.340 −0.716258
\(122\) −533.827 −0.396151
\(123\) 31.2556 0.0229124
\(124\) −967.216 −0.700472
\(125\) 848.782 0.607339
\(126\) 481.267 0.340275
\(127\) −1983.10 −1.38560 −0.692801 0.721129i \(-0.743623\pi\)
−0.692801 + 0.721129i \(0.743623\pi\)
\(128\) 2649.03 1.82924
\(129\) −941.418 −0.642537
\(130\) −58.9677 −0.0397831
\(131\) 1316.05 0.877737 0.438868 0.898551i \(-0.355379\pi\)
0.438868 + 0.898551i \(0.355379\pi\)
\(132\) −1043.46 −0.688044
\(133\) −811.539 −0.529093
\(134\) 4739.49 3.05544
\(135\) 2018.27 1.28671
\(136\) 0 0
\(137\) −362.692 −0.226181 −0.113091 0.993585i \(-0.536075\pi\)
−0.113091 + 0.993585i \(0.536075\pi\)
\(138\) −101.072 −0.0623465
\(139\) −2730.94 −1.66644 −0.833220 0.552942i \(-0.813505\pi\)
−0.833220 + 0.552942i \(0.813505\pi\)
\(140\) −1447.28 −0.873696
\(141\) 2194.03 1.31043
\(142\) 3443.86 2.03523
\(143\) 17.3935 0.0101714
\(144\) −610.352 −0.353213
\(145\) 12.7103 0.00727955
\(146\) 559.542 0.317178
\(147\) 174.534 0.0979274
\(148\) −5829.58 −3.23776
\(149\) 3447.97 1.89577 0.947883 0.318619i \(-0.103219\pi\)
0.947883 + 0.318619i \(0.103219\pi\)
\(150\) −1079.90 −0.587824
\(151\) 2691.18 1.45037 0.725183 0.688556i \(-0.241755\pi\)
0.725183 + 0.688556i \(0.241755\pi\)
\(152\) 3939.77 2.10235
\(153\) 0 0
\(154\) 653.453 0.341927
\(155\) 880.021 0.456032
\(156\) −48.0576 −0.0246647
\(157\) −1310.79 −0.666321 −0.333160 0.942870i \(-0.608115\pi\)
−0.333160 + 0.942870i \(0.608115\pi\)
\(158\) −352.311 −0.177394
\(159\) −1171.31 −0.584220
\(160\) −919.196 −0.454180
\(161\) 41.3503 0.0202414
\(162\) 661.464 0.320799
\(163\) 1525.14 0.732873 0.366436 0.930443i \(-0.380578\pi\)
0.366436 + 0.930443i \(0.380578\pi\)
\(164\) 132.277 0.0629825
\(165\) 949.394 0.447941
\(166\) 845.992 0.395553
\(167\) −174.188 −0.0807132 −0.0403566 0.999185i \(-0.512849\pi\)
−0.0403566 + 0.999185i \(0.512849\pi\)
\(168\) −847.310 −0.389115
\(169\) −2196.20 −0.999635
\(170\) 0 0
\(171\) 1659.33 0.742061
\(172\) −3984.20 −1.76623
\(173\) 2944.91 1.29420 0.647101 0.762404i \(-0.275981\pi\)
0.647101 + 0.762404i \(0.275981\pi\)
\(174\) 15.8560 0.00690829
\(175\) 441.806 0.190842
\(176\) −828.721 −0.354927
\(177\) 6.14039 0.00260757
\(178\) 5131.27 2.16070
\(179\) 1622.04 0.677300 0.338650 0.940912i \(-0.390030\pi\)
0.338650 + 0.940912i \(0.390030\pi\)
\(180\) 2959.22 1.22537
\(181\) −3451.16 −1.41725 −0.708626 0.705584i \(-0.750685\pi\)
−0.708626 + 0.705584i \(0.750685\pi\)
\(182\) 30.0954 0.0122573
\(183\) 395.839 0.159898
\(184\) −200.743 −0.0804292
\(185\) 5304.04 2.10790
\(186\) 1097.82 0.432775
\(187\) 0 0
\(188\) 9285.40 3.60217
\(189\) −1030.07 −0.396436
\(190\) −7638.17 −2.91648
\(191\) −1324.18 −0.501646 −0.250823 0.968033i \(-0.580701\pi\)
−0.250823 + 0.968033i \(0.580701\pi\)
\(192\) −2361.85 −0.887769
\(193\) −3189.66 −1.18962 −0.594810 0.803866i \(-0.702773\pi\)
−0.594810 + 0.803866i \(0.702773\pi\)
\(194\) −5454.67 −2.01867
\(195\) 43.7252 0.0160576
\(196\) 738.649 0.269187
\(197\) −2003.04 −0.724420 −0.362210 0.932097i \(-0.617978\pi\)
−0.362210 + 0.932097i \(0.617978\pi\)
\(198\) −1336.10 −0.479558
\(199\) −487.583 −0.173688 −0.0868438 0.996222i \(-0.527678\pi\)
−0.0868438 + 0.996222i \(0.527678\pi\)
\(200\) −2144.84 −0.758314
\(201\) −3514.39 −1.23326
\(202\) −6914.34 −2.40837
\(203\) −6.48698 −0.00224284
\(204\) 0 0
\(205\) −120.353 −0.0410038
\(206\) −3288.41 −1.11221
\(207\) −84.5480 −0.0283888
\(208\) −38.1675 −0.0127233
\(209\) 2253.00 0.745663
\(210\) 1642.71 0.539798
\(211\) −5602.80 −1.82802 −0.914010 0.405691i \(-0.867031\pi\)
−0.914010 + 0.405691i \(0.867031\pi\)
\(212\) −4957.13 −1.60593
\(213\) −2553.67 −0.821476
\(214\) 7482.32 2.39010
\(215\) 3625.02 1.14988
\(216\) 5000.67 1.57524
\(217\) −449.137 −0.140504
\(218\) −3876.54 −1.20437
\(219\) −414.907 −0.128022
\(220\) 4017.95 1.23132
\(221\) 0 0
\(222\) 6616.76 2.00040
\(223\) −3118.16 −0.936355 −0.468178 0.883634i \(-0.655089\pi\)
−0.468178 + 0.883634i \(0.655089\pi\)
\(224\) 469.131 0.139934
\(225\) −903.351 −0.267660
\(226\) −1321.73 −0.389027
\(227\) −3369.03 −0.985068 −0.492534 0.870293i \(-0.663929\pi\)
−0.492534 + 0.870293i \(0.663929\pi\)
