Properties

Label 2023.4.a.v.1.5
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.88913 q^{2} -5.33007 q^{3} +15.9036 q^{4} -4.56956 q^{5} +26.0594 q^{6} +7.00000 q^{7} -38.6415 q^{8} +1.40966 q^{9} +22.3412 q^{10} +12.2239 q^{11} -84.7671 q^{12} -2.40598 q^{13} -34.2239 q^{14} +24.3561 q^{15} +61.6949 q^{16} -6.89203 q^{18} +81.2334 q^{19} -72.6723 q^{20} -37.3105 q^{21} -59.7642 q^{22} +67.0308 q^{23} +205.962 q^{24} -104.119 q^{25} +11.7631 q^{26} +136.398 q^{27} +111.325 q^{28} +54.9426 q^{29} -119.080 q^{30} -206.317 q^{31} +7.49819 q^{32} -65.1543 q^{33} -31.9869 q^{35} +22.4187 q^{36} -83.7840 q^{37} -397.160 q^{38} +12.8240 q^{39} +176.575 q^{40} -30.4104 q^{41} +182.416 q^{42} +256.536 q^{43} +194.404 q^{44} -6.44154 q^{45} -327.722 q^{46} +20.2645 q^{47} -328.838 q^{48} +49.0000 q^{49} +509.052 q^{50} -38.2636 q^{52} +17.1405 q^{53} -666.869 q^{54} -55.8579 q^{55} -270.491 q^{56} -432.980 q^{57} -268.621 q^{58} +693.221 q^{59} +387.349 q^{60} +278.007 q^{61} +1008.71 q^{62} +9.86765 q^{63} -530.219 q^{64} +10.9943 q^{65} +318.548 q^{66} +893.564 q^{67} -357.279 q^{69} +156.388 q^{70} +180.449 q^{71} -54.4716 q^{72} -273.854 q^{73} +409.631 q^{74} +554.962 q^{75} +1291.90 q^{76} +85.5673 q^{77} -62.6983 q^{78} +1068.40 q^{79} -281.919 q^{80} -765.074 q^{81} +148.680 q^{82} -984.805 q^{83} -593.370 q^{84} -1254.24 q^{86} -292.848 q^{87} -472.351 q^{88} -633.249 q^{89} +31.4935 q^{90} -16.8418 q^{91} +1066.03 q^{92} +1099.68 q^{93} -99.0756 q^{94} -371.201 q^{95} -39.9659 q^{96} +233.777 q^{97} -239.567 q^{98} +17.2316 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.88913 −1.72857 −0.864284 0.503005i \(-0.832228\pi\)
−0.864284 + 0.503005i \(0.832228\pi\)
\(3\) −5.33007 −1.02577 −0.512886 0.858456i \(-0.671424\pi\)
−0.512886 + 0.858456i \(0.671424\pi\)
\(4\) 15.9036 1.98795
\(5\) −4.56956 −0.408714 −0.204357 0.978896i \(-0.565510\pi\)
−0.204357 + 0.978896i \(0.565510\pi\)
\(6\) 26.0594 1.77312
\(7\) 7.00000 0.377964
\(8\) −38.6415 −1.70773
\(9\) 1.40966 0.0522098
\(10\) 22.3412 0.706490
\(11\) 12.2239 0.335059 0.167529 0.985867i \(-0.446421\pi\)
0.167529 + 0.985867i \(0.446421\pi\)
\(12\) −84.7671 −2.03918
\(13\) −2.40598 −0.0513306 −0.0256653 0.999671i \(-0.508170\pi\)
−0.0256653 + 0.999671i \(0.508170\pi\)
\(14\) −34.2239 −0.653337
\(15\) 24.3561 0.419248
\(16\) 61.6949 0.963983
\(17\) 0 0
\(18\) −6.89203 −0.0902481
\(19\) 81.2334 0.980854 0.490427 0.871482i \(-0.336841\pi\)
0.490427 + 0.871482i \(0.336841\pi\)
\(20\) −72.6723 −0.812501
\(21\) −37.3105 −0.387706
\(22\) −59.7642 −0.579172
\(23\) 67.0308 0.607690 0.303845 0.952721i \(-0.401729\pi\)
0.303845 + 0.952721i \(0.401729\pi\)
\(24\) 205.962 1.75174
\(25\) −104.119 −0.832953
\(26\) 11.7631 0.0887284
\(27\) 136.398 0.972217
\(28\) 111.325 0.751373
\(29\) 54.9426 0.351813 0.175906 0.984407i \(-0.443714\pi\)
0.175906 + 0.984407i \(0.443714\pi\)
\(30\) −119.080 −0.724698
\(31\) −206.317 −1.19534 −0.597671 0.801741i \(-0.703907\pi\)
−0.597671 + 0.801741i \(0.703907\pi\)
\(32\) 7.49819 0.0414220
\(33\) −65.1543 −0.343694
\(34\) 0 0
\(35\) −31.9869 −0.154479
\(36\) 22.4187 0.103790
\(37\) −83.7840 −0.372270 −0.186135 0.982524i \(-0.559596\pi\)
−0.186135 + 0.982524i \(0.559596\pi\)
\(38\) −397.160 −1.69547
\(39\) 12.8240 0.0526536
\(40\) 176.575 0.697973
\(41\) −30.4104 −0.115837 −0.0579183 0.998321i \(-0.518446\pi\)
−0.0579183 + 0.998321i \(0.518446\pi\)
\(42\) 182.416 0.670175
\(43\) 256.536 0.909800 0.454900 0.890542i \(-0.349675\pi\)
0.454900 + 0.890542i \(0.349675\pi\)
\(44\) 194.404 0.666079
\(45\) −6.44154 −0.0213389
\(46\) −327.722 −1.05043
\(47\) 20.2645 0.0628910 0.0314455 0.999505i \(-0.489989\pi\)
0.0314455 + 0.999505i \(0.489989\pi\)
\(48\) −328.838 −0.988827
\(49\) 49.0000 0.142857
\(50\) 509.052 1.43982
\(51\) 0 0
\(52\) −38.2636 −0.102042
\(53\) 17.1405 0.0444231 0.0222116 0.999753i \(-0.492929\pi\)
0.0222116 + 0.999753i \(0.492929\pi\)
\(54\) −666.869 −1.68054
\(55\) −55.8579 −0.136943
\(56\) −270.491 −0.645462
\(57\) −432.980 −1.00613
\(58\) −268.621 −0.608132
\(59\) 693.221 1.52966 0.764828 0.644235i \(-0.222824\pi\)
0.764828 + 0.644235i \(0.222824\pi\)
\(60\) 387.349 0.833442
\(61\) 278.007 0.583526 0.291763 0.956491i \(-0.405758\pi\)
0.291763 + 0.956491i \(0.405758\pi\)
\(62\) 1008.71 2.06623
\(63\) 9.86765 0.0197334
\(64\) −530.219 −1.03558
\(65\) 10.9943 0.0209795
\(66\) 318.548 0.594099
\(67\) 893.564 1.62935 0.814674 0.579920i \(-0.196916\pi\)
0.814674 + 0.579920i \(0.196916\pi\)
\(68\) 0 0
\(69\) −357.279 −0.623352
\(70\) 156.388 0.267028
\(71\) 180.449 0.301625 0.150813 0.988562i \(-0.451811\pi\)
0.150813 + 0.988562i \(0.451811\pi\)
\(72\) −54.4716 −0.0891602
\(73\) −273.854 −0.439071 −0.219535 0.975605i \(-0.570454\pi\)
−0.219535 + 0.975605i \(0.570454\pi\)
\(74\) 409.631 0.643494
\(75\) 554.962 0.854420
\(76\) 1291.90 1.94988
\(77\) 85.5673 0.126640
\(78\) −62.6983 −0.0910152
\(79\) 1068.40 1.52158 0.760789 0.648999i \(-0.224812\pi\)
