Properties

Label 2023.4.a.v.1.20
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.20
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.91072 q^{2} -3.61256 q^{3} -4.34916 q^{4} -15.8569 q^{5} +6.90258 q^{6} +7.00000 q^{7} +23.5957 q^{8} -13.9494 q^{9} +30.2981 q^{10} -28.2171 q^{11} +15.7116 q^{12} +57.6130 q^{13} -13.3750 q^{14} +57.2841 q^{15} -10.2915 q^{16} +26.6533 q^{18} -82.0772 q^{19} +68.9644 q^{20} -25.2879 q^{21} +53.9148 q^{22} +170.815 q^{23} -85.2411 q^{24} +126.442 q^{25} -110.082 q^{26} +147.932 q^{27} -30.4441 q^{28} -110.697 q^{29} -109.454 q^{30} -30.1681 q^{31} -169.102 q^{32} +101.936 q^{33} -110.998 q^{35} +60.6682 q^{36} +36.2332 q^{37} +156.826 q^{38} -208.131 q^{39} -374.156 q^{40} +519.242 q^{41} +48.3181 q^{42} -346.930 q^{43} +122.721 q^{44} +221.195 q^{45} -326.378 q^{46} +90.0869 q^{47} +37.1785 q^{48} +49.0000 q^{49} -241.595 q^{50} -250.568 q^{52} -637.790 q^{53} -282.656 q^{54} +447.436 q^{55} +165.170 q^{56} +296.509 q^{57} +211.511 q^{58} -216.045 q^{59} -249.138 q^{60} -669.329 q^{61} +57.6426 q^{62} -97.6458 q^{63} +405.437 q^{64} -913.565 q^{65} -194.771 q^{66} +48.5739 q^{67} -617.078 q^{69} +212.087 q^{70} -814.570 q^{71} -329.146 q^{72} +677.396 q^{73} -69.2314 q^{74} -456.780 q^{75} +356.967 q^{76} -197.520 q^{77} +397.678 q^{78} +6.39511 q^{79} +163.191 q^{80} -157.781 q^{81} -992.124 q^{82} -427.264 q^{83} +109.981 q^{84} +662.885 q^{86} +399.901 q^{87} -665.803 q^{88} +522.938 q^{89} -422.640 q^{90} +403.291 q^{91} -742.901 q^{92} +108.984 q^{93} -172.130 q^{94} +1301.49 q^{95} +610.891 q^{96} +172.218 q^{97} -93.6251 q^{98} +393.611 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91072 −0.675540 −0.337770 0.941229i \(-0.609673\pi\)
−0.337770 + 0.941229i \(0.609673\pi\)
\(3\) −3.61256 −0.695238 −0.347619 0.937636i \(-0.613010\pi\)
−0.347619 + 0.937636i \(0.613010\pi\)
\(4\) −4.34916 −0.543646
\(5\) −15.8569 −1.41829 −0.709143 0.705064i \(-0.750918\pi\)
−0.709143 + 0.705064i \(0.750918\pi\)
\(6\) 6.90258 0.469661
\(7\) 7.00000 0.377964
\(8\) 23.5957 1.04279
\(9\) −13.9494 −0.516644
\(10\) 30.2981 0.958110
\(11\) −28.2171 −0.773434 −0.386717 0.922198i \(-0.626391\pi\)
−0.386717 + 0.922198i \(0.626391\pi\)
\(12\) 15.7116 0.377963
\(13\) 57.6130 1.22915 0.614576 0.788858i \(-0.289327\pi\)
0.614576 + 0.788858i \(0.289327\pi\)
\(14\) −13.3750 −0.255330
\(15\) 57.2841 0.986047
\(16\) −10.2915 −0.160804
\(17\) 0 0
\(18\) 26.6533 0.349014
\(19\) −82.0772 −0.991042 −0.495521 0.868596i \(-0.665023\pi\)
−0.495521 + 0.868596i \(0.665023\pi\)
\(20\) 68.9644 0.771045
\(21\) −25.2879 −0.262775
\(22\) 53.9148 0.522486
\(23\) 170.815 1.54858 0.774289 0.632832i \(-0.218108\pi\)
0.774289 + 0.632832i \(0.218108\pi\)
\(24\) −85.2411 −0.724990
\(25\) 126.442 1.01154
\(26\) −110.082 −0.830341
\(27\) 147.932 1.05443
\(28\) −30.4441 −0.205479
\(29\) −110.697 −0.708826 −0.354413 0.935089i \(-0.615319\pi\)
−0.354413 + 0.935089i \(0.615319\pi\)
\(30\) −109.454 −0.666114
\(31\) −30.1681 −0.174785 −0.0873927 0.996174i \(-0.527853\pi\)
−0.0873927 + 0.996174i \(0.527853\pi\)
\(32\) −169.102 −0.934165
\(33\) 101.936 0.537721