\(228\) −6224.97 −1.80815
\(229\) 749.837 0.216378 0.108189 0.994130i \(-0.465495\pi\)
0.108189 + 0.994130i \(0.465495\pi\)
\(230\) 389.187 0.111575
\(231\) −484.544 −0.138011
\(232\) 31.4923 0.00891195
\(233\) −1186.46 −0.333595 −0.166797 0.985991i \(-0.553343\pi\)
−0.166797 + 0.985991i \(0.553343\pi\)
\(234\) −61.5354 −0.0171910
\(235\) −8448.32 −2.34514
\(236\) 25.9869 0.00716780
\(237\) 261.242 0.0716014
\(238\) 0 0
\(239\) −2775.05 −0.751058 −0.375529 0.926811i \(-0.622539\pi\)
−0.375529 + 0.926811i \(0.622539\pi\)
\(240\) −2083.31 −0.560321
\(241\) 4788.56 1.27991 0.639955 0.768412i \(-0.278953\pi\)
0.639955 + 0.768412i \(0.278953\pi\)
\(242\) 4579.45 1.21644
\(243\) 3482.64 0.919388
\(244\) 1675.24 0.439534
\(245\) −672.060 −0.175250
\(246\) −150.139 −0.0389126
\(247\) 103.764 0.0267302
\(248\) 2180.43 0.558295
\(249\) −627.313 −0.159656
\(250\) −4077.20 −1.03146
\(251\) −4962.40 −1.24790 −0.623952 0.781462i \(-0.714474\pi\)
−0.623952 + 0.781462i \(0.714474\pi\)
\(252\) −1510.30 −0.377539
\(253\) −114.797 −0.0285266
\(254\) 9525.98 2.35320
\(255\) 0 0
\(256\) −7420.18 −1.81157
\(257\) −1363.34 −0.330907 −0.165453 0.986218i \(-0.552909\pi\)
−0.165453 + 0.986218i \(0.552909\pi\)
\(258\) 4522.19 1.09124
\(259\) −2707.03 −0.649447
\(260\) 185.051 0.0441398
\(261\) 13.2638 0.00314562
\(262\) −6321.75 −1.49068
\(263\) −6410.67 −1.50304 −0.751518 0.659712i \(-0.770678\pi\)
−0.751518 + 0.659712i \(0.770678\pi\)
\(264\) 2352.31 0.548389
\(265\) 4510.24 1.04552
\(266\) 3898.30 0.898572
\(267\) −3804.90 −0.872119
\(268\) −14873.3 −3.39004
\(269\) 4539.64 1.02895 0.514473 0.857506i \(-0.327987\pi\)
0.514473 + 0.857506i \(0.327987\pi\)
\(270\) −9694.96 −2.18525
\(271\) 5883.15 1.31873 0.659366 0.751822i \(-0.270825\pi\)
0.659366 + 0.751822i \(0.270825\pi\)
\(272\) 0 0
\(273\) −22.3161 −0.00494737
\(274\) 1742.22 0.384130
\(275\) −1226.55 −0.268959
\(276\) 317.181 0.0691740
\(277\) 8758.75 1.89986 0.949932 0.312456i \(-0.101152\pi\)
0.949932 + 0.312456i \(0.101152\pi\)
\(278\) 13118.3 2.83016
\(279\) 918.341 0.197060
\(280\) 3262.65 0.696359
\(281\) 5635.58 1.19641 0.598204 0.801344i \(-0.295881\pi\)
0.598204 + 0.801344i \(0.295881\pi\)
\(282\) −10539.2 −2.22554
\(283\) −5342.38 −1.12216 −0.561080 0.827761i \(-0.689614\pi\)
−0.561080 + 0.827761i \(0.689614\pi\)
\(284\) −10807.4 −2.25811
\(285\) 5663.79 1.17717
\(286\) −83.5512 −0.0172744
\(287\) 61.4245 0.0126334
\(288\) −959.221 −0.196259
\(289\) 0 0
\(290\) −61.0552 −0.0123630
\(291\) 4044.71 0.814793
\(292\) −1755.94 −0.351912
\(293\) −5577.16 −1.11202 −0.556009 0.831176i \(-0.687668\pi\)
−0.556009 + 0.831176i \(0.687668\pi\)
\(294\) −838.390 −0.166313
\(295\) −23.6442 −0.00466650
\(296\) 13141.8 2.58058
\(297\) 2859.69 0.558707
\(298\) −16562.7 −3.21963
\(299\) −5.28709 −0.00102261
\(300\) 3388.91 0.652196
\(301\) −1850.11 −0.354280
\(302\) −12927.3 −2.46319
\(303\) 5127.07 0.972087
\(304\) −4943.89 −0.932736
\(305\) −1524.22 −0.286152
\(306\) 0 0
\(307\) 745.927 0.138672 0.0693360 0.997593i \(-0.477912\pi\)
0.0693360 + 0.997593i \(0.477912\pi\)
\(308\) −2050.65 −0.379372
\(309\) 2438.40 0.448918
\(310\) −4227.26 −0.774491
\(311\) 1020.94 0.186149 0.0930747 0.995659i \(-0.470330\pi\)
0.0930747 + 0.995659i \(0.470330\pi\)
\(312\) 108.338 0.0196584
\(313\) 3431.96 0.619763 0.309882 0.950775i \(-0.399711\pi\)
0.309882 + 0.950775i \(0.399711\pi\)
\(314\) 6296.49 1.13163
\(315\) 1374.14 0.245791
\(316\) 1105.61 0.196821
\(317\) 5941.66 1.05273 0.526367 0.850257i \(-0.323554\pi\)
0.526367 + 0.850257i \(0.323554\pi\)
\(318\) 5626.50 0.992196
\(319\) 18.0092 0.00316089
\(320\) 9094.51 1.58875
\(321\) −5548.23 −0.964710
\(322\) −198.630 −0.0343764
\(323\) 0 0
\(324\) −2075.78 −0.355930
\(325\) −56.4898 −0.00964151
\(326\) −7326.15 −1.24466
\(327\) 2874.50 0.486117
\(328\) −298.197 −0.0501987
\(329\) 4311.78 0.722541
\(330\) −4560.50 −0.760750
\(331\) −1816.52 −0.301647 −0.150823 0.988561i \(-0.548192\pi\)
−0.150823 + 0.988561i \(0.548192\pi\)
\(332\) −2654.87 −0.438870
\(333\) 5535.00 0.910860
\(334\) 836.730 0.137077
\(335\) 13532.5 2.20704
\(336\) 1063.26 0.172636