0.760789 + 0.648999i \(0.224812\pi\)
\(80\) −281.919 −0.393993
\(81\) −765.074 −1.04948
\(82\) 148.680 0.200231
\(83\) −984.805 −1.30237 −0.651183 0.758921i \(-0.725727\pi\)
−0.651183 + 0.758921i \(0.725727\pi\)
\(84\) −593.370 −0.770738
\(85\) 0 0
\(86\) −1254.24 −1.57265
\(87\) −292.848 −0.360880
\(88\) −472.351 −0.572190
\(89\) −633.249 −0.754205 −0.377102 0.926172i \(-0.623080\pi\)
−0.377102 + 0.926172i \(0.623080\pi\)
\(90\) 31.4935 0.0368857
\(91\) −16.8418 −0.0194012
\(92\) 1066.03 1.20806
\(93\) 1099.68 1.22615
\(94\) −99.0756 −0.108711
\(95\) −371.201 −0.400889
\(96\) −39.9659 −0.0424896
\(97\) 233.777 0.244706 0.122353 0.992487i \(-0.460956\pi\)
0.122353 + 0.992487i \(0.460956\pi\)
\(98\) −239.567 −0.246938
\(99\) 17.2316 0.0174933
\(100\) −1655.87 −1.65587
\(101\) 1155.47 1.13835 0.569177 0.822215i \(-0.307262\pi\)
0.569177 + 0.822215i \(0.307262\pi\)
\(102\) 0 0
\(103\) −1159.97 −1.10966 −0.554830 0.831964i \(-0.687217\pi\)
−0.554830 + 0.831964i \(0.687217\pi\)
\(104\) 92.9707 0.0876589
\(105\) 170.493 0.158461
\(106\) −83.8019 −0.0767883
\(107\) 1695.72 1.53207 0.766033 0.642801i \(-0.222228\pi\)
0.766033 + 0.642801i \(0.222228\pi\)
\(108\) 2169.22 1.93272
\(109\) −502.254 −0.441350 −0.220675 0.975347i \(-0.570826\pi\)
−0.220675 + 0.975347i \(0.570826\pi\)
\(110\) 273.096 0.236716
\(111\) 446.575 0.381865
\(112\) 431.864 0.364351
\(113\) −1346.76 −1.12117 −0.560586 0.828096i \(-0.689424\pi\)
−0.560586 + 0.828096i \(0.689424\pi\)
\(114\) 2116.89 1.73917
\(115\) −306.301 −0.248372
\(116\) 873.783 0.699385
\(117\) −3.39162 −0.00267996
\(118\) −3389.25 −2.64411
\(119\) 0 0
\(120\) −941.157 −0.715962
\(121\) −1181.58 −0.887736
\(122\) −1359.21 −1.00866
\(123\) 162.089 0.118822
\(124\) −3281.18 −2.37628
\(125\) 1046.97 0.749153
\(126\) −48.2442 −0.0341106
\(127\) −711.450 −0.497094 −0.248547 0.968620i \(-0.579953\pi\)
−0.248547 + 0.968620i \(0.579953\pi\)
\(128\) 2532.32 1.74865
\(129\) −1367.36 −0.933248
\(130\) −53.7523 −0.0362646
\(131\) 1541.75 1.02827 0.514133 0.857710i \(-0.328114\pi\)
0.514133 + 0.857710i \(0.328114\pi\)
\(132\) −1036.19 −0.683245
\(133\) 568.634 0.370728
\(134\) −4368.75 −2.81644
\(135\) −623.280 −0.397359
\(136\) 0 0
\(137\) −2269.14 −1.41508 −0.707538 0.706675i \(-0.750194\pi\)
−0.707538 + 0.706675i \(0.750194\pi\)
\(138\) 1746.78 1.07751
\(139\) −366.787 −0.223816 −0.111908 0.993719i \(-0.535696\pi\)
−0.111908 + 0.993719i \(0.535696\pi\)
\(140\) −508.706 −0.307097
\(141\) −108.011 −0.0645119
\(142\) −882.240 −0.521380
\(143\) −29.4104 −0.0171988
\(144\) 86.9690 0.0503293
\(145\) −251.063 −0.143791
\(146\) 1338.91 0.758963
\(147\) −261.174 −0.146539
\(148\) −1332.46 −0.740053
\(149\) 356.802 0.196177 0.0980883 0.995178i \(-0.468727\pi\)
0.0980883 + 0.995178i \(0.468727\pi\)
\(150\) −2713.28 −1.47692
\(151\) −3265.92 −1.76011 −0.880056 0.474870i \(-0.842495\pi\)
−0.880056 + 0.474870i \(0.842495\pi\)
\(152\) −3138.98 −1.67503
\(153\) 0 0
\(154\) −418.350 −0.218906
\(155\) 942.778 0.488553
\(156\) 203.948 0.104672
\(157\) −1666.46 −0.847123 −0.423561 0.905867i \(-0.639220\pi\)
−0.423561 + 0.905867i \(0.639220\pi\)
\(158\) −5223.56 −2.63015
\(159\) −91.3599 −0.0455680
\(160\) −34.2634 −0.0169298
\(161\) 469.215 0.229685
\(162\) 3740.54 1.81410
\(163\) 3735.02 1.79478 0.897390 0.441239i \(-0.145461\pi\)
0.897390 + 0.441239i \(0.145461\pi\)
\(164\) −483.633 −0.230277
\(165\) 297.727 0.140473
\(166\) 4814.84 2.25123
\(167\) 540.608 0.250500 0.125250 0.992125i \(-0.460027\pi\)
0.125250 + 0.992125i \(0.460027\pi\)
\(168\) 1441.74 0.662097
\(169\) −2191.21 −0.997365
\(170\) 0 0
\(171\) 114.512 0.0512101
\(172\) 4079.84 1.80863
\(173\) −1248.71 −0.548773 −0.274387 0.961619i \(-0.588475\pi\)
−0.274387 + 0.961619i \(0.588475\pi\)
\(174\) 1431.77 0.623806
\(175\) −728.834 −0.314827
\(176\) 754.152 0.322991
\(177\) −3694.92 −1.56908
\(178\) 3096.03 1.30369
\(179\) −3106.56 −1.29718 −0.648590 0.761138i \(-0.724641\pi\)
−0.648590 + 0.761138i \(0.724641\pi\)
\(180\) −102.444 −0.0424205
\(181\) −627.925 −0.257863 −0.128932 0.991653i \(-0.541155\pi\)
−0.128932 + 0.991653i \(0.541155\pi\)
\(182\) 82.3419 0.0335362
\(183\) −1481.80 −0.598566
\(184\) −2590.17 −1.03777
\(185\) 382.856 0.152152
\(186\) −5376.50 −2.11948
\(187\) 0 0
\(188\) 322.277 0.125024
\(189\) 954.788 0.367464
\(190\) 1814.85 0.692963
\(191\) 4511.12 1.70897 0.854485 0.519475i \(-0.173873\pi\)
0.854485 + 0.519475i \(0.173873\pi\)
\(192\) 2826.10 1.06227
\(193\) −4300.90 −1.60407 −0.802036 0.597276i \(-0.796250\pi\)
−0.802036 + 0.597276i \(0.796250\pi\)
\(194\) −1142.97 −0.422990
\(195\) −58.6002 −0.0215202
\(196\) 779.275 0.283992
\(197\) 4388.44 1.58712 0.793562 0.608489i \(-0.208224\pi\)
0.793562 + 0.608489i \(0.208224\pi\)
\(198\) −84.2475 −0.0302384
\(199\) −5417.18 −1.92972 −0.964859 0.262767i \(-0.915365\pi\)
−0.964859 + 0.262767i \(0.915365\pi\)
\(200\) 4023.32 1.42246
\(201\) −4762.76 −1.67134