\(34\) 0 0
\(35\) −110.998 −0.536062
\(36\) 60.6682 0.280871
\(37\) 36.2332 0.160992 0.0804960 0.996755i \(-0.474350\pi\)
0.0804960 + 0.996755i \(0.474350\pi\)
\(38\) 156.826 0.669489
\(39\) −208.131 −0.854553
\(40\) −374.156 −1.47898
\(41\) 519.242 1.97785 0.988927 0.148404i \(-0.0474135\pi\)
0.988927 + 0.148404i \(0.0474135\pi\)
\(42\) 48.3181 0.177515
\(43\) −346.930 −1.23038 −0.615190 0.788379i \(-0.710921\pi\)
−0.615190 + 0.788379i \(0.710921\pi\)
\(44\) 122.721 0.420474
\(45\) 221.195 0.732750
\(46\) −326.378 −1.04613
\(47\) 90.0869 0.279586 0.139793 0.990181i \(-0.455356\pi\)
0.139793 + 0.990181i \(0.455356\pi\)
\(48\) 37.1785 0.111797
\(49\) 49.0000 0.142857
\(50\) −241.595 −0.683334
\(51\) 0 0
\(52\) −250.568 −0.668223
\(53\) −637.790 −1.65297 −0.826483 0.562962i \(-0.809662\pi\)
−0.826483 + 0.562962i \(0.809662\pi\)
\(54\) −282.656 −0.712309
\(55\) 447.436 1.09695
\(56\) 165.170 0.394139
\(57\) 296.509 0.689010
\(58\) 211.511 0.478841
\(59\) −216.045 −0.476722 −0.238361 0.971177i \(-0.576610\pi\)
−0.238361 + 0.971177i \(0.576610\pi\)
\(60\) −249.138 −0.536060
\(61\) −669.329 −1.40490 −0.702449 0.711734i \(-0.747910\pi\)
−0.702449 + 0.711734i \(0.747910\pi\)
\(62\) 57.6426 0.118075
\(63\) −97.6458 −0.195273
\(64\) 405.437 0.791870
\(65\) −913.565 −1.74329
\(66\) −194.771 −0.363252
\(67\) 48.5739 0.0885708 0.0442854 0.999019i \(-0.485899\pi\)
0.0442854 + 0.999019i \(0.485899\pi\)
\(68\) 0 0
\(69\) −617.078 −1.07663
\(70\) 212.087 0.362131
\(71\) −814.570 −1.36157 −0.680786 0.732482i \(-0.738362\pi\)
−0.680786 + 0.732482i \(0.738362\pi\)
\(72\) −329.146 −0.538754
\(73\) 677.396 1.08607 0.543036 0.839709i \(-0.317275\pi\)
0.543036 + 0.839709i \(0.317275\pi\)
\(74\) −69.2314 −0.108757
\(75\) −456.780 −0.703259
\(76\) 356.967 0.538775
\(77\) −197.520 −0.292330
\(78\) 397.678 0.577285
\(79\) 6.39511 0.00910767 0.00455384 0.999990i \(-0.498550\pi\)
0.00455384 + 0.999990i \(0.498550\pi\)
\(80\) 163.191 0.228066
\(81\) −157.781 −0.216435
\(82\) −992.124 −1.33612
\(83\) −427.264 −0.565040 −0.282520 0.959261i \(-0.591170\pi\)
−0.282520 + 0.959261i \(0.591170\pi\)
\(84\) 109.981 0.142857
\(85\) 0 0
\(86\) 662.885 0.831172
\(87\) 399.901 0.492803
\(88\) −665.803 −0.806532
\(89\) 522.938 0.622824 0.311412 0.950275i \(-0.399198\pi\)
0.311412 + 0.950275i \(0.399198\pi\)
\(90\) −422.640 −0.495002
\(91\) 403.291 0.464576
\(92\) −742.901 −0.841878
\(93\) 108.984 0.121517
\(94\) −172.130 −0.188871
\(95\) 1301.49 1.40558
\(96\) 610.891 0.649467
\(97\) 172.218 0.180269 0.0901345 0.995930i \(-0.471270\pi\)
0.0901345 + 0.995930i \(0.471270\pi\)
\(98\) −93.6251 −0.0965057
\(99\) 393.611 0.399590
\(100\) −549.918 −0.549918
\(101\) −1909.23 −1.88095 −0.940474 0.339865i \(-0.889619\pi\)
−0.940474 + 0.339865i \(0.889619\pi\)
\(102\) 0 0
\(103\) −1592.64 −1.52357 −0.761784 0.647831i \(-0.775676\pi\)
−0.761784 + 0.647831i \(0.775676\pi\)
\(104\) 1359.42 1.28175
\(105\) 400.989 0.372691
\(106\) 1218.64 1.11664
\(107\) −235.424 −0.212704 −0.106352 0.994329i \(-0.533917\pi\)
−0.106352 + 0.994329i \(0.533917\pi\)
\(108\) −643.382 −0.573235