\(337\) 5778.60 0.934067 0.467033 0.884240i \(-0.345323\pi\)
0.467033 + 0.884240i \(0.345323\pi\)
\(338\) 10549.6 1.69771
\(339\) 980.078 0.157022
\(340\) 0 0
\(341\) 1246.90 0.198016
\(342\) −7970.76 −1.26026
\(343\) 343.000 0.0539949
\(344\) 8981.70 1.40774
\(345\) −288.587 −0.0450348
\(346\) −14146.1 −2.19798
\(347\) 11109.5 1.71871 0.859353 0.511382i \(-0.170866\pi\)
0.859353 + 0.511382i \(0.170866\pi\)
\(348\) −49.7589 −0.00766482
\(349\) 2346.90 0.359962 0.179981 0.983670i \(-0.442396\pi\)
0.179981 + 0.983670i \(0.442396\pi\)
\(350\) −2122.26 −0.324113
\(351\) 131.706 0.0200283
\(352\) −1302.41 −0.197212
\(353\) −6243.67 −0.941408 −0.470704 0.882291i \(-0.656000\pi\)
−0.470704 + 0.882291i \(0.656000\pi\)
\(354\) −29.4959 −0.00442850
\(355\) 9833.13 1.47011
\(356\) −16102.8 −2.39732
\(357\) 0 0
\(358\) −7791.60 −1.15028
\(359\) 10808.1 1.58894 0.794470 0.607303i \(-0.207749\pi\)
0.794470 + 0.607303i \(0.207749\pi\)
\(360\) −6671.06 −0.976654
\(361\) 6581.72 0.959574
\(362\) 16578.0 2.40696
\(363\) −3395.72 −0.490989
\(364\) −94.4445 −0.0135995
\(365\) 1597.64 0.229107
\(366\) −1901.45 −0.271558
\(367\) 4911.56 0.698586 0.349293 0.937013i \(-0.386422\pi\)
0.349293 + 0.937013i \(0.386422\pi\)
\(368\) 251.906 0.0356834
\(369\) −125.593 −0.0177185
\(370\) −25478.5 −3.57990
\(371\) −2301.90 −0.322126
\(372\) −3445.14 −0.480168
\(373\) −4256.61 −0.590882 −0.295441 0.955361i \(-0.595467\pi\)
−0.295441 + 0.955361i \(0.595467\pi\)
\(374\) 0 0
\(375\) 3023.29 0.416326
\(376\) −20932.4 −2.87102
\(377\) 0.829432 0.000113310 0
\(378\) 4948.03 0.673278
\(379\) 8145.30 1.10395 0.551974 0.833862i \(-0.313875\pi\)
0.551974 + 0.833862i \(0.313875\pi\)
\(380\) 23969.9 3.23586
\(381\) −7063.63 −0.949818
\(382\) 6360.82 0.851958
\(383\) 3961.45 0.528514 0.264257 0.964452i \(-0.414873\pi\)
0.264257 + 0.964452i \(0.414873\pi\)
\(384\) 9435.62 1.25393
\(385\) 1865.78 0.246984
\(386\) 15321.8 2.02036
\(387\) 3782.87 0.496884
\(388\) 17117.7 2.23974
\(389\) −13003.2 −1.69483 −0.847416 0.530929i \(-0.821843\pi\)
−0.847416 + 0.530929i \(0.821843\pi\)
\(390\) −210.038 −0.0272710
\(391\) 0 0
\(392\) −1665.16 −0.214549
\(393\) 4687.65 0.601681
\(394\) 9621.78 1.23030
\(395\) −1005.94 −0.128137
\(396\) 4192.91 0.532075
\(397\) −7829.03 −0.989743 −0.494871 0.868966i \(-0.664785\pi\)
−0.494871 + 0.868966i \(0.664785\pi\)
\(398\) 2342.15 0.294978
\(399\) −2890.64 −0.362689
\(400\) 2691.48 0.336436
\(401\) 3313.94 0.412694 0.206347 0.978479i \(-0.433842\pi\)
0.206347 + 0.978479i \(0.433842\pi\)
\(402\) 16881.7 2.09448
\(403\) 57.4272 0.00709839
\(404\) 21698.4 2.67212
\(405\) 1888.65 0.231723
\(406\) 31.1608 0.00380908
\(407\) 7515.29 0.915281
\(408\) 0 0
\(409\) 1704.97 0.206126 0.103063 0.994675i \(-0.467136\pi\)
0.103063 + 0.994675i \(0.467136\pi\)
\(410\) 578.124 0.0696379
\(411\) −1291.88 −0.155046
\(412\) 10319.6 1.23401
\(413\) 12.0673 0.00143775
\(414\) 406.134 0.0482135
\(415\) 2415.53 0.285720
\(416\) −59.9836 −0.00706956
\(417\) −9727.38 −1.14233
\(418\) −10822.5 −1.26638
\(419\) −12951.4 −1.51007 −0.755035 0.655684i \(-0.772380\pi\)
−0.755035 + 0.655684i \(0.772380\pi\)
\(420\) −5155.09 −0.598911
\(421\) 10354.2 1.19865 0.599327 0.800504i \(-0.295435\pi\)
0.599327 + 0.800504i \(0.295435\pi\)
\(422\) 26913.5 3.10457
\(423\) −8816.19 −1.01338
\(424\) 11175.0 1.27997
\(425\) 0 0
\(426\) 12266.8 1.39513
\(427\) 777.917 0.0881640
\(428\) −23480.8 −2.65184
\(429\) 61.9542 0.00697244
\(430\) −17413.1 −1.95287
\(431\) 1178.61 0.131721 0.0658606 0.997829i \(-0.479021\pi\)
0.0658606 + 0.997829i \(0.479021\pi\)
\(432\) −6275.18 −0.698876
\(433\) 13300.4 1.47616 0.738082 0.674711i \(-0.235732\pi\)
0.738082 + 0.674711i \(0.235732\pi\)
\(434\) 2157.47 0.238622
\(435\) 45.2732 0.00499007
\(436\) 12165.2 1.33626
\(437\) −684.844 −0.0749669
\(438\) 1993.04 0.217423
\(439\) 10733.2 1.16690 0.583448 0.812151i \(-0.301703\pi\)
0.583448 + 0.812151i \(0.301703\pi\)
\(440\) −9057.80 −0.981395
\(441\) −701.324 −0.0757287
\(442\) 0 0
\(443\) −7564.15 −0.811249 −0.405625 0.914040i \(-0.632946\pi\)
−0.405625 + 0.914040i \(0.632946\pi\)
\(444\) −20764.5 −2.21946
