gp: [N,k,chi] = [2023,4,Mod(1,2023)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2023, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2023.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [56,8,24,240,80,68]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( -1 \)
\(17\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\):
\( T_{2}^{56} - 8 T_{2}^{55} - 312 T_{2}^{54} + 2592 T_{2}^{53} + 45424 T_{2}^{52} - 394148 T_{2}^{51} + \cdots - 18\!\cdots\!48 \)
T2^56 - 8*T2^55 - 312*T2^54 + 2592*T2^53 + 45424*T2^52 - 394148*T2^51 - 4098016*T2^50 + 37403200*T2^49 + 256524474*T2^48 - 2484546504*T2^47 - 11818006102*T2^46 + 122830472664*T2^45 + 414520592532*T2^44 - 4691308806232*T2^43 - 11284724730324*T2^42 + 141834910729492*T2^41 + 240428705449233*T2^40 - 3450661304065736*T2^39 - 3997323748839156*T2^38 + 68308365425076000*T2^37 + 50827278291341125*T2^36 - 1108282864866102020*T2^35 - 464852845671957792*T2^34 + 14800872760240318712*T2^33 + 2406008534428737440*T2^32 - 162988205285463013960*T2^31 + 6827414537702219386*T2^30 + 1479312825597982512808*T2^29 - 303403742860218103034*T2^28 - 11037489306116841893856*T2^27 + 3703699403194532453652*T2^26 + 67375210264829143480660*T2^25 - 29642098447570969959948*T2^24 - 334050154503752152404608*T2^23 + 174960198260480130164216*T2^22 + 1331817797009779343408736*T2^21 - 787791913405025646302479*T2^20 - 4212486043249484045477312*T2^19 + 2725783919959002080872656*T2^18 + 10382192240778261151698496*T2^17 - 7200384802436138168952736*T2^16 - 19464531537311093446546432*T2^15 + 14270437202152652255339776*T2^14 + 26862517807121940346532864*T2^13 - 20604796454359531661959424*T2^12 - 26063070015652789143855104*T2^11 + 20712286461958300068114432*T2^10 + 16638571916502921856663552*T2^9 - 13526737122565434555965440*T2^8 - 6348243140737110632169472*T2^7 + 5169826628179174670204928*T2^6 + 1266757969062788369219584*T2^5 - 998230685472588568657920*T2^4 - 102679134065778919211008*T2^3 + 75519525393996548407296*T2^2 + 2669328182932121059328*T2 - 1823813991466163765248
\( T_{3}^{56} - 24 T_{3}^{55} - 756 T_{3}^{54} + 22032 T_{3}^{53} + 242278 T_{3}^{52} + \cdots - 34\!\cdots\!88 \)
T3^56 - 24*T3^55 - 756*T3^54 + 22032*T3^53 + 242278*T3^52 - 9450288*T3^51 - 38410520*T3^50 + 2515624912*T3^49 + 1250070102*T3^48 - 465421140672*T3^47 + 817898392184*T3^46 + 63493806727392*T3^45 - 215586761391716*T3^44 - 6609347941829104*T3^43 + 31297867385182528*T3^42 + 535443641384538848*T3^41 - 3194893716867005509*T3^40 - 34078319256211255480*T3^39 + 246990199046290934908*T3^38 + 1703311773186340090576*T3^37 - 14948633620594149361238*T3^36 - 65972204005240552635712*T3^35 + 720173901253942377140992*T3^34 + 1904363784182167338599776*T3^33 - 27826546265175482177921554*T3^32 - 36368454154659819855899072*T3^31 + 863332888009770903132533792*T3^30 + 209470800482811001269639488*T3^29 - 21412691152943320421416953700*T3^28 + 13917179760772421399744482672*T3^27 + 420083628501396282583671121016*T3^26 - 608223667766094005494381273072*T3^25 - 6396244192200168043689938401575*T3^24 + 14259526173379875738813249306280*T3^23 + 73122822256287779246630725459988*T3^22 - 227715215795902567136265940847568*T3^21 - 588766513432228608823088865678154*T3^20 + 2586554178320425451470340461547440*T3^19 + 2830507737872267347532057296399488*T3^18 - 20733128771623277964274998186195968*T3^17 - 2174639878610002343211970108753292*T3^16 + 112661315214264055829947887595804256*T3^15 - 69395526019152759116511051062958288*T3^14 - 383112080660756015540612713641039296*T3^13 + 463087661417374835647064985061463656*T3^12 + 697058220143417667329536429287079552*T3^11 - 1299306836499109776766585203089017408*T3^10 - 449461722866907314438775021759781888*T3^9 + 1628823455175126005035418187428309040*T3^8 - 162612197348922926261433586036151296*T3^7 - 753318276227765791416841241586517312*T3^6 + 104575365167732368556842098827437824*T3^5 + 103437601477826970042131491483112480*T3^4 + 14727992987255313995163732349680640*T3^3 + 580825101697669837873653397288448*T3^2 - 3193557268488205360431159848960*T3 - 347424185091401531581963353088