\(109\) −1546.55 −1.35901 −0.679506 0.733670i \(-0.737806\pi\)
−0.679506 + 0.733670i \(0.737806\pi\)
\(110\) −854.924 −0.741034
\(111\) −130.895 −0.111928
\(112\) −72.0402 −0.0607782
\(113\) 315.525 0.262673 0.131337 0.991338i \(-0.458073\pi\)
0.131337 + 0.991338i \(0.458073\pi\)
\(114\) −566.544 −0.465454
\(115\) −2708.59 −2.19633
\(116\) 481.441 0.385350
\(117\) −803.666 −0.635034
\(118\) 412.800 0.322045
\(119\) 0 0
\(120\) 1351.66 1.02824
\(121\) −534.796 −0.401800
\(122\) 1278.90 0.949066
\(123\) −1875.79 −1.37508
\(124\) 131.206 0.0950213
\(125\) −22.8682 −0.0163631
\(126\) 186.573 0.131915
\(127\) 966.820 0.675523 0.337761 0.941232i \(-0.390330\pi\)
0.337761 + 0.941232i \(0.390330\pi\)
\(128\) 578.140 0.399225
\(129\) 1253.31 0.855407
\(130\) 1745.56 1.17766
\(131\) −532.805 −0.355354 −0.177677 0.984089i \(-0.556858\pi\)
−0.177677 + 0.984089i \(0.556858\pi\)
\(132\) −443.336 −0.292329
\(133\) −574.540 −0.374579
\(134\) −92.8109 −0.0598331
\(135\) −2345.75 −1.49548
\(136\) 0 0
\(137\) −1849.21 −1.15320 −0.576600 0.817027i \(-0.695621\pi\)
−0.576600 + 0.817027i \(0.695621\pi\)
\(138\) 1179.06 0.727307
\(139\) −102.170 −0.0623451 −0.0311726 0.999514i \(-0.509924\pi\)
−0.0311726 + 0.999514i \(0.509924\pi\)
\(140\) 482.751 0.291428
\(141\) −325.444 −0.194379
\(142\) 1556.41 0.919797
\(143\) −1625.67 −0.950667
\(144\) 143.560 0.0830785
\(145\) 1755.32 1.00532
\(146\) −1294.31 −0.733685
\(147\) −177.016 −0.0993197
\(148\) −157.584 −0.0875226
\(149\) 3088.45 1.69809 0.849046 0.528318i \(-0.177177\pi\)
0.849046 + 0.528318i \(0.177177\pi\)
\(150\) 872.777 0.475080
\(151\) −516.149 −0.278170 −0.139085 0.990280i \(-0.544416\pi\)
−0.139085 + 0.990280i \(0.544416\pi\)
\(152\) −1936.67 −1.03345
\(153\) 0 0
\(154\) 377.404 0.197481
\(155\) 478.373 0.247896
\(156\) 905.194 0.464574
\(157\) −2952.38 −1.50080 −0.750399 0.660985i \(-0.770139\pi\)
−0.750399 + 0.660985i \(0.770139\pi\)
\(158\) −12.2192 −0.00615260
\(159\) 2304.06 1.14920
\(160\) 2681.44 1.32491
\(161\) 1195.70 0.585308
\(162\) 301.474 0.146210
\(163\) −2728.24 −1.31099 −0.655497 0.755198i \(-0.727541\pi\)
−0.655497 + 0.755198i \(0.727541\pi\)
\(164\) −2258.27 −1.07525
\(165\) −1616.39 −0.762642
\(166\) 816.380 0.381707
\(167\) −304.263 −0.140985 −0.0704926 0.997512i \(-0.522457\pi\)
−0.0704926 + 0.997512i \(0.522457\pi\)
\(168\) −596.688 −0.274021
\(169\) 1122.26 0.510814
\(170\) 0 0
\(171\) 1144.93 0.512016
\(172\) 1508.86 0.668891
\(173\) 1038.31 0.456310 0.228155 0.973625i \(-0.426731\pi\)
0.228155 + 0.973625i \(0.426731\pi\)
\(174\) −764.097 −0.332908
\(175\) 885.095 0.382325
\(176\) 290.395 0.124371
\(177\) 780.475 0.331435
\(178\) −999.186 −0.420742
\(179\) 3656.98 1.52701 0.763507 0.645799i \(-0.223476\pi\)
0.763507 + 0.645799i \(0.223476\pi\)
\(180\) −962.011 −0.398356
\(181\) 586.824 0.240985 0.120492 0.992714i \(-0.461553\pi\)
0.120492 + 0.992714i \(0.461553\pi\)
\(182\) −770.575 −0.313839
\(183\) 2417.99 0.976739
\(184\) 4030.50 1.61485
\(185\) −574.547 −0.228333
\(186\) −208.238 −0.0820899
\(187\) 0 0
\(188\) −391.803 −0.151995
\(189\) 1035.53 0.398537
\(190\) −2486.78 −0.949527