\(445\) 14651.1 1.56074
\(446\) 14978.3 1.59024
\(447\) 12281.4 1.29953
\(448\) −4641.58 −0.489495
\(449\) 13317.3 1.39974 0.699870 0.714270i \(-0.253241\pi\)
0.699870 + 0.714270i \(0.253241\pi\)
\(450\) 4339.33 0.454573
\(451\) −170.527 −0.0178045
\(452\) 4147.81 0.431630
\(453\) 9585.77 0.994214
\(454\) 16183.4 1.67297
\(455\) 85.9303 0.00885379
\(456\) 14033.2 1.44115
\(457\) 12203.0 1.24908 0.624541 0.780992i \(-0.285286\pi\)
0.624541 + 0.780992i \(0.285286\pi\)
\(458\) −3601.91 −0.367481
\(459\) 0 0
\(460\) −1221.33 −0.123794
\(461\) 11965.0 1.20882 0.604408 0.796675i \(-0.293410\pi\)
0.604408 + 0.796675i \(0.293410\pi\)
\(462\) 2327.55 0.234388
\(463\) −1067.81 −0.107182 −0.0535910 0.998563i \(-0.517067\pi\)
−0.0535910 + 0.998563i \(0.517067\pi\)
\(464\) −39.5187 −0.00395390
\(465\) 3134.56 0.312606
\(466\) 5699.26 0.566552
\(467\) 1982.55 0.196449 0.0982244 0.995164i \(-0.468684\pi\)
0.0982244 + 0.995164i \(0.468684\pi\)
\(468\) 193.108 0.0190736
\(469\) −6906.58 −0.679992
\(470\) 40582.2 3.98281
\(471\) −4668.93 −0.456757
\(472\) −58.5831 −0.00571293
\(473\) 5136.29 0.499295
\(474\) −1254.90 −0.121602
\(475\) −7317.20 −0.706813
\(476\) 0 0
\(477\) 4706.64 0.451786
\(478\) 13330.2 1.27554
\(479\) 6251.24 0.596298 0.298149 0.954519i \(-0.403631\pi\)
0.298149 + 0.954519i \(0.403631\pi\)
\(480\) −3274.10 −0.311337
\(481\) 346.124 0.0328106
\(482\) −23002.3 −2.17371
\(483\) 147.286 0.0138753
\(484\) −14371.1 −1.34965
\(485\) −15574.5 −1.45815
\(486\) −16729.2 −1.56142
\(487\) 8438.97 0.785229 0.392614 0.919703i \(-0.371571\pi\)
0.392614 + 0.919703i \(0.371571\pi\)
\(488\) −3776.55 −0.350320
\(489\) 5432.43 0.502378
\(490\) 3228.30 0.297632
\(491\) 9668.53 0.888665 0.444333 0.895862i \(-0.353441\pi\)
0.444333 + 0.895862i \(0.353441\pi\)
\(492\) 471.161 0.0431740
\(493\) 0 0
\(494\) −498.441 −0.0453966
\(495\) −3814.92 −0.346400
\(496\) −2736.15 −0.247695
\(497\) −5018.55 −0.452943
\(498\) 3013.36 0.271148
\(499\) −523.551 −0.0469687 −0.0234844 0.999724i \(-0.507476\pi\)
−0.0234844 + 0.999724i \(0.507476\pi\)
\(500\) 12794.9 1.14441
\(501\) −620.445 −0.0553282
\(502\) 23837.3 2.11935
\(503\) 14638.5 1.29761 0.648807 0.760953i \(-0.275268\pi\)
0.648807 + 0.760953i \(0.275268\pi\)
\(504\) 3404.71 0.300909
\(505\) −19742.3 −1.73964
\(506\) 551.439 0.0484475
\(507\) −7822.68 −0.685242
\(508\) −29894.1 −2.61090
\(509\) −10783.1 −0.939004 −0.469502 0.882932i \(-0.655566\pi\)
−0.469502 + 0.882932i \(0.655566\pi\)
\(510\) 0 0
\(511\) −815.389 −0.0705884
\(512\) 14451.3 1.24739
\(513\) 17060.0 1.46826
\(514\) 6548.94 0.561987
\(515\) −9389.28 −0.803381
\(516\) −14191.4 −1.21074
\(517\) −11970.4 −1.01829
\(518\) 13003.5 1.10297
\(519\) 10489.5 0.887165
\(520\) −417.165 −0.0351806
\(521\) 6172.25 0.519024 0.259512 0.965740i \(-0.416438\pi\)
0.259512 + 0.965740i \(0.416438\pi\)
\(522\) −63.7138 −0.00534229
\(523\) 8044.42 0.672577 0.336289 0.941759i \(-0.390828\pi\)
0.336289 + 0.941759i \(0.390828\pi\)
\(524\) 19838.7 1.65393
\(525\) 1573.68 0.130821
\(526\) 30794.2 2.55264
\(527\) 0 0
\(528\) −2951.84 −0.243300
\(529\) −12132.1 −0.997132
\(530\) −21665.4 −1.77563
\(531\) −24.6737 −0.00201647
\(532\) −12233.5 −0.996975
\(533\) −7.85380 −0.000638247 0
\(534\) 18277.2 1.48114
\(535\) 21364.0 1.72644
\(536\) 33529.4 2.70196
\(537\) 5777.56 0.464283
\(538\) −21806.6 −1.74749
\(539\) −952.241 −0.0760963
\(540\) 30424.4 2.42455
\(541\) −18367.1 −1.45963 −0.729817 0.683643i \(-0.760395\pi\)
−0.729817 + 0.683643i \(0.760395\pi\)
\(542\) −28260.3 −2.23963
\(543\) −12292.8 −0.971515
\(544\) 0 0
\(545\) −11068.5 −0.869953
\(546\) 107.197 0.00840224
\(547\) 4167.17 0.325732 0.162866 0.986648i \(-0.447926\pi\)
0.162866 + 0.986648i \(0.447926\pi\)
\(548\) −5467.39 −0.426196
\(549\) −1590.59 −0.123651
\(550\) 5891.83 0.456779
\(551\) 107.438 0.00830670
\(552\) −715.031 −0.0551336
\(553\) 513.402 0.0394794
\(554\) −42073.5 −3.22659
\(555\) 18892.6 1.44495
\(556\) −41167.5 −3.14009
\(557\) −9499.84 −0.722659 −0.361329 0.932438i \(-0.617677\pi\)
−0.361329 + 0.932438i \(0.617677\pi\)
\(558\) −4411.33 −0.334671
\(559\) 236.556 0.0178985