\(202\) −5649.25 −1.96772
\(203\) 384.598 0.132973
\(204\) 0 0
\(205\) 138.962 0.0473440
\(206\) 5671.23 1.91812
\(207\) 94.4908 0.0317274
\(208\) −148.436 −0.0494818
\(209\) 992.989 0.328644
\(210\) −833.560 −0.273910
\(211\) −5071.17 −1.65457 −0.827283 0.561785i \(-0.810115\pi\)
−0.827283 + 0.561785i \(0.810115\pi\)
\(212\) 272.595 0.0883107
\(213\) −961.808 −0.309399
\(214\) −8290.57 −2.64828
\(215\) −1172.26 −0.371848
\(216\) −5270.64 −1.66029
\(217\) −1444.22 −0.451797
\(218\) 2455.58 0.762904
\(219\) 1459.66 0.450387
\(220\) −888.340 −0.272236
\(221\) 0 0
\(222\) −2183.36 −0.660079
\(223\) −1615.63 −0.485160 −0.242580 0.970131i \(-0.577994\pi\)
−0.242580 + 0.970131i \(0.577994\pi\)
\(224\) 52.4873 0.0156561
\(225\) −146.773 −0.0434883
\(226\) 6584.48 1.93802
\(227\) 4961.70 1.45075 0.725373 0.688356i \(-0.241667\pi\)
0.725373 + 0.688356i \(0.241667\pi\)
\(228\) −6885.92 −2.00014
\(229\) −72.9223 −0.0210430 −0.0105215 0.999945i \(-0.503349\pi\)
−0.0105215 + 0.999945i \(0.503349\pi\)
\(230\) 1497.55 0.429327
\(231\) −456.080 −0.129904
\(232\) −2123.06 −0.600802
\(233\) 3979.55 1.11892 0.559461 0.828857i \(-0.311008\pi\)
0.559461 + 0.828857i \(0.311008\pi\)
\(234\) 16.5821 0.00463249
\(235\) −92.5998 −0.0257044
\(236\) 11024.7 3.04087
\(237\) −5694.66 −1.56079
\(238\) 0 0
\(239\) −2395.18 −0.648248 −0.324124 0.946015i \(-0.605070\pi\)
−0.324124 + 0.946015i \(0.605070\pi\)
\(240\) 1502.65 0.404147
\(241\) −3859.15 −1.03149 −0.515746 0.856742i \(-0.672485\pi\)
−0.515746 + 0.856742i \(0.672485\pi\)
\(242\) 5776.88 1.53451
\(243\) 395.143 0.104315
\(244\) 4421.30 1.16002
\(245\) −223.908 −0.0583877
\(246\) −792.476 −0.205392
\(247\) −195.446 −0.0503478
\(248\) 7972.41 2.04132
\(249\) 5249.08 1.33593
\(250\) −5118.79 −1.29496
\(251\) −5186.97 −1.30438 −0.652188 0.758057i \(-0.726149\pi\)
−0.652188 + 0.758057i \(0.726149\pi\)
\(252\) 156.931 0.0392290
\(253\) 819.378 0.203612
\(254\) 3478.37 0.859261
\(255\) 0 0
\(256\) −8139.09 −1.98708
\(257\) −1815.85 −0.440738 −0.220369 0.975417i \(-0.570726\pi\)
−0.220369 + 0.975417i \(0.570726\pi\)
\(258\) 6685.18 1.61318
\(259\) −586.488 −0.140705
\(260\) 174.848 0.0417062
\(261\) 77.4505 0.0183681
\(262\) −7537.79 −1.77743
\(263\) −3070.90 −0.719999 −0.360000 0.932952i \(-0.617223\pi\)
−0.360000 + 0.932952i \(0.617223\pi\)
\(264\) 2517.66 0.586937
\(265\) −78.3244 −0.0181563
\(266\) −2780.12 −0.640828
\(267\) 3375.26 0.773643
\(268\) 14210.9 3.23905
\(269\) −5399.67 −1.22388 −0.611940 0.790904i \(-0.709611\pi\)
−0.611940 + 0.790904i \(0.709611\pi\)
\(270\) 3047.30 0.686862
\(271\) 4553.25 1.02063 0.510314 0.859988i \(-0.329529\pi\)
0.510314 + 0.859988i \(0.329529\pi\)
\(272\) 0 0
\(273\) 89.7682 0.0199012
\(274\) 11094.1 2.44605
\(275\) −1272.74 −0.279088
\(276\) −5682.01 −1.23919
\(277\) 3093.34 0.670979 0.335489 0.942044i \(-0.391098\pi\)
0.335489 + 0.942044i \(0.391098\pi\)
\(278\) 1793.27 0.386881
\(279\) −290.838 −0.0624086
\(280\) 1236.02 0.263809
\(281\) 1762.74 0.374222 0.187111 0.982339i \(-0.440088\pi\)
0.187111 + 0.982339i \(0.440088\pi\)
\(282\) 528.080 0.111513
\(283\) −274.316 −0.0576198 −0.0288099 0.999585i \(-0.509172\pi\)
−0.0288099 + 0.999585i \(0.509172\pi\)
\(284\) 2869.79 0.599615
\(285\) 1978.53 0.411221
\(286\) 143.791 0.0297292
\(287\) −212.873 −0.0437821
\(288\) 10.5699 0.00216263
\(289\) 0 0
\(290\) 1227.48 0.248552
\(291\) −1246.05 −0.251012
\(292\) −4355.25 −0.872849
\(293\) 4475.67 0.892394 0.446197 0.894935i \(-0.352778\pi\)
0.446197 + 0.894935i \(0.352778\pi\)
\(294\) 1276.91 0.253303
\(295\) −3167.72 −0.625192
\(296\) 3237.54 0.635738
\(297\) 1667.32 0.325750
\(298\) −1744.45 −0.339105
\(299\) −161.275 −0.0311931
\(300\) 8825.88 1.69854
\(301\) 1795.75 0.343872
\(302\) 15967.5 3.04247
\(303\) −6158.75 −1.16769
\(304\) 5011.68 0.945526
\(305\) −1270.37 −0.238495
\(306\) 0 0
\(307\) 7535.94 1.40097 0.700487 0.713665i \(-0.252966\pi\)
0.700487 + 0.713665i \(0.252966\pi\)
\(308\) 1360.83 0.251754
\(309\) 6182.71 1.13826
\(310\) −4609.36 −0.844497
\(311\) 10419.1 1.89972 0.949859 0.312679i \(-0.101226\pi\)
0.949859 + 0.312679i \(0.101226\pi\)
\(312\) −495.540 −0.0899181
\(313\) 2239.40 0.404403 0.202201 0.979344i \(-0.435190\pi\)
0.202201 + 0.979344i \(0.435190\pi\)
\(314\) 8147.55 1.46431
\(315\) −45.0908 −0.00806533
\(316\) 16991.4 3.02481
\(317\) −1736.45 −0.307662 −0.153831 0.988097i \(-0.549161\pi\)
−0.153831 + 0.988097i \(0.549161\pi\)
\(318\) 446.670 0.0787674
\(319\) 671.613 0.117878
\(320\) 2422.87 0.423257
\(321\) −9038.29 −1.57155
\(322\) −2294.05 −0.397027
\(323\) 0 0
\(324\) −12167.4 −2.08632
\(325\) 250.508 0.0427560
\(326\) −18261.0 −3.10240
\(327\) 2677.05 0.452725
\(328\) 1175.10 0.197818
\(329\) 141.851 0.0237706
\(330\) −1455.62 −0.242816
\(331\) −3587.98 −0.595811 −0.297906 0.954595i \(-0.596288\pi\)
−0.297906 + 0.954595i \(0.596288\pi\)
\(332\) −15661.9 −2.58903
\(333\) −118.107 −0.0194362
\(334\) −2643.10 −0.433006
\(335\) −4083.20 −0.665937