\(191\) 1014.66 0.384388 0.192194 0.981357i \(-0.438440\pi\)
0.192194 + 0.981357i \(0.438440\pi\)
\(192\) −1464.67 −0.550538
\(193\) 3309.22 1.23421 0.617106 0.786880i \(-0.288305\pi\)
0.617106 + 0.786880i \(0.288305\pi\)
\(194\) −329.060 −0.121779
\(195\) 3300.31 1.21200
\(196\) −213.109 −0.0776636
\(197\) 3087.91 1.11677 0.558386 0.829581i \(-0.311421\pi\)
0.558386 + 0.829581i \(0.311421\pi\)
\(198\) −752.079 −0.269939
\(199\) 893.733 0.318367 0.159183 0.987249i \(-0.449114\pi\)
0.159183 + 0.987249i \(0.449114\pi\)
\(200\) 2983.50 1.05483
\(201\) −175.476 −0.0615778
\(202\) 3648.00 1.27066
\(203\) −774.881 −0.267911
\(204\) 0 0
\(205\) −8233.59 −2.80516
\(206\) 3043.08 1.02923
\(207\) −2382.76 −0.800064
\(208\) −592.922 −0.197653
\(209\) 2315.98 0.766505
\(210\) −766.176 −0.251767
\(211\) −3136.57 −1.02337 −0.511683 0.859174i \(-0.670978\pi\)
−0.511683 + 0.859174i \(0.670978\pi\)
\(212\) 2773.85 0.898627
\(213\) 2942.68 0.946617
\(214\) 449.829 0.143690
\(215\) 5501.25 1.74503
\(216\) 3490.57 1.09955
\(217\) −211.177 −0.0660627
\(218\) 2955.01 0.918068
\(219\) −2447.14 −0.755078
\(220\) −1945.97 −0.596352
\(221\) 0 0
\(222\) 250.103 0.0756117
\(223\) 40.7664 0.0122418 0.00612090 0.999981i \(-0.498052\pi\)
0.00612090 + 0.999981i \(0.498052\pi\)
\(224\) −1183.71 −0.353081
\(225\) −1763.79 −0.522605
\(226\) −602.879 −0.177446
\(227\) −5794.92 −1.69437 −0.847185 0.531297i \(-0.821705\pi\)
−0.847185 + 0.531297i \(0.821705\pi\)
\(228\) −1289.57 −0.374577
\(229\) −1405.79 −0.405665 −0.202832 0.979213i \(-0.565015\pi\)
−0.202832 + 0.979213i \(0.565015\pi\)
\(230\) 5175.36 1.48371
\(231\) 713.552 0.203239
\(232\) −2611.98 −0.739160
\(233\) 4818.67 1.35486 0.677428 0.735589i \(-0.263094\pi\)
0.677428 + 0.735589i \(0.263094\pi\)
\(234\) 1535.58 0.428991
\(235\) −1428.50 −0.396533
\(236\) 939.613 0.259168
\(237\) −23.1027 −0.00633200
\(238\) 0 0
\(239\) 4767.10 1.29020 0.645101 0.764098i \(-0.276815\pi\)
0.645101 + 0.764098i \(0.276815\pi\)
\(240\) −589.537 −0.158560
\(241\) −1385.95 −0.370443 −0.185222 0.982697i \(-0.559300\pi\)
−0.185222 + 0.982697i \(0.559300\pi\)
\(242\) 1021.84 0.271432
\(243\) −3424.18 −0.903955
\(244\) 2911.02 0.763767
\(245\) −776.989 −0.202612
\(246\) 3584.11 0.928921
\(247\) −4728.71 −1.21814
\(248\) −711.838 −0.182265
\(249\) 1543.52 0.392837
\(250\) 43.6946 0.0110540
\(251\) 6681.73 1.68027 0.840133 0.542380i \(-0.182477\pi\)
0.840133 + 0.542380i \(0.182477\pi\)
\(252\) 424.677 0.106159
\(253\) −4819.89 −1.19772
\(254\) −1847.32 −0.456343
\(255\) 0 0
\(256\) −4348.16 −1.06156
\(257\) 3582.54 0.869542 0.434771 0.900541i \(-0.356829\pi\)
0.434771 + 0.900541i \(0.356829\pi\)
\(258\) −2394.71 −0.577862
\(259\) 253.632 0.0608493
\(260\) 3973.24 0.947731
\(261\) 1544.16 0.366211
\(262\) 1018.04 0.240056
\(263\) −6028.82 −1.41351 −0.706754 0.707459i \(-0.749841\pi\)
−0.706754 + 0.707459i \(0.749841\pi\)
\(264\) 2405.26 0.560732
\(265\) 10113.4 2.34438
\(266\) 1097.78 0.253043
\(267\) −1889.15 −0.433011
\(268\) −211.256 −0.0481511
\(269\) 2082.33 0.471978 0.235989 0.971756i \(-0.424167\pi\)
0.235989 + 0.971756i \(0.424167\pi\)
\(270\) 4482.06 1.01026