\(560\) −4094.19 −0.308948
\(561\) 0 0
\(562\) −27071.0 −2.03189
\(563\) 13948.4 1.04415 0.522075 0.852899i \(-0.325158\pi\)
0.522075 + 0.852899i \(0.325158\pi\)
\(564\) 33073.8 2.46925
\(565\) −3773.88 −0.281006
\(566\) 25662.6 1.90579
\(567\) −963.914 −0.0713943
\(568\) 24363.5 1.79977
\(569\) −10453.6 −0.770193 −0.385096 0.922876i \(-0.625832\pi\)
−0.385096 + 0.922876i \(0.625832\pi\)
\(570\) −27206.5 −1.99922
\(571\) 23375.9 1.71323 0.856613 0.515960i \(-0.172565\pi\)
0.856613 + 0.515960i \(0.172565\pi\)
\(572\) 262.198 0.0191662
\(573\) −4716.63 −0.343874
\(574\) −295.058 −0.0214555
\(575\) 372.833 0.0270404
\(576\) 9490.52 0.686525
\(577\) 18975.3 1.36907 0.684534 0.728981i \(-0.260006\pi\)
0.684534 + 0.728981i \(0.260006\pi\)
\(578\) 0 0
\(579\) −11361.3 −0.815475
\(580\) 191.601 0.0137169
\(581\) −1232.82 −0.0880307
\(582\) −19429.1 −1.38378
\(583\) 6390.56 0.453979
\(584\) 3958.46 0.280484
\(585\) −175.700 −0.0124176
\(586\) 26790.4 1.88857
\(587\) −28198.5 −1.98275 −0.991377 0.131042i \(-0.958168\pi\)
−0.991377 + 0.131042i \(0.958168\pi\)
\(588\) 2631.01 0.184525
\(589\) 7438.62 0.520379
\(590\) 113.577 0.00792523
\(591\) −7134.67 −0.496584
\(592\) −16491.2 −1.14491
\(593\) 9781.56 0.677370 0.338685 0.940900i \(-0.390018\pi\)
0.338685 + 0.940900i \(0.390018\pi\)
\(594\) −13736.8 −0.948866
\(595\) 0 0
\(596\) 51976.4 3.57221
\(597\) −1736.73 −0.119061
\(598\) 25.3970 0.00173672
\(599\) 14732.0 1.00490 0.502448 0.864607i \(-0.332433\pi\)
0.502448 + 0.864607i \(0.332433\pi\)
\(600\) −7639.73 −0.519818
\(601\) −22875.8 −1.55262 −0.776311 0.630351i \(-0.782911\pi\)
−0.776311 + 0.630351i \(0.782911\pi\)
\(602\) 8887.15 0.601683
\(603\) 14121.7 0.953700
\(604\) 40568.1 2.73294
\(605\) 13075.5 0.878671
\(606\) −24628.3 −1.65092
\(607\) 3140.61 0.210005 0.105003 0.994472i \(-0.466515\pi\)
0.105003 + 0.994472i \(0.466515\pi\)
\(608\) −7769.76 −0.518265
\(609\) −23.1061 −0.00153745
\(610\) 7321.71 0.485980
\(611\) −551.308 −0.0365033
\(612\) 0 0
\(613\) −18951.1 −1.24866 −0.624330 0.781160i \(-0.714628\pi\)
−0.624330 + 0.781160i \(0.714628\pi\)
\(614\) −3583.13 −0.235510
\(615\) −428.686 −0.0281078
\(616\) 4622.84 0.302369
\(617\) 18435.9 1.20292 0.601459 0.798904i \(-0.294586\pi\)
0.601459 + 0.798904i \(0.294586\pi\)
\(618\) −11713.1 −0.762409
\(619\) 8466.61 0.549761 0.274880 0.961478i \(-0.411362\pi\)
0.274880 + 0.961478i \(0.411362\pi\)
\(620\) 13265.9 0.859306
\(621\) −869.258 −0.0561709
\(622\) −4904.20 −0.316142
\(623\) −7477.51 −0.480867
\(624\) −135.950 −0.00872170
\(625\) −19530.9 −1.24998
\(626\) −16485.7 −1.05256
\(627\) 8025.02 0.511146
\(628\) −19759.5 −1.25555
\(629\) 0 0
\(630\) −6600.83 −0.417434
\(631\) 17128.8 1.08065 0.540323 0.841458i \(-0.318302\pi\)
0.540323 + 0.841458i \(0.318302\pi\)
\(632\) −2492.41 −0.156872
\(633\) −19956.7 −1.25309
\(634\) −28541.3 −1.78789
\(635\) 27199.2 1.69979
\(636\) −17656.9 −1.10085
\(637\) −43.8563 −0.00272787
\(638\) −86.5090 −0.00536822
\(639\) 10261.3 0.635260
\(640\) −36332.7 −2.24403
\(641\) 27652.1 1.70389 0.851945 0.523631i \(-0.175423\pi\)
0.851945 + 0.523631i \(0.175423\pi\)
\(642\) 26651.4 1.63839
\(643\) −31040.9 −1.90379 −0.951894 0.306428i \(-0.900866\pi\)
−0.951894 + 0.306428i \(0.900866\pi\)
\(644\) 623.334 0.0381410
\(645\) 12912.0 0.788234
\(646\) 0 0
\(647\) −5099.85 −0.309885 −0.154943 0.987923i \(-0.549519\pi\)
−0.154943 + 0.987923i \(0.549519\pi\)
\(648\) 4679.51 0.283686
\(649\) −33.5014 −0.00202626
\(650\) 271.354 0.0163744
\(651\) −1599.79 −0.0963145
\(652\) 22990.7 1.38096
\(653\) 12448.9 0.746040 0.373020 0.927823i \(-0.378322\pi\)
0.373020 + 0.927823i \(0.378322\pi\)
\(654\) −13807.9 −0.825585
\(655\) −18050.2 −1.07677
\(656\) 374.198 0.0222713
\(657\) 1667.21 0.0990013
\(658\) −20712.0 −1.22711
\(659\) 1249.87 0.0738816 0.0369408 0.999317i \(-0.488239\pi\)
0.0369408 + 0.999317i \(0.488239\pi\)
\(660\) 14311.6 0.844059
\(661\) −24709.2 −1.45397 −0.726986 0.686653i \(-0.759079\pi\)
−0.726986 + 0.686653i \(0.759079\pi\)
\(662\) 8725.83 0.512294
\(663\) 0 0
\(664\) 5984.95 0.349791
\(665\) 11130.7 0.649066
\(666\) −26587.9 −1.54694