\(336\) −2301.87 −0.373741
\(337\) 5117.37 0.827183 0.413592 0.910463i \(-0.364274\pi\)
0.413592 + 0.910463i \(0.364274\pi\)
\(338\) 10713.1 1.72401
\(339\) 7178.33 1.15007
\(340\) 0 0
\(341\) −2522.00 −0.400510
\(342\) −559.863 −0.0885202
\(343\) 343.000 0.0539949
\(344\) −9912.96 −1.55369
\(345\) 1632.61 0.254773
\(346\) 6105.11 0.948592
\(347\) 7787.39 1.20475 0.602376 0.798212i \(-0.294221\pi\)
0.602376 + 0.798212i \(0.294221\pi\)
\(348\) −4657.32 −0.717410
\(349\) −6896.66 −1.05779 −0.528897 0.848686i \(-0.677394\pi\)
−0.528897 + 0.848686i \(0.677394\pi\)
\(350\) 3563.36 0.544199
\(351\) −328.171 −0.0499045
\(352\) 91.6571 0.0138788
\(353\) 3774.78 0.569154 0.284577 0.958653i \(-0.408147\pi\)
0.284577 + 0.958653i \(0.408147\pi\)
\(354\) 18064.9 2.71226
\(355\) −824.574 −0.123278
\(356\) −10070.9 −1.49932
\(357\) 0 0
\(358\) 15188.4 2.24226
\(359\) −6489.78 −0.954088 −0.477044 0.878879i \(-0.658292\pi\)
−0.477044 + 0.878879i \(0.658292\pi\)
\(360\) 248.911 0.0364410
\(361\) −260.136 −0.0379263
\(362\) 3070.00 0.445734
\(363\) 6297.89 0.910615
\(364\) −267.845 −0.0385684
\(365\) 1251.39 0.179454
\(366\) 7244.69 1.03466
\(367\) 12082.8 1.71858 0.859288 0.511492i \(-0.170907\pi\)
0.859288 + 0.511492i \(0.170907\pi\)
\(368\) 4135.46 0.585803
\(369\) −42.8684 −0.00604780
\(370\) −1871.83 −0.263005
\(371\) 119.983 0.0167904
\(372\) 17488.9 2.43752
\(373\) 4796.64 0.665846 0.332923 0.942954i \(-0.391965\pi\)
0.332923 + 0.942954i \(0.391965\pi\)
\(374\) 0 0
\(375\) −5580.44 −0.768461
\(376\) −783.051 −0.107401
\(377\) −132.191 −0.0180588
\(378\) −4668.08 −0.635186
\(379\) 3459.63 0.468890 0.234445 0.972129i \(-0.424673\pi\)
0.234445 + 0.972129i \(0.424673\pi\)
\(380\) −5903.42 −0.796945
\(381\) 3792.08 0.509906
\(382\) −22055.5 −2.95407
\(383\) 14128.4 1.88492 0.942462 0.334315i \(-0.108505\pi\)
0.942462 + 0.334315i \(0.108505\pi\)
\(384\) −13497.5 −1.79372
\(385\) −391.005 −0.0517597
\(386\) 21027.7 2.77275
\(387\) 361.630 0.0475005
\(388\) 3717.89 0.486462
\(389\) −13545.2 −1.76547 −0.882737 0.469868i \(-0.844301\pi\)
−0.882737 + 0.469868i \(0.844301\pi\)
\(390\) 286.504 0.0371992
\(391\) 0 0
\(392\) −1893.44 −0.243962
\(393\) −8217.62 −1.05477
\(394\) −21455.7 −2.74345
\(395\) −4882.13 −0.621890
\(396\) 274.044 0.0347758
\(397\) −12475.6 −1.57716 −0.788582 0.614929i \(-0.789185\pi\)
−0.788582 + 0.614929i \(0.789185\pi\)
\(398\) 26485.3 3.33565
\(399\) −3030.86 −0.380282
\(400\) −6423.62 −0.802952
\(401\) 2649.19 0.329911 0.164955 0.986301i \(-0.447252\pi\)
0.164955 + 0.986301i \(0.447252\pi\)
\(402\) 23285.7 2.88902
\(403\) 496.394 0.0613577
\(404\) 18376.1 2.26298
\(405\) 3496.05 0.428939
\(406\) −1880.35 −0.229852
\(407\) −1024.17 −0.124732
\(408\) 0 0
\(409\) 9345.41 1.12983 0.564916 0.825149i \(-0.308909\pi\)
0.564916 + 0.825149i \(0.308909\pi\)
\(410\) −679.403 −0.0818374
\(411\) 12094.7 1.45155
\(412\) −18447.6 −2.20594
\(413\) 4852.55 0.578155
\(414\) −461.978 −0.0548429
\(415\) 4500.13 0.532295
\(416\) −18.0405 −0.00212622
\(417\) 1955.00 0.229585
\(418\) −4854.85 −0.568083
\(419\) 13135.2 1.53150 0.765750 0.643138i \(-0.222368\pi\)
0.765750 + 0.643138i \(0.222368\pi\)
\(420\) 2711.44 0.315011
\(421\) −4924.90 −0.570131 −0.285065 0.958508i \(-0.592015\pi\)
−0.285065 + 0.958508i \(0.592015\pi\)
\(422\) 24793.6 2.86003
\(423\) 28.5661 0.00328353
\(424\) −662.334 −0.0758627
\(425\) 0 0
\(426\) 4702.40 0.534817
\(427\) 1946.05 0.220552
\(428\) 26967.9 3.04566
\(429\) 156.760 0.0176420
\(430\) 5731.32 0.642764
\(431\) −6365.31 −0.711384 −0.355692 0.934603i \(-0.615755\pi\)
−0.355692 + 0.934603i \(0.615755\pi\)
\(432\) 8415.08 0.937201
\(433\) 1601.53 0.177747 0.0888735 0.996043i \(-0.471673\pi\)
0.0888735 + 0.996043i \(0.471673\pi\)
\(434\) 7060.97 0.780962
\(435\) 1338.19 0.147497
\(436\) −7987.62 −0.877380
\(437\) 5445.14 0.596055
\(438\) −7136.47 −0.778524
\(439\) −983.541 −0.106929 −0.0534645 0.998570i \(-0.517026\pi\)
−0.0534645 + 0.998570i \(0.517026\pi\)
\(440\) 2158.43 0.233862
\(441\) 69.0735 0.00745854
\(442\) 0 0
\(443\) −153.603 −0.0164738 −0.00823688 0.999966i \(-0.502622\pi\)
−0.00823688 + 0.999966i \(0.502622\pi\)
\(444\) 7102.13 0.759127
\(445\) 2893.67 0.308254
\(446\) 7899.03 0.838632
\(447\) −1901.78 −0.201233
\(448\) −3711.53 −0.391414
\(449\) 11814.8 1.24182 0.620909 0.783883i \(-0.286764\pi\)
0.620909 + 0.783883i \(0.286764\pi\)
\(450\) 717.592 0.0751724
\(451\) −371.734 −0.0388121
\(452\) −21418.3 −2.22883
\(453\) 17407.6 1.80548
\(454\) −24258.4 −2.50771
\(455\) 76.9598 0.00792952
\(456\) 16731.0 1.71820
\(457\) 13741.4 1.40655 0.703277 0.710916i \(-0.251720\pi\)
0.703277 + 0.710916i \(0.251720\pi\)
\(458\) 356.527 0.0363742
\(459\) 0 0
\(460\) −4871.28 −0.493749
\(461\) −5182.54 −0.523590 −0.261795 0.965123i \(-0.584314\pi\)
−0.261795 + 0.965123i \(0.584314\pi\)
\(462\) 2229.83 0.224548
\(463\) 5240.52 0.526021 0.263011 0.964793i \(-0.415285\pi\)
0.263011 + 0.964793i \(0.415285\pi\)