\(271\) −4984.04 −1.11719 −0.558596 0.829440i \(-0.688660\pi\)
−0.558596 + 0.829440i \(0.688660\pi\)
\(272\) 0 0
\(273\) −1456.91 −0.322991
\(274\) 3533.31 0.779033
\(275\) −3567.83 −0.782357
\(276\) 2683.78 0.585305
\(277\) 1678.03 0.363983 0.181991 0.983300i \(-0.441746\pi\)
0.181991 + 0.983300i \(0.441746\pi\)
\(278\) 195.219 0.0421166
\(279\) 420.826 0.0903019
\(280\) −2619.09 −0.559003
\(281\) −2950.83 −0.626448 −0.313224 0.949679i \(-0.601409\pi\)
−0.313224 + 0.949679i \(0.601409\pi\)
\(282\) 621.832 0.131310
\(283\) 6387.17 1.34162 0.670808 0.741631i \(-0.265947\pi\)
0.670808 + 0.741631i \(0.265947\pi\)
\(284\) 3542.70 0.740213
\(285\) −4701.72 −0.977214
\(286\) 3106.20 0.642214
\(287\) 3634.70 0.747558
\(288\) 2358.87 0.482631
\(289\) 0 0
\(290\) −3353.92 −0.679133
\(291\) −622.148 −0.125330
\(292\) −2946.11 −0.590438
\(293\) −6966.22 −1.38898 −0.694490 0.719503i \(-0.744370\pi\)
−0.694490 + 0.719503i \(0.744370\pi\)
\(294\) 338.226 0.0670944
\(295\) 3425.80 0.676129
\(296\) 854.950 0.167882
\(297\) −4174.22 −0.815531
\(298\) −5901.15 −1.14713
\(299\) 9841.14 1.90344
\(300\) 1986.61 0.382324
\(301\) −2428.51 −0.465040
\(302\) 986.214 0.187915
\(303\) 6897.22 1.30771
\(304\) 844.694 0.159364
\(305\) 10613.5 1.99255
\(306\) 0 0
\(307\) −1423.61 −0.264656 −0.132328 0.991206i \(-0.542245\pi\)
−0.132328 + 0.991206i \(0.542245\pi\)
\(308\) 859.045 0.158924
\(309\) 5753.51 1.05924
\(310\) −914.035 −0.167464
\(311\) 2640.30 0.481407 0.240703 0.970599i \(-0.422622\pi\)
0.240703 + 0.970599i \(0.422622\pi\)
\(312\) −4911.00 −0.891123
\(313\) 1834.80 0.331340 0.165670 0.986181i \(-0.447021\pi\)
0.165670 + 0.986181i \(0.447021\pi\)
\(314\) 5641.16 1.01385
\(315\) 1548.36 0.276953
\(316\) −27.8134 −0.00495135
\(317\) 819.489 0.145196 0.0725980 0.997361i \(-0.476871\pi\)
0.0725980 + 0.997361i \(0.476871\pi\)
\(318\) −4402.40 −0.776334
\(319\) 3123.55 0.548230
\(320\) −6428.99 −1.12310
\(321\) 850.484 0.147880
\(322\) −2284.65 −0.395399
\(323\) 0 0
\(324\) 686.215 0.117664
\(325\) 7284.71 1.24333
\(326\) 5212.89 0.885629
\(327\) 5587.00 0.944837
\(328\) 12251.9 2.06249
\(329\) 630.608 0.105673
\(330\) 3088.47 0.515195
\(331\) 3179.76 0.528022 0.264011 0.964520i \(-0.414954\pi\)
0.264011 + 0.964520i \(0.414954\pi\)
\(332\) 1858.24 0.307181
\(333\) −505.431 −0.0831756
\(334\) 581.359 0.0952412
\(335\) −770.232 −0.125619
\(336\) 260.250 0.0422553
\(337\) −9833.46 −1.58950 −0.794752 0.606934i \(-0.792399\pi\)
−0.794752 + 0.606934i \(0.792399\pi\)
\(338\) −2144.32 −0.345075
\(339\) −1139.85 −0.182621
\(340\) 0 0
\(341\) 851.255 0.135185
\(342\) −2187.63 −0.345887
\(343\) 343.000 0.0539949
\(344\) −8186.08 −1.28303
\(345\) 9784.97 1.52697
\(346\) −1983.93 −0.308256
\(347\) −5312.81 −0.821922 −0.410961 0.911653i \(-0.634807\pi\)
−0.410961 + 0.911653i \(0.634807\pi\)
\(348\) −1739.23 −0.267910
\(349\) −223.175 −0.0342300 −0.0171150 0.999854i \(-0.505448\pi\)
−0.0171150 + 0.999854i \(0.505448\pi\)
\(350\) −1691.17 −0.258276
\(351\) 8522.82 1.29605
\(352\) 4771.56 0.722515
\(353\) −4317.81 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(354\) −1491.27 −0.223898