\(667\) −5.47426 −0.000317787 0
\(668\) −2625.80 −0.152089
\(669\) −11106.6 −0.641864
\(670\) −65004.5 −3.74827
\(671\) −2159.66 −0.124252
\(672\) 1671.01 0.0959234
\(673\) 7866.74 0.450580 0.225290 0.974292i \(-0.427667\pi\)
0.225290 + 0.974292i \(0.427667\pi\)
\(674\) −27758.0 −1.58635
\(675\) −9287.57 −0.529598
\(676\) −33106.5 −1.88362
\(677\) 8378.80 0.475662 0.237831 0.971307i \(-0.423564\pi\)
0.237831 + 0.971307i \(0.423564\pi\)
\(678\) −4707.89 −0.266675
\(679\) 7948.79 0.449258
\(680\) 0 0
\(681\) −12000.2 −0.675256
\(682\) −5989.60 −0.336296
\(683\) 18176.6 1.01831 0.509156 0.860674i \(-0.329958\pi\)
0.509156 + 0.860674i \(0.329958\pi\)
\(684\) 25013.6 1.39827
\(685\) 4974.50 0.277469
\(686\) −1647.63 −0.0917010
\(687\) 2670.86 0.148326
\(688\) −11270.8 −0.624559
\(689\) 294.323 0.0162740
\(690\) 1386.25 0.0764837
\(691\) 21913.5 1.20641 0.603203 0.797587i \(-0.293891\pi\)
0.603203 + 0.797587i \(0.293891\pi\)
\(692\) 44392.9 2.43868
\(693\) 1947.02 0.106726
\(694\) −53365.7 −2.91892
\(695\) 37456.2 2.04431
\(696\) 112.173 0.00610907
\(697\) 0 0
\(698\) −11273.5 −0.611332
\(699\) −4226.07 −0.228676
\(700\) 6660.00 0.359606
\(701\) −27012.0 −1.45539 −0.727696 0.685900i \(-0.759409\pi\)
−0.727696 + 0.685900i \(0.759409\pi\)
\(702\) −632.660 −0.0340145
\(703\) 44833.9 2.40532
\(704\) 12886.0 0.689857
\(705\) −30092.2 −1.60757
\(706\) 29992.0 1.59882
\(707\) 10075.9 0.535987
\(708\) 92.5632 0.00491347
\(709\) −18035.8 −0.955357 −0.477678 0.878535i \(-0.658522\pi\)
−0.477678 + 0.878535i \(0.658522\pi\)
\(710\) −47234.3 −2.49672
\(711\) −1049.74 −0.0553704
\(712\) 36301.0 1.91073
\(713\) −379.020 −0.0199080
\(714\) 0 0
\(715\) −238.561 −0.0124779
\(716\) 24451.3 1.27624
\(717\) −9884.49 −0.514844
\(718\) −51917.7 −2.69854
\(719\) 9212.47 0.477840 0.238920 0.971039i \(-0.423207\pi\)
0.238920 + 0.971039i \(0.423207\pi\)
\(720\) 8371.29 0.433305
\(721\) 4792.02 0.247523
\(722\) −31615.9 −1.62967
\(723\) 17056.5 0.877368
\(724\) −52024.4 −2.67054
\(725\) −58.4896 −0.00299621
\(726\) 16311.6 0.833859
\(727\) −18531.0 −0.945359 −0.472680 0.881234i \(-0.656713\pi\)
−0.472680 + 0.881234i \(0.656713\pi\)
\(728\) 212.909 0.0108392
\(729\) 16122.8 0.819124
\(730\) −7674.40 −0.389099
\(731\) 0 0
\(732\) 5967.07 0.301297
\(733\) 10291.4 0.518582 0.259291 0.965799i \(-0.416511\pi\)
0.259291 + 0.965799i \(0.416511\pi\)
\(734\) −23593.1 −1.18643
\(735\) −2393.82 −0.120133
\(736\) 395.892 0.0198271
\(737\) 19174.1 0.958329
\(738\) 603.298 0.0300917
\(739\) 8231.80 0.409759 0.204879 0.978787i \(-0.434320\pi\)
0.204879 + 0.978787i \(0.434320\pi\)
\(740\) 79955.7 3.97193
\(741\) 369.600 0.0183233
\(742\) 11057.4 0.547074
\(743\) 25362.2 1.25229 0.626144 0.779707i \(-0.284632\pi\)
0.626144 + 0.779707i \(0.284632\pi\)
\(744\) 7766.50 0.382707
\(745\) −47290.7 −2.32564
\(746\) 20447.0 1.00351
\(747\) 2520.71 0.123465
\(748\) 0 0
\(749\) −10903.6 −0.531919
\(750\) −14522.7 −0.707056
\(751\) −10647.3 −0.517345 −0.258673 0.965965i \(-0.583285\pi\)
−0.258673 + 0.965965i \(0.583285\pi\)
\(752\) 26267.3 1.27377
\(753\) −17675.7 −0.855428
\(754\) −3.98425 −0.000192438 0
\(755\) −36910.9 −1.77924
\(756\) −15527.7 −0.747008
\(757\) 8774.07 0.421267 0.210633 0.977565i \(-0.432447\pi\)
0.210633 + 0.977565i \(0.432447\pi\)
\(758\) −39126.7 −1.87486
\(759\) −408.898 −0.0195548
\(760\) −54036.0 −2.57907
\(761\) 26991.0 1.28571 0.642853 0.765990i \(-0.277751\pi\)
0.642853 + 0.765990i \(0.277751\pi\)
\(762\) 33930.8 1.61310
\(763\) 5649.07 0.268034
\(764\) −19961.3 −0.945256
\(765\) 0 0
\(766\) −19029.2 −0.897589
\(767\) −1.54294 −7.26365e−5 0
\(768\) −26430.1 −1.24181
\(769\) −29762.8 −1.39567 −0.697837 0.716257i \(-0.745854\pi\)
−0.697837 + 0.716257i \(0.745854\pi\)
\(770\) −8962.45 −0.419460
\(771\) −4856.12 −0.226834
\(772\) −48082.4 −2.24161
\(773\) −39045.3 −1.81677 −0.908384 0.418136i \(-0.862684\pi\)
−0.908384 + 0.418136i \(0.862684\pi\)
\(774\) −18171.3 −0.843870
\(775\) −4049.63 −0.187699
\(776\) −38588.9 −1.78513
\(777\) −9642.23 −0.445190
\(778\) 62462.2 2.87838
\(779\) −1017.31 −0.0467895
\(780\) 659.135 0.0302575
\(781\) 13932.6 0.638343