\(464\) 3389.67 0.339142
\(465\) −5025.07 −0.501145
\(466\) −19456.5 −1.93413
\(467\) −4002.51 −0.396604 −0.198302 0.980141i \(-0.563543\pi\)
−0.198302 + 0.980141i \(0.563543\pi\)
\(468\) −53.9388 −0.00532761
\(469\) 6254.95 0.615835
\(470\) 452.732 0.0444319
\(471\) 8882.37 0.868955
\(472\) −26787.1 −2.61224
\(473\) 3135.88 0.304837
\(474\) 27841.9 2.69794
\(475\) −8457.95 −0.817005
\(476\) 0 0
\(477\) 24.1623 0.00231932
\(478\) 11710.3 1.12054
\(479\) 11572.2 1.10386 0.551929 0.833891i \(-0.313892\pi\)
0.551929 + 0.833891i \(0.313892\pi\)
\(480\) 182.626 0.0173661
\(481\) 201.582 0.0191089
\(482\) 18867.9 1.78300
\(483\) −2500.95 −0.235605
\(484\) −18791.3 −1.76477
\(485\) −1068.26 −0.100015
\(486\) −1931.91 −0.180315
\(487\) 14012.6 1.30384 0.651920 0.758288i \(-0.273964\pi\)
0.651920 + 0.758288i \(0.273964\pi\)
\(488\) −10742.6 −0.996506
\(489\) −19907.9 −1.84104
\(490\) 1094.72 0.100927
\(491\) 5225.13 0.480259 0.240129 0.970741i \(-0.422810\pi\)
0.240129 + 0.970741i \(0.422810\pi\)
\(492\) 2577.80 0.236212
\(493\) 0 0
\(494\) 955.559 0.0870296
\(495\) −78.7408 −0.00714977
\(496\) −12728.7 −1.15229
\(497\) 1263.15 0.114004
\(498\) −25663.4 −2.30925
\(499\) −3252.73 −0.291808 −0.145904 0.989299i \(-0.546609\pi\)
−0.145904 + 0.989299i \(0.546609\pi\)
\(500\) 16650.6 1.48928
\(501\) −2881.48 −0.256956
\(502\) 25359.7 2.25470
\(503\) 3033.67 0.268916 0.134458 0.990919i \(-0.457071\pi\)
0.134458 + 0.990919i \(0.457071\pi\)
\(504\) −381.301 −0.0336994
\(505\) −5280.00 −0.465261
\(506\) −4006.04 −0.351957
\(507\) 11679.3 1.02307
\(508\) −11314.6 −0.988196
\(509\) −1536.89 −0.133834 −0.0669171 0.997759i \(-0.521316\pi\)
−0.0669171 + 0.997759i \(0.521316\pi\)
\(510\) 0 0
\(511\) −1916.98 −0.165953
\(512\) 19534.5 1.68615
\(513\) 11080.1 0.953603
\(514\) 8877.92 0.761845
\(515\) 5300.54 0.453534
\(516\) −21745.8 −1.85525
\(517\) 247.711 0.0210722
\(518\) 2867.41 0.243218
\(519\) 6655.72 0.562917
\(520\) −424.835 −0.0358274
\(521\) 2453.24 0.206293 0.103146 0.994666i \(-0.467109\pi\)
0.103146 + 0.994666i \(0.467109\pi\)
\(522\) −378.665 −0.0317505
\(523\) 15144.2 1.26617 0.633087 0.774080i \(-0.281787\pi\)
0.633087 + 0.774080i \(0.281787\pi\)
\(524\) 24519.3 2.04414
\(525\) 3884.74 0.322941
\(526\) 15014.0 1.24457
\(527\) 0 0
\(528\) −4019.69 −0.331315
\(529\) −7673.88 −0.630712
\(530\) 382.938 0.0313845
\(531\) 977.209 0.0798630
\(532\) 9043.30 0.736987
\(533\) 73.1667 0.00594597
\(534\) −16502.1 −1.33729
\(535\) −7748.68 −0.626177
\(536\) −34528.7 −2.78249
\(537\) 16558.2 1.33061
\(538\) 26399.7 2.11556
\(539\) 598.971 0.0478655
\(540\) −9912.38 −0.789928
\(541\) −3932.38 −0.312507 −0.156253 0.987717i \(-0.549942\pi\)
−0.156253 + 0.987717i \(0.549942\pi\)
\(542\) −22261.4 −1.76422
\(543\) 3346.88 0.264509
\(544\) 0 0
\(545\) 2295.08 0.180386
\(546\) −438.888 −0.0344005
\(547\) 8651.68 0.676269 0.338135 0.941098i \(-0.390204\pi\)
0.338135 + 0.941098i \(0.390204\pi\)
\(548\) −36087.4 −2.81309
\(549\) 391.896 0.0304658
\(550\) 6222.60 0.482423
\(551\) 4463.17 0.345077
\(552\) 13805.8 1.06452
\(553\) 7478.82 0.575103
\(554\) −15123.8 −1.15983
\(555\) −2040.65 −0.156073
\(556\) −5833.22 −0.444935
\(557\) 1534.71 0.116746 0.0583732 0.998295i \(-0.481409\pi\)
0.0583732 + 0.998295i \(0.481409\pi\)
\(558\) 1421.94 0.107877
\(559\) −617.220 −0.0467006
\(560\) −1973.43 −0.148915
\(561\) 0 0
\(562\) −8618.27 −0.646868
\(563\) −25084.0 −1.87774 −0.938868 0.344277i \(-0.888124\pi\)
−0.938868 + 0.344277i \(0.888124\pi\)
\(564\) −1717.76 −0.128246
\(565\) 6154.10 0.458239
\(566\) 1341.17 0.0995997
\(567\) −5355.52 −0.396668
\(568\) −6972.84 −0.515095
\(569\) −3239.35 −0.238665 −0.119333 0.992854i \(-0.538075\pi\)
−0.119333 + 0.992854i \(0.538075\pi\)
\(570\) −9673.27 −0.710822
\(571\) −2403.43 −0.176148 −0.0880739 0.996114i \(-0.528071\pi\)
−0.0880739 + 0.996114i \(0.528071\pi\)
\(572\) −467.731 −0.0341902
\(573\) −24044.6 −1.75302
\(574\) 1040.76 0.0756804
\(575\) −6979.18 −0.506178
\(576\) −747.430 −0.0540676
\(577\) −15163.7 −1.09406 −0.547029 0.837114i \(-0.684241\pi\)
−0.547029 + 0.837114i \(0.684241\pi\)
\(578\) 0 0
\(579\) 22924.1 1.64541
\(580\) −3992.80 −0.285848
\(581\) −6893.64 −0.492248
\(582\) 6092.09 0.433892
\(583\) 209.523 0.0148844
\(584\) 10582.1 0.749815
\(585\) 15.4982 0.00109534
\(586\) −21882.1 −1.54256
\(587\) −1892.33 −0.133058 −0.0665289 0.997784i \(-0.521192\pi\)
−0.0665289 + 0.997784i \(0.521192\pi\)
\(588\) −4153.59 −0.291312
\(589\) −16759.8 −1.17246
\(590\) 15487.4 1.08069
\(591\) −23390.7 −1.62803
\(592\) −5169.04 −0.358862
\(593\) −10086.6 −0.698494 −0.349247 0.937031i \(-0.613563\pi\)
−0.349247 + 0.937031i \(0.613563\pi\)
\(594\) −8151.74 −0.563081
\(595\) 0 0
\(596\) 5674.42 0.389989
\(597\) 28874.0 1.97945
\(598\) 788.492 0.0539194
\(599\) −7544.15 −0.514600 −0.257300 0.966332i \(-0.582833\pi\)
−0.257300 + 0.966332i \(0.582833\pi\)
\(600\) −21444.6 −1.45912
\(601\) 10158.8 0.689495 0.344748 0.938695i \(-0.387964\pi\)