\(355\) 12916.6 1.93110
\(356\) −2274.34 −0.338595
\(357\) 0 0
\(358\) −6987.45 −1.03156
\(359\) −9910.55 −1.45699 −0.728494 0.685052i \(-0.759779\pi\)
−0.728494 + 0.685052i \(0.759779\pi\)
\(360\) 5219.25 0.764107
\(361\) −122.337 −0.0178359
\(362\) −1121.25 −0.162795
\(363\) 1931.98 0.279347
\(364\) −1753.98 −0.252564
\(365\) −10741.4 −1.54036
\(366\) −4620.10 −0.659826
\(367\) 11737.6 1.66947 0.834736 0.550651i \(-0.185620\pi\)
0.834736 + 0.550651i \(0.185620\pi\)
\(368\) −1757.93 −0.249018
\(369\) −7243.11 −1.02185
\(370\) 1097.80 0.154248
\(371\) −4464.53 −0.624762
\(372\) −473.990 −0.0660624
\(373\) −6427.28 −0.892204 −0.446102 0.894982i \(-0.647188\pi\)
−0.446102 + 0.894982i \(0.647188\pi\)
\(374\) 0 0
\(375\) 82.6127 0.0113763
\(376\) 2125.67 0.291550
\(377\) −6377.60 −0.871255
\(378\) −1978.60 −0.269227
\(379\) 7003.12 0.949145 0.474572 0.880216i \(-0.342603\pi\)
0.474572 + 0.880216i \(0.342603\pi\)
\(380\) −5660.40 −0.764138
\(381\) −3492.70 −0.469649
\(382\) −1938.73 −0.259670
\(383\) 5814.35 0.775717 0.387858 0.921719i \(-0.373215\pi\)
0.387858 + 0.921719i \(0.373215\pi\)
\(384\) −2088.57 −0.277556
\(385\) 3132.05 0.414608
\(386\) −6322.99 −0.833760
\(387\) 4839.47 0.635669
\(388\) −749.005 −0.0980024
\(389\) 8003.88 1.04322 0.521610 0.853184i \(-0.325332\pi\)
0.521610 + 0.853184i \(0.325332\pi\)
\(390\) −6305.96 −0.818755
\(391\) 0 0
\(392\) 1156.19 0.148971
\(393\) 1924.79 0.247056
\(394\) −5900.11 −0.754425
\(395\) −101.407 −0.0129173
\(396\) −1711.88 −0.217235
\(397\) −9991.89 −1.26317 −0.631585 0.775306i \(-0.717595\pi\)
−0.631585 + 0.775306i \(0.717595\pi\)
\(398\) −1707.67 −0.215070
\(399\) 2075.56 0.260421
\(400\) −1301.27 −0.162659
\(401\) 8968.88 1.11692 0.558460 0.829532i \(-0.311393\pi\)
0.558460 + 0.829532i \(0.311393\pi\)
\(402\) 335.285 0.0415983
\(403\) −1738.07 −0.214838
\(404\) 8303.57 1.02257
\(405\) 2501.92 0.306966
\(406\) 1480.58 0.180985
\(407\) −1022.40 −0.124517
\(408\) 0 0
\(409\) −9120.04 −1.10258 −0.551292 0.834312i \(-0.685865\pi\)
−0.551292 + 0.834312i \(0.685865\pi\)
\(410\) 15732.0 1.89500
\(411\) 6680.38 0.801749
\(412\) 6926.66 0.828281
\(413\) −1512.31 −0.180184
\(414\) 4552.78 0.540475
\(415\) 6775.09 0.801388
\(416\) −9742.47 −1.14823
\(417\) 369.097 0.0433447
\(418\) −4425.18 −0.517805
\(419\) −6426.52 −0.749298 −0.374649 0.927167i \(-0.622237\pi\)
−0.374649 + 0.927167i \(0.622237\pi\)
\(420\) −1743.97 −0.202612
\(421\) 5456.72 0.631697 0.315848 0.948810i \(-0.397711\pi\)
0.315848 + 0.948810i \(0.397711\pi\)
\(422\) 5993.09 0.691325
\(423\) −1256.66 −0.144446
\(424\) −15049.1 −1.72370
\(425\) 0 0
\(426\) −5622.64 −0.639478
\(427\) −4685.30 −0.531002
\(428\) 1023.90 0.115635
\(429\) 5872.84 0.660940
\(430\) −10511.3 −1.17884
\(431\) −8847.65 −0.988809 −0.494404 0.869232i \(-0.664614\pi\)
−0.494404 + 0.869232i \(0.664614\pi\)
\(432\) −1522.44 −0.169556
\(433\) −1394.80 −0.154804 −0.0774018 0.997000i \(-0.524662\pi\)
−0.0774018 + 0.997000i \(0.524662\pi\)
\(434\) 403.498 0.0446280
\(435\) −6341.20 −0.698936
\(436\) 6726.19 0.738821
\(437\) −14020.0 −1.53471
\(438\) 4675.78 0.510086