\(782\) 0 0
\(783\) 136.368 0.00622401
\(784\) 2089.56 0.0951875
\(785\) 17978.1 0.817411
\(786\) −22517.6 −1.02185
\(787\) 38300.6 1.73478 0.867389 0.497631i \(-0.165796\pi\)
0.867389 + 0.497631i \(0.165796\pi\)
\(788\) −30194.8 −1.36503
\(789\) −22834.3 −1.03032
\(790\) 4832.12 0.217619
\(791\) 1926.08 0.0865785
\(792\) −9452.21 −0.424078
\(793\) −99.4652 −0.00445411
\(794\) 37607.5 1.68091
\(795\) 16065.1 0.716693
\(796\) −7350.05 −0.327281
\(797\) 17159.1 0.762618 0.381309 0.924448i \(-0.375473\pi\)
0.381309 + 0.924448i \(0.375473\pi\)
\(798\) 13885.4 0.615963
\(799\) 0 0
\(800\) 4229.90 0.186937
\(801\) 15289.1 0.674423
\(802\) −15918.8 −0.700890
\(803\) 2263.69 0.0994819
\(804\) −52977.5 −2.32385
\(805\) −567.140 −0.0248311
\(806\) −275.857 −0.0120554
\(807\) 16169.8 0.705334
\(808\) −48915.4 −2.12975
\(809\) −23686.7 −1.02939 −0.514697 0.857372i \(-0.672095\pi\)
−0.514697 + 0.857372i \(0.672095\pi\)
\(810\) −9072.31 −0.393541
\(811\) 11042.5 0.478119 0.239059 0.971005i \(-0.423161\pi\)
0.239059 + 0.971005i \(0.423161\pi\)
\(812\) −97.7879 −0.00422621
\(813\) 20955.3 0.903979
\(814\) −36100.4 −1.55444
\(815\) −20918.1 −0.899054
\(816\) 0 0
\(817\) 30641.5 1.31213
\(818\) −8189.98 −0.350068
\(819\) 89.6720 0.00382588
\(820\) −1814.25 −0.0772639
\(821\) 1003.64 0.0426640 0.0213320 0.999772i \(-0.493209\pi\)
0.0213320 + 0.999772i \(0.493209\pi\)
\(822\) 6205.66 0.263318
\(823\) 24050.8 1.01866 0.509330 0.860571i \(-0.329893\pi\)
0.509330 + 0.860571i \(0.329893\pi\)
\(824\) −23263.8 −0.983535
\(825\) −4368.87 −0.184369
\(826\) −57.9663 −0.00244178
\(827\) −26326.9 −1.10698 −0.553492 0.832855i \(-0.686705\pi\)
−0.553492 + 0.832855i \(0.686705\pi\)
\(828\) −1274.52 −0.0534933
\(829\) −2486.61 −0.104178 −0.0520889 0.998642i \(-0.516588\pi\)
−0.0520889 + 0.998642i \(0.516588\pi\)
\(830\) −11603.2 −0.485245
\(831\) 31198.0 1.30234
\(832\) 593.477 0.0247297
\(833\) 0 0
\(834\) 46726.4 1.94005
\(835\) 2389.08 0.0990151
\(836\) 33962.9 1.40506
\(837\) 9441.68 0.389907
\(838\) 62213.5 2.56459
\(839\) −9048.11 −0.372319 −0.186159 0.982520i \(-0.559604\pi\)
−0.186159 + 0.982520i \(0.559604\pi\)
\(840\) 11621.3 0.477348
\(841\) −24388.1 −0.999965
\(842\) −49737.4 −2.03570
\(843\) 20073.5 0.820128
\(844\) −84459.2 −3.44456
\(845\) 30122.0 1.22631
\(846\) 42349.3 1.72104
\(847\) −6673.38 −0.270720
\(848\) −14023.2 −0.567874
\(849\) −19029.1 −0.769232
\(850\) 0 0
\(851\) −2284.42 −0.0920198
\(852\) −38495.2 −1.54791
\(853\) 33090.7 1.32826 0.664129 0.747618i \(-0.268803\pi\)
0.664129 + 0.747618i \(0.268803\pi\)
\(854\) −3736.79 −0.149731
\(855\) −22758.6 −0.910325
\(856\) 52933.5 2.11359
\(857\) −11080.5 −0.441662 −0.220831 0.975312i \(-0.570877\pi\)
−0.220831 + 0.975312i \(0.570877\pi\)
\(858\) −297.603 −0.0118415
\(859\) −20817.4 −0.826868 −0.413434 0.910534i \(-0.635671\pi\)
−0.413434 + 0.910534i \(0.635671\pi\)
\(860\) 54645.3 2.16673
\(861\) 218.789 0.00866006
\(862\) −5661.58 −0.223706
\(863\) −23732.9 −0.936127 −0.468064 0.883695i \(-0.655048\pi\)
−0.468064 + 0.883695i \(0.655048\pi\)
\(864\) −9861.98 −0.388323
\(865\) −40390.9 −1.58767
\(866\) −63889.9 −2.50701
\(867\) 0 0
\(868\) −6770.51 −0.264754
\(869\) −1425.31 −0.0556392
\(870\) −217.474 −0.00847477
\(871\) 883.083 0.0343538
\(872\) −27424.5 −1.06504
\(873\) −16252.7 −0.630092
\(874\) 3289.71 0.127318
\(875\) 5941.47 0.229552
\(876\) −6254.50 −0.241233
\(877\) −6269.19 −0.241386 −0.120693 0.992690i \(-0.538512\pi\)
−0.120693 + 0.992690i \(0.538512\pi\)
\(878\) −51557.9 −1.98177
\(879\) −19865.4 −0.762279
\(880\) 11366.3 0.435408
\(881\) −12382.8 −0.473537 −0.236768 0.971566i \(-0.576088\pi\)
−0.236768 + 0.971566i \(0.576088\pi\)
\(882\) 3368.87 0.128612
\(883\) −680.599 −0.0259388 −0.0129694 0.999916i \(-0.504128\pi\)
−0.0129694 + 0.999916i \(0.504128\pi\)
\(884\) 0 0
\(885\) −84.2186 −0.00319884
\(886\) 36335.1 1.37777
\(887\) −20733.5 −0.784850 −0.392425 0.919784i \(-0.628364\pi\)
−0.392425 + 0.919784i \(0.628364\pi\)
\(888\) 46810.1 1.76897
\(889\) −13881.7 −0.523708
\(890\) −70377.9 −2.65064
\(891\) 2676.03 0.100618
\(892\) −47004.6 −1.76438