0.344748 + 0.938695i \(0.387964\pi\)
\(602\) −8779.67 −0.594406
\(603\) 1259.63 0.0850678
\(604\) −51939.8 −3.49901
\(605\) 5399.28 0.362830
\(606\) 30110.9 2.01843
\(607\) −7954.41 −0.531894 −0.265947 0.963988i \(-0.585685\pi\)
−0.265947 + 0.963988i \(0.585685\pi\)
\(608\) 609.103 0.0406289
\(609\) −2049.93 −0.136400
\(610\) 6210.99 0.412255
\(611\) −48.7559 −0.00322823
\(612\) 0 0
\(613\) 20246.8 1.33403 0.667016 0.745043i \(-0.267571\pi\)
0.667016 + 0.745043i \(0.267571\pi\)
\(614\) −36844.2 −2.42168
\(615\) −740.678 −0.0485642
\(616\) −3306.45 −0.216268
\(617\) 9349.12 0.610019 0.305009 0.952349i \(-0.401340\pi\)
0.305009 + 0.952349i \(0.401340\pi\)
\(618\) −30228.1 −1.96756
\(619\) −12426.7 −0.806902 −0.403451 0.915001i \(-0.632189\pi\)
−0.403451 + 0.915001i \(0.632189\pi\)
\(620\) 14993.5 0.971217
\(621\) 9142.88 0.590807
\(622\) −50940.2 −3.28379
\(623\) −4432.74 −0.285063
\(624\) 791.177 0.0507571
\(625\) 8230.68 0.526763
\(626\) −10948.7 −0.699038
\(627\) −5292.70 −0.337114
\(628\) −26502.7 −1.68403
\(629\) 0 0
\(630\) 220.455 0.0139415
\(631\) −480.557 −0.0303180 −0.0151590 0.999885i \(-0.504825\pi\)
−0.0151590 + 0.999885i \(0.504825\pi\)
\(632\) −41284.7 −2.59845
\(633\) 27029.7 1.69721
\(634\) 8489.74 0.531815
\(635\) 3251.01 0.203169
\(636\) −1452.95 −0.0905867
\(637\) −117.893 −0.00733295
\(638\) −3283.60 −0.203760
\(639\) 254.373 0.0157478
\(640\) −11571.6 −0.714699
\(641\) 7237.13 0.445943 0.222971 0.974825i \(-0.428424\pi\)
0.222971 + 0.974825i \(0.428424\pi\)
\(642\) 44189.4 2.71653
\(643\) −24889.7 −1.52652 −0.763262 0.646089i \(-0.776403\pi\)
−0.763262 + 0.646089i \(0.776403\pi\)
\(644\) 7462.20 0.456602
\(645\) 6248.22 0.381432
\(646\) 0 0
\(647\) 1948.66 0.118408 0.0592039 0.998246i \(-0.481144\pi\)
0.0592039 + 0.998246i \(0.481144\pi\)
\(648\) 29563.6 1.79224
\(649\) 8473.87 0.512525
\(650\) −1224.77 −0.0739066
\(651\) 7697.79 0.463441
\(652\) 59400.1 3.56792
\(653\) 17239.8 1.03315 0.516574 0.856243i \(-0.327207\pi\)
0.516574 + 0.856243i \(0.327207\pi\)
\(654\) −13088.4 −0.782566
\(655\) −7045.10 −0.420267
\(656\) −1876.16 −0.111664
\(657\) −386.042 −0.0229238
\(658\) −693.529 −0.0410890
\(659\) 31017.3 1.83348 0.916739 0.399486i \(-0.130811\pi\)
0.916739 + 0.399486i \(0.130811\pi\)
\(660\) 4734.91 0.279252
\(661\) −26768.9 −1.57517 −0.787587 0.616203i \(-0.788670\pi\)
−0.787587 + 0.616203i \(0.788670\pi\)
\(662\) 17542.1 1.02990
\(663\) 0 0
\(664\) 38054.4 2.22409
\(665\) −2598.41 −0.151522
\(666\) 577.441 0.0335967
\(667\) 3682.84 0.213793
\(668\) 8597.59 0.497980
\(669\) 8611.44 0.497664
\(670\) 19963.3 1.15112
\(671\) 3398.33 0.195516
\(672\) −279.761 −0.0160596
\(673\) 23372.0 1.33867 0.669334 0.742961i \(-0.266579\pi\)
0.669334 + 0.742961i \(0.266579\pi\)
\(674\) −25019.5 −1.42984
\(675\) −14201.7 −0.809811
\(676\) −34848.1 −1.98271
\(677\) −1225.58 −0.0695761 −0.0347880 0.999395i \(-0.511076\pi\)
−0.0347880 + 0.999395i \(0.511076\pi\)
\(678\) −35095.8 −1.98797
\(679\) 1636.44 0.0924901
\(680\) 0 0
\(681\) −26446.2 −1.48814
\(682\) 12330.4 0.692309
\(683\) 8494.76 0.475904 0.237952 0.971277i \(-0.423524\pi\)
0.237952 + 0.971277i \(0.423524\pi\)
\(684\) 1821.15 0.101803
\(685\) 10369.0 0.578361
\(686\) −1676.97 −0.0933339
\(687\) 388.681 0.0215853
\(688\) 15827.0 0.877032
\(689\) −41.2396 −0.00228027
\(690\) −7982.02 −0.440392
\(691\) −26061.7 −1.43478 −0.717390 0.696671i \(-0.754664\pi\)
−0.717390 + 0.696671i \(0.754664\pi\)
\(692\) −19859.0 −1.09093
\(693\) 120.621 0.00661186
\(694\) −38073.6 −2.08250
\(695\) 1676.05 0.0914768
\(696\) 11316.1 0.616286
\(697\) 0 0
\(698\) 33718.7 1.82847
\(699\) −21211.3 −1.14776
\(700\) −11591.1 −0.625858
\(701\) 13770.4 0.741942 0.370971 0.928644i \(-0.379025\pi\)
0.370971 + 0.928644i \(0.379025\pi\)
\(702\) 1604.47 0.0862633
\(703\) −6806.06 −0.365143
\(704\) −6481.34 −0.346981
\(705\) 493.563 0.0263669
\(706\) −18455.4 −0.983822
\(707\) 8088.30 0.430257
\(708\) −58762.4 −3.11924
\(709\) 17007.7 0.900902 0.450451 0.892801i \(-0.351263\pi\)
0.450451 + 0.892801i \(0.351263\pi\)
\(710\) 4031.45 0.213095
\(711\) 1506.09 0.0794413
\(712\) 24469.7 1.28798
\(713\) −13829.6 −0.726398
\(714\) 0 0
\(715\) 134.393 0.00702938
\(716\) −49405.4 −2.57872
\(717\) 12766.5 0.664955
\(718\) 31729.4 1.64921
\(719\) −27197.5 −1.41070 −0.705351 0.708858i \(-0.749211\pi\)
−0.705351 + 0.708858i \(0.749211\pi\)
\(720\) −397.410 −0.0205703
\(721\) −8119.77 −0.419412
\(722\) 1271.84 0.0655581
\(723\) 20569.5 1.05808
\(724\) −9986.24 −0.512618
\(725\) −5720.57 −0.293044
\(726\) −30791.2 −1.57406
\(727\) 12605.2 0.643054 0.321527 0.946900i \(-0.395804\pi\)
0.321527 + 0.946900i \(0.395804\pi\)
\(728\) 650.795 0.0331319
\(729\) 18550.9 0.942481
\(730\) −6118.21 −0.310199
\(731\) 0 0
\(732\) −23565.8 −1.18992
\(733\) −8015.42 −0.403897 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(734\) −59074.4 −2.97067
\(735\) 1193.45 0.0598925
\(736\) 502.609 0.0251718