\(439\) 9388.35 1.02069 0.510344 0.859971i \(-0.329518\pi\)
0.510344 + 0.859971i \(0.329518\pi\)
\(440\) 10557.6 1.14389
\(441\) −683.520 −0.0738063
\(442\) 0 0
\(443\) −3142.98 −0.337083 −0.168541 0.985695i \(-0.553906\pi\)
−0.168541 + 0.985695i \(0.553906\pi\)
\(444\) 569.283 0.0608490
\(445\) −8292.19 −0.883342
\(446\) −77.8930 −0.00826982
\(447\) −11157.2 −1.18058
\(448\) 2838.06 0.299299
\(449\) 15910.6 1.67231 0.836157 0.548491i \(-0.184797\pi\)
0.836157 + 0.548491i \(0.184797\pi\)
\(450\) 3370.10 0.353041
\(451\) −14651.5 −1.52974
\(452\) −1372.27 −0.142801
\(453\) 1864.62 0.193394
\(454\) 11072.4 1.14462
\(455\) −6394.96 −0.658901
\(456\) 6996.35 0.718496
\(457\) −15685.8 −1.60558 −0.802789 0.596263i \(-0.796652\pi\)
−0.802789 + 0.596263i \(0.796652\pi\)
\(458\) 2686.07 0.274043
\(459\) 0 0
\(460\) 11780.1 1.19402
\(461\) −6739.63 −0.680902 −0.340451 0.940262i \(-0.610580\pi\)
−0.340451 + 0.940262i \(0.610580\pi\)
\(462\) −1363.40 −0.137296
\(463\) 7122.10 0.714886 0.357443 0.933935i \(-0.383649\pi\)
0.357443 + 0.933935i \(0.383649\pi\)
\(464\) 1139.24 0.113982
\(465\) −1728.15 −0.172347
\(466\) −9207.11 −0.915260
\(467\) −11169.5 −1.10677 −0.553387 0.832924i \(-0.686665\pi\)
−0.553387 + 0.832924i \(0.686665\pi\)
\(468\) 3495.28 0.345233
\(469\) 340.017 0.0334766
\(470\) 2729.46 0.267874
\(471\) 10665.6 1.04341
\(472\) −5097.73 −0.497123
\(473\) 9789.36 0.951618
\(474\) 44.1428 0.00427752
\(475\) −10378.0 −1.00248
\(476\) 0 0
\(477\) 8896.78 0.853995
\(478\) −9108.58 −0.871583
\(479\) 18417.2 1.75679 0.878397 0.477932i \(-0.158613\pi\)
0.878397 + 0.477932i \(0.158613\pi\)
\(480\) −9686.86 −0.921130
\(481\) 2087.50 0.197884
\(482\) 2648.16 0.250249
\(483\) −4319.55 −0.406928
\(484\) 2325.92 0.218437
\(485\) −2730.85 −0.255673
\(486\) 6542.63 0.610658
\(487\) 4059.30 0.377709 0.188855 0.982005i \(-0.439522\pi\)
0.188855 + 0.982005i \(0.439522\pi\)
\(488\) −15793.3 −1.46502
\(489\) 9855.93 0.911453
\(490\) 1484.61 0.136873
\(491\) 5705.87 0.524444 0.262222 0.965008i \(-0.415545\pi\)
0.262222 + 0.965008i \(0.415545\pi\)
\(492\) 8158.14 0.747556
\(493\) 0 0
\(494\) 9035.23 0.822903
\(495\) −6241.46 −0.566733
\(496\) 310.474 0.0281062
\(497\) −5701.99 −0.514626
\(498\) −2949.22 −0.265377
\(499\) 15753.1 1.41323 0.706617 0.707596i \(-0.250220\pi\)
0.706617 + 0.707596i \(0.250220\pi\)
\(500\) 99.4574 0.00889574
\(501\) 1099.17 0.0980183
\(502\) −12766.9 −1.13509
\(503\) −6741.05 −0.597552 −0.298776 0.954323i \(-0.596578\pi\)
−0.298776 + 0.954323i \(0.596578\pi\)
\(504\) −2304.02 −0.203630
\(505\) 30274.6 2.66772
\(506\) 9209.44 0.809110
\(507\) −4054.22 −0.355137
\(508\) −4204.86 −0.367245
\(509\) −6496.37 −0.565710 −0.282855 0.959163i \(-0.591282\pi\)
−0.282855 + 0.959163i \(0.591282\pi\)
\(510\) 0 0
\(511\) 4741.78 0.410497
\(512\) 3682.98 0.317903
\(513\) −12141.9 −1.04498
\(514\) −6845.21 −0.587411
\(515\) 25254.4 2.16086
\(516\) −5450.84 −0.465038
\(517\) −2541.99 −0.216241
\(518\) −484.620 −0.0411061
\(519\) −3750.98 −0.317244
\(520\) −21556.3 −1.81789
\(521\) 9641.97 0.810792 0.405396 0.914141i \(-0.367134\pi\)
0.405396 + 0.914141i \(0.367134\pi\)