\(893\) −71411.7 −2.67604
\(894\) −58994.8 −2.20703
\(895\) −22247.0 −0.830879
\(896\) 18543.2 0.691389
\(897\) −18.8322 −0.000700991 0
\(898\) −63970.9 −2.37721
\(899\) 59.4601 0.00220590
\(900\) −13617.5 −0.504353
\(901\) 0 0
\(902\) 819.144 0.0302378
\(903\) −6589.93 −0.242856
\(904\) −9350.54 −0.344020
\(905\) 47334.4 1.73862
\(906\) −46046.1 −1.68850
\(907\) 6731.38 0.246430 0.123215 0.992380i \(-0.460680\pi\)
0.123215 + 0.992380i \(0.460680\pi\)
\(908\) −50786.4 −1.85617
\(909\) −20601.9 −0.751730
\(910\) −412.774 −0.0150366
\(911\) −12538.5 −0.456004 −0.228002 0.973661i \(-0.573219\pi\)
−0.228002 + 0.973661i \(0.573219\pi\)
\(912\) −17609.8 −0.639383
\(913\) 3422.56 0.124064
\(914\) −58618.0 −2.12135
\(915\) −5429.14 −0.196155
\(916\) 11303.4 0.407724
\(917\) 9212.33 0.331753
\(918\) 0 0
\(919\) −12538.3 −0.450055 −0.225028 0.974352i \(-0.572247\pi\)
−0.225028 + 0.974352i \(0.572247\pi\)
\(920\) 2753.29 0.0986668
\(921\) 2656.93 0.0950585
\(922\) −57474.8 −2.05296
\(923\) 641.677 0.0228830
\(924\) −7304.24 −0.260056
\(925\) −24407.8 −0.867594
\(926\) 5129.32 0.182030
\(927\) −9798.13 −0.347155
\(928\) −62.1071 −0.00219694
\(929\) −10142.9 −0.358211 −0.179106 0.983830i \(-0.557320\pi\)
−0.179106 + 0.983830i \(0.557320\pi\)
\(930\) −15057.2 −0.530907
\(931\) −5680.77 −0.199978
\(932\) −17885.2 −0.628595
\(933\) 3636.52 0.127604
\(934\) −9523.37 −0.333634
\(935\) 0 0
\(936\) −435.330 −0.0152022
\(937\) −49990.5 −1.74292 −0.871462 0.490463i \(-0.836828\pi\)
−0.871462 + 0.490463i \(0.836828\pi\)
\(938\) 33176.4 1.15485
\(939\) 12224.4 0.424843
\(940\) −127354. −4.41897
\(941\) 10771.0 0.373141 0.186571 0.982442i \(-0.440263\pi\)
0.186571 + 0.982442i \(0.440263\pi\)
\(942\) 22427.6 0.775723
\(943\) 51.8351 0.00179001
\(944\) 73.5140 0.00253461
\(945\) 14127.9 0.486329
\(946\) −24672.6 −0.847966
\(947\) −48958.4 −1.67997 −0.839986 0.542608i \(-0.817437\pi\)
−0.839986 + 0.542608i \(0.817437\pi\)
\(948\) 3938.09 0.134919
\(949\) 104.256 0.00356618
\(950\) 35148.8 1.20040
\(951\) 21163.7 0.721641
\(952\) 0 0
\(953\) −23048.5 −0.783435 −0.391718 0.920086i \(-0.628119\pi\)
−0.391718 + 0.920086i \(0.628119\pi\)
\(954\) −22608.7 −0.767280
\(955\) 18161.8 0.615396
\(956\) −41832.4 −1.41523
\(957\) 64.1475 0.00216676
\(958\) −30028.4 −1.01271
\(959\) −2538.84 −0.0854886
\(960\) 32393.9 1.08907
\(961\) −25674.2 −0.861810
\(962\) −1662.64 −0.0557230
\(963\) 22294.2 0.746025
\(964\) 72185.1 2.41175
\(965\) 43747.8 1.45937
\(966\) −707.503 −0.0235648
\(967\) 31563.1 1.04964 0.524819 0.851214i \(-0.324133\pi\)
0.524819 + 0.851214i \(0.324133\pi\)
\(968\) 32397.2 1.07571
\(969\) 0 0
\(970\) 74813.6 2.47641
\(971\) −25889.0 −0.855632 −0.427816 0.903866i \(-0.640717\pi\)
−0.427816 + 0.903866i \(0.640717\pi\)
\(972\) 52498.9 1.73241
\(973\) −19116.6 −0.629855
\(974\) −40537.4 −1.33357
\(975\) −201.212 −0.00660918
\(976\) 4739.07 0.155424
\(977\) 25831.7 0.845883 0.422942 0.906157i \(-0.360998\pi\)
0.422942 + 0.906157i \(0.360998\pi\)
\(978\) −26095.2 −0.853202
\(979\) 20759.1 0.677697
\(980\) −10131.0 −0.330226
\(981\) −11550.5 −0.375922
\(982\) −46443.6 −1.50924
\(983\) 50248.9 1.63041 0.815203 0.579175i \(-0.196625\pi\)
0.815203 + 0.579175i \(0.196625\pi\)
\(984\) −1062.15 −0.0344108
\(985\) 27472.7 0.888684
\(986\) 0 0
\(987\) 15358.2 0.495296
\(988\) 1564.19 0.0503680
\(989\) −1561.27 −0.0501978
\(990\) 18325.3 0.588299
\(991\) −25790.5 −0.826703 −0.413351 0.910572i \(-0.635642\pi\)
−0.413351 + 0.910572i \(0.635642\pi\)
\(992\) −4300.09 −0.137629
\(993\) −6470.30 −0.206776
\(994\) 24107.0 0.769245
\(995\) 6687.44 0.213072
\(996\) −9456.42 −0.300842
\(997\) 12867.3 0.408738 0.204369 0.978894i \(-0.434486\pi\)
0.204369 + 0.978894i \(0.434486\pi\)
\(998\) 2514.93 0.0797681
\(999\) 56906.7 1.80225
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.v.1.6 56
17.10 odd 16 119.4.k.a.15.25 yes 112
17.12 odd 16 119.4.k.a.8.25 112
17.16 even 2 2023.4.a.u.1.6 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.k.a.8.25 112 17.12 odd 16
119.4.k.a.15.25 yes 112 17.10 odd 16
2023.4.a.u.1.6 56 17.16 even 2
2023.4.a.v.1.6 56 1.1 even 1 trivial