\(737\) 10922.8 0.545927
\(738\) 209.589 0.0104540
\(739\) 35097.9 1.74709 0.873544 0.486746i \(-0.161816\pi\)
0.873544 + 0.486746i \(0.161816\pi\)
\(740\) 6088.78 0.302470
\(741\) 1041.74 0.0516454
\(742\) −586.614 −0.0290233
\(743\) −1506.29 −0.0743749 −0.0371875 0.999308i \(-0.511840\pi\)
−0.0371875 + 0.999308i \(0.511840\pi\)
\(744\) −42493.5 −2.09393
\(745\) −1630.43 −0.0801801
\(746\) −23451.4 −1.15096
\(747\) −1388.24 −0.0679963
\(748\) 0 0
\(749\) 11870.0 0.579067
\(750\) 27283.5 1.32834
\(751\) 8011.24 0.389260 0.194630 0.980877i \(-0.437649\pi\)
0.194630 + 0.980877i \(0.437649\pi\)
\(752\) 1250.21 0.0606258
\(753\) 27646.9 1.33799
\(754\) 646.296 0.0312158
\(755\) 14923.8 0.719382
\(756\) 15184.5 0.730498
\(757\) 6688.33 0.321125 0.160562 0.987026i \(-0.448669\pi\)
0.160562 + 0.987026i \(0.448669\pi\)
\(758\) −16914.6 −0.810508
\(759\) −4367.34 −0.208860
\(760\) 14343.8 0.684610
\(761\) 3293.24 0.156872 0.0784362 0.996919i \(-0.475007\pi\)
0.0784362 + 0.996919i \(0.475007\pi\)
\(762\) −18540.0 −0.881406
\(763\) −3515.78 −0.166815
\(764\) 71742.9 3.39734
\(765\) 0 0
\(766\) −69075.4 −3.25822
\(767\) −1667.87 −0.0785182
\(768\) 43381.9 2.03830
\(769\) 27195.0 1.27526 0.637631 0.770342i \(-0.279914\pi\)
0.637631 + 0.770342i \(0.279914\pi\)
\(770\) 1911.67 0.0894701
\(771\) 9678.61 0.452097
\(772\) −68399.7 −3.18881
\(773\) 2088.57 0.0971805 0.0485902 0.998819i \(-0.484527\pi\)
0.0485902 + 0.998819i \(0.484527\pi\)
\(774\) −1768.05 −0.0821078
\(775\) 21481.5 0.995664
\(776\) −9033.50 −0.417892
\(777\) 3126.02 0.144331
\(778\) 66224.2 3.05174
\(779\) −2470.34 −0.113619
\(780\) −931.952 −0.0427811
\(781\) 2205.80 0.101062
\(782\) 0 0
\(783\) 7494.07 0.342039
\(784\) 3023.05 0.137712
\(785\) 7615.01 0.346231
\(786\) 40177.0 1.82324
\(787\) 3292.28 0.149120 0.0745598 0.997217i \(-0.476245\pi\)
0.0745598 + 0.997217i \(0.476245\pi\)
\(788\) 69791.9 3.15512
\(789\) 16368.1 0.738556
\(790\) 23869.4 1.07498
\(791\) −9427.32 −0.423764
\(792\) −665.856 −0.0298739
\(793\) −668.878 −0.0299528
\(794\) 60995.0 2.72624
\(795\) 417.475 0.0186243
\(796\) −86152.5 −3.83618
\(797\) −8037.18 −0.357204 −0.178602 0.983921i \(-0.557157\pi\)
−0.178602 + 0.983921i \(0.557157\pi\)
\(798\) 14818.3 0.657344
\(799\) 0 0
\(800\) −780.705 −0.0345026
\(801\) −892.668 −0.0393769
\(802\) −12952.2 −0.570273
\(803\) −3347.56 −0.147114
\(804\) −75744.9 −3.32253
\(805\) −2144.11 −0.0938756
\(806\) −2426.93 −0.106061
\(807\) 28780.6 1.25542
\(808\) −44649.2 −1.94400
\(809\) −1871.47 −0.0813317 −0.0406658 0.999173i \(-0.512948\pi\)
−0.0406658 + 0.999173i \(0.512948\pi\)
\(810\) −17092.6 −0.741450
\(811\) −12499.0 −0.541181 −0.270591 0.962695i \(-0.587219\pi\)
−0.270591 + 0.962695i \(0.587219\pi\)
\(812\) 6116.48 0.264343
\(813\) −24269.1 −1.04693
\(814\) 5007.29 0.215608
\(815\) −17067.4 −0.733551
\(816\) 0 0
\(817\) 20839.3 0.892381
\(818\) −45690.9 −1.95299
\(819\) −23.7413 −0.00101293
\(820\) 2209.99 0.0941174
\(821\) 38596.2 1.64070 0.820351 0.571860i \(-0.193778\pi\)
0.820351 + 0.571860i \(0.193778\pi\)
\(822\) −59132.3 −2.50910
\(823\) −30277.9 −1.28241 −0.641204 0.767370i \(-0.721565\pi\)
−0.641204 + 0.767370i \(0.721565\pi\)
\(824\) 44822.9 1.89500
\(825\) 6783.81 0.286281
\(826\) −23724.7 −0.999381
\(827\) 29636.7 1.24615 0.623076 0.782161i \(-0.285883\pi\)
0.623076 + 0.782161i \(0.285883\pi\)
\(828\) 1502.74 0.0630723
\(829\) −21176.6 −0.887207 −0.443603 0.896223i \(-0.646300\pi\)
−0.443603 + 0.896223i \(0.646300\pi\)
\(830\) −22001.7 −0.920108
\(831\) −16487.7 −0.688272
\(832\) 1275.69 0.0531571
\(833\) 0 0
\(834\) −9558.25 −0.396852
\(835\) −2470.34 −0.102383
\(836\) 15792.1 0.653326
\(837\) −28141.3 −1.16213
\(838\) −64219.9 −2.64730
\(839\) 1007.38 0.0414526 0.0207263 0.999785i \(-0.493402\pi\)
0.0207263 + 0.999785i \(0.493402\pi\)
\(840\) −6588.10 −0.270608
\(841\) −21370.3 −0.876228
\(842\) 24078.5 0.985509
\(843\) −9395.54 −0.383867
\(844\) −80649.6 −3.28919
\(845\) 10012.9 0.407637
\(846\) −139.663 −0.00567580
\(847\) −8271.03 −0.335533
\(848\) 1057.48 0.0428231
\(849\) 1462.13 0.0591048
\(850\) 0 0
\(851\) −5616.11 −0.226225
\(852\) −15296.2 −0.615069
\(853\) 46656.5 1.87279 0.936393 0.350952i \(-0.114142\pi\)
0.936393 + 0.350952i \(0.114142\pi\)
\(854\) −9514.47 −0.381240
\(855\) −523.268 −0.0209303
\(856\) −65525.1 −2.61636
\(857\) −30696.9 −1.22356 −0.611778 0.791030i \(-0.709545\pi\)
−0.611778 + 0.791030i \(0.709545\pi\)
\(858\) −766.418 −0.0304954
\(859\) 18499.8 0.734815 0.367408 0.930060i \(-0.380245\pi\)
0.367408 + 0.930060i \(0.380245\pi\)
\(860\) −18643.1 −0.739214
\(861\) 1134.63 0.0449105
\(862\) 31120.8 1.22967
\(863\) −36103.3 −1.42407 −0.712035 0.702144i \(-0.752226\pi\)
−0.712035 + 0.702144i \(0.752226\pi\)
\(864\) 1022.74 0.0402712
\(865\) 5706.07 0.224291
\(866\) −7830.07 −0.307248
\(867\) 0 0
\(868\) −22968.2 −0.898148
\(869\) 13060.1 0.509818
\(870\) −6542.56 −0.254958
\(871\) −2149.90 −0.0836354
