Properties

Label 2023.4.a.v
Level $2023$
Weight $4$
Character orbit 2023.a
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −5.44250 −3.50764 21.6208 17.6325 19.0903 7.00000 −74.1312 −14.6965 −95.9646
1.2 −5.37158 8.74313 20.8539 18.6028 −46.9644 7.00000 −69.0459 49.4422 −99.9265
1.3 −5.34059 1.34087 20.5219 12.2041 −7.16104 7.00000 −66.8743 −25.2021 −65.1771
1.4 −5.09246 3.97226 17.9331 1.01975 −20.2285 7.00000 −50.5840 −11.2212 −5.19304
1.5 −4.88913 −5.33007 15.9036 −4.56956 26.0594 7.00000 −38.6415 1.40966 22.3412
1.6 −4.80359 3.56192 15.0745 −13.7155 −17.1100 7.00000 −33.9829 −14.3127 65.8837
1.7 −4.58987 −8.72454 13.0669 −9.48008 40.0445 7.00000 −23.2564 49.1175 43.5123
1.8 −4.18078 −9.88314 9.47894 15.9203 41.3193 7.00000 −6.18312 70.6765 −66.5594
1.9 −4.15313 6.23473 9.24849 6.11880 −25.8936 7.00000 −5.18513 11.8718 −25.4122
1.10 −4.02697 5.00456 8.21652 −11.3608 −20.1532 7.00000 −0.871912 −1.95434 45.7495
1.11 −3.70056 −0.163285 5.69418 1.64582 0.604248 7.00000 8.53285 −26.9733 −6.09048
1.12 −3.64206 −6.07912 5.26462 −0.735620 22.1405 7.00000 9.96243 9.95570 2.67917
1.13 −3.45966 9.80544 3.96924 8.21567 −33.9235 7.00000 13.9451 69.1466 −28.4234
1.14 −2.84143 −4.61772 0.0737140 1.51243 13.1209 7.00000 22.5220 −5.67667 −4.29745
1.15 −2.82994 −6.04539 0.00856474 −19.0541 17.1081 7.00000 22.6153 9.54677 53.9220
1.16 −2.59498 −8.23188 −1.26609 17.1201 21.3616 7.00000 24.0453 40.7639 −44.4262
1.17 −2.54086 6.70229 −1.54403 12.1786 −17.0296 7.00000 24.2500 17.9207 −30.9441
1.18 −2.52696 2.34010 −1.61447 8.71902 −5.91333 7.00000 24.2954 −21.5240 −22.0326
1.19 −2.10637 2.26967 −3.56319 −20.8742 −4.78078 7.00000 24.3564 −21.8486 43.9688
1.20 −1.91072 −3.61256 −4.34916 −15.8569 6.90258 7.00000 23.5957 −13.9494 30.2981
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.56
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.4.a.v 56
17.b even 2 1 2023.4.a.u 56
17.e odd 16 2 119.4.k.a 112
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.4.k.a 112 17.e odd 16 2
2023.4.a.u 56 17.b even 2 1
2023.4.a.v 56 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\):

\( T_{2}^{56} - 8 T_{2}^{55} - 312 T_{2}^{54} + 2592 T_{2}^{53} + 45424 T_{2}^{52} - 394148 T_{2}^{51} + \cdots - 18\!\cdots\!48 \) Copy content Toggle raw display
\( T_{3}^{56} - 24 T_{3}^{55} - 756 T_{3}^{54} + 22032 T_{3}^{53} + 242278 T_{3}^{52} + \cdots - 34\!\cdots\!88 \) Copy content Toggle raw display