\(872\) 19407.9 0.753707
\(873\) 329.547 0.0127760
\(874\) −26622.0 −1.03032
\(875\) 7328.82 0.283153
\(876\) 23213.8 0.895344
\(877\) 7764.50 0.298961 0.149480 0.988765i \(-0.452240\pi\)
0.149480 + 0.988765i \(0.452240\pi\)
\(878\) 4808.66 0.184834
\(879\) −23855.6 −0.915394
\(880\) −3446.15 −0.132011
\(881\) 10059.7 0.384700 0.192350 0.981326i \(-0.438389\pi\)
0.192350 + 0.981326i \(0.438389\pi\)
\(882\) −337.709 −0.0128926
\(883\) −37488.9 −1.42877 −0.714383 0.699755i \(-0.753293\pi\)
−0.714383 + 0.699755i \(0.753293\pi\)
\(884\) 0 0
\(885\) 16884.1 0.641304
\(886\) 750.983 0.0284760
\(887\) 9284.73 0.351466 0.175733 0.984438i \(-0.443770\pi\)
0.175733 + 0.984438i \(0.443770\pi\)
\(888\) −17256.3 −0.652122
\(889\) −4980.15 −0.187884
\(890\) −14147.5 −0.532838
\(891\) −9352.19 −0.351639
\(892\) −25694.3 −0.964472
\(893\) 1646.15 0.0616869
\(894\) 9298.03 0.347844
\(895\) 14195.6 0.530176
\(896\) 17726.2 0.660929
\(897\) 859.605 0.0319971
\(898\) −57764.2 −2.14657
\(899\) −11335.6 −0.420537
\(900\) −2334.21 −0.0864523
\(901\) 0 0
\(902\) 1817.45 0.0670893
\(903\) −9571.50 −0.352735
\(904\) 52040.9 1.91466
\(905\) 2869.34 0.105392
\(906\) −85108.0 −3.12089
\(907\) 18911.5 0.692334 0.346167 0.938173i \(-0.387483\pi\)
0.346167 + 0.938173i \(0.387483\pi\)
\(908\) 78908.7 2.88401
\(909\) 1628.83 0.0594332
\(910\) −376.266 −0.0137067
\(911\) 37184.7 1.35234 0.676171 0.736745i \(-0.263638\pi\)
0.676171 + 0.736745i \(0.263638\pi\)
\(912\) −26712.6 −0.969895
\(913\) −12038.2 −0.436369
\(914\) −67183.4 −2.43132
\(915\) 6771.16 0.244642
\(916\) −1159.73 −0.0418323
\(917\) 10792.2 0.388648
\(918\) 0 0
\(919\) −10489.0 −0.376495 −0.188247 0.982122i \(-0.560281\pi\)
−0.188247 + 0.982122i \(0.560281\pi\)
\(920\) 11835.9 0.424152
\(921\) −40167.1 −1.43708
\(922\) 25338.1 0.905061
\(923\) −434.157 −0.0154826
\(924\) −7253.30 −0.258242
\(925\) 8723.52 0.310084
\(926\) −25621.6 −0.909263
\(927\) −1635.16 −0.0579351
\(928\) 411.970 0.0145728
\(929\) −47367.3 −1.67284 −0.836421 0.548088i \(-0.815356\pi\)
−0.836421 + 0.548088i \(0.815356\pi\)
\(930\) 24568.2 0.866262
\(931\) 3980.44 0.140122
\(932\) 63289.0 2.22436
\(933\) −55534.5 −1.94868
\(934\) 19568.8 0.685558
\(935\) 0 0
\(936\) 131.057 0.00457665
\(937\) 30379.3 1.05918 0.529588 0.848255i \(-0.322347\pi\)
0.529588 + 0.848255i \(0.322347\pi\)
\(938\) −30581.2 −1.06451
\(939\) −11936.1 −0.414826
\(940\) −1472.67 −0.0510990
\(941\) −41609.5 −1.44148 −0.720740 0.693206i \(-0.756198\pi\)
−0.720740 + 0.693206i \(0.756198\pi\)
\(942\) −43427.0 −1.50205
\(943\) −2038.43 −0.0703928
\(944\) 42768.2 1.47456
\(945\) −4362.96 −0.150188
\(946\) −15331.7 −0.526931
\(947\) 29893.9 1.02579 0.512893 0.858452i \(-0.328574\pi\)
0.512893 + 0.858452i \(0.328574\pi\)
\(948\) −90565.4 −3.10277
\(949\) 658.886 0.0225378
\(950\) 41352.0 1.41225
\(951\) 9255.42 0.315592
\(952\) 0 0
\(953\) 22595.5 0.768039 0.384020 0.923325i \(-0.374540\pi\)
0.384020 + 0.923325i \(0.374540\pi\)
\(954\) −118.133 −0.00400910
\(955\) −20613.9 −0.698480
\(956\) −38091.9 −1.28868
\(957\) −3579.74 −0.120916
\(958\) −56578.0 −1.90809
\(959\) −15884.0 −0.534848
\(960\) −12914.1 −0.434166
\(961\) 12775.7 0.428845
\(962\) −985.562 −0.0330310
\(963\) 2390.39 0.0799888
\(964\) −61374.2 −2.05055
\(965\) 19653.2 0.655607
\(966\) 12227.5 0.407259
\(967\) −10872.7 −0.361574 −0.180787 0.983522i \(-0.557864\pi\)
−0.180787 + 0.983522i \(0.557864\pi\)
\(968\) 45657.9 1.51601
\(969\) 0 0
\(970\) 5222.85 0.172882
\(971\) −11270.8 −0.372501 −0.186251 0.982502i \(-0.559634\pi\)
−0.186251 + 0.982502i \(0.559634\pi\)
\(972\) 6284.19 0.207372
\(973\) −2567.51 −0.0845946
\(974\) −68509.2 −2.25377
\(975\) −1335.23 −0.0438579
\(976\) 17151.6 0.562509
\(977\) 40400.9 1.32297 0.661484 0.749959i \(-0.269927\pi\)
0.661484 + 0.749959i \(0.269927\pi\)
\(978\) 97332.3 3.18235
\(979\) −7740.77 −0.252703
\(980\) −3560.94 −0.116072
\(981\) −708.009 −0.0230428
\(982\) −25546.3 −0.830159
\(983\) 11094.4 0.359975 0.179987 0.983669i \(-0.442394\pi\)
0.179987 + 0.983669i \(0.442394\pi\)
\(984\) −6263.39 −0.202916
\(985\) −20053.3 −0.648680
\(986\) 0 0
\(987\) −756.078 −0.0243832
\(988\) −3108.28 −0.100089
\(989\) 17195.8 0.552877
\(990\) 384.974 0.0123589
\(991\) 14523.4 0.465542 0.232771 0.972532i \(-0.425221\pi\)
0.232771 + 0.972532i \(0.425221\pi\)
\(992\) −1547.00 −0.0495135
\(993\) 19124.2 0.611167
\(994\) −6175.68 −0.197063
\(995\) 24754.2 0.788703
\(996\) 83479.1 2.65576
\(997\) −20326.8 −0.645694 −0.322847 0.946451i \(-0.604640\pi\)
−0.322847 + 0.946451i \(0.604640\pi\)
\(998\) 15903.0 0.504411
\(999\) −11428.0 −0.361928
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.v.1.5 56
17.5 odd 16 119.4.k.a.8.26 112
17.7 odd 16 119.4.k.a.15.26 yes 112
17.16 even 2 2023.4.a.u.1.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.k.a.8.26 112 17.5 odd 16
119.4.k.a.15.26 yes 112 17.7 odd 16
2023.4.a.u.1.5 56 17.16 even 2
2023.4.a.v.1.5 56 1.1 even 1 trivial