\(522\) −2950.45 −0.247390
\(523\) 1071.46 0.0895823 0.0447911 0.998996i \(-0.485738\pi\)
0.0447911 + 0.998996i \(0.485738\pi\)
\(524\) 2317.26 0.193187
\(525\) −3197.46 −0.265807
\(526\) 11519.4 0.954882
\(527\) 0 0
\(528\) −1049.07 −0.0864676
\(529\) 17010.6 1.39810
\(530\) −19323.8 −1.58372
\(531\) 3013.69 0.246296
\(532\) 2498.77 0.203638
\(533\) 29915.1 2.43108
\(534\) 3609.62 0.292516
\(535\) 3733.10 0.301675
\(536\) 1146.14 0.0923611
\(537\) −13211.1 −1.06164
\(538\) −3978.75 −0.318840
\(539\) −1382.64 −0.110491
\(540\) 10202.1 0.813012
\(541\) 5025.45 0.399373 0.199687 0.979860i \(-0.436008\pi\)
0.199687 + 0.979860i \(0.436008\pi\)
\(542\) 9523.08 0.754708
\(543\) −2119.94 −0.167542
\(544\) 0 0
\(545\) 24523.5 1.92747
\(546\) 2783.75 0.218193
\(547\) 17977.4 1.40522 0.702611 0.711574i \(-0.252017\pi\)
0.702611 + 0.711574i \(0.252017\pi\)
\(548\) 8042.51 0.626932
\(549\) 9336.74 0.725833
\(550\) 6817.11 0.528514
\(551\) 9085.72 0.702477
\(552\) −14560.4 −1.12270
\(553\) 44.7658 0.00344238
\(554\) −3206.24 −0.245885
\(555\) 2075.59 0.158746
\(556\) 444.356 0.0338937
\(557\) −16741.4 −1.27353 −0.636766 0.771057i \(-0.719728\pi\)
−0.636766 + 0.771057i \(0.719728\pi\)
\(558\) −804.080 −0.0610025
\(559\) −19987.7 −1.51232
\(560\) 1142.34 0.0862009
\(561\) 0 0
\(562\) 5638.21 0.423191
\(563\) 12030.5 0.900574 0.450287 0.892884i \(-0.351322\pi\)
0.450287 + 0.892884i \(0.351322\pi\)
\(564\) 1415.41 0.105673
\(565\) −5003.26 −0.372546
\(566\) −12204.1 −0.906316
\(567\) −1104.47 −0.0818046
\(568\) −19220.4 −1.41984
\(569\) 21215.1 1.56306 0.781531 0.623866i \(-0.214439\pi\)
0.781531 + 0.623866i \(0.214439\pi\)
\(570\) 8983.65 0.660147
\(571\) −5362.53 −0.393021 −0.196511 0.980502i \(-0.562961\pi\)
−0.196511 + 0.980502i \(0.562961\pi\)
\(572\) 7070.31 0.516826
\(573\) −3665.52 −0.267241
\(574\) −6944.87 −0.505006
\(575\) 21598.2 1.56644
\(576\) −5655.61 −0.409115
\(577\) −59.6556 −0.00430415 −0.00215208 0.999998i \(-0.500685\pi\)
−0.00215208 + 0.999998i \(0.500685\pi\)
\(578\) 0 0
\(579\) −11954.8 −0.858072
\(580\) −7634.17 −0.546537
\(581\) −2990.85 −0.213565
\(582\) 1188.75 0.0846653
\(583\) 17996.6 1.27846
\(584\) 15983.7 1.13255
\(585\) 12743.7 0.900660
\(586\) 13310.5 0.938311
\(587\) 7136.33 0.501785 0.250893 0.968015i \(-0.419276\pi\)
0.250893 + 0.968015i \(0.419276\pi\)
\(588\) 769.870 0.0539947
\(589\) 2476.11 0.173220
\(590\) −6545.74 −0.456752
\(591\) −11155.3 −0.776423
\(592\) −372.893 −0.0258882
\(593\) −5224.41 −0.361789 −0.180894 0.983503i \(-0.557899\pi\)
−0.180894 + 0.983503i \(0.557899\pi\)
\(594\) 7975.74 0.550924
\(595\) 0 0
\(596\) −13432.2 −0.923160
\(597\) −3228.67 −0.221341
\(598\) −18803.6 −1.28585
\(599\) 11073.2 0.755321 0.377661 0.925944i \(-0.376729\pi\)
0.377661 + 0.925944i \(0.376729\pi\)
\(600\) −10778.1 −0.733355
\(601\) −11840.1 −0.803604 −0.401802 0.915726i \(-0.631616\pi\)
−0.401802 + 0.915726i \(0.631616\pi\)
\(602\) 4640.20 0.314153
\(603\) −677.576 −0.0457596
\(604\) 2244.82 0.151226
\(605\) 8480.22 0.569868
\(606\) −13178.6 −0.883408
\(607\) −22565.9 −1.50893 −0.754464 0.656341i \(-0.772103\pi\)
−0.754464 + 0.656341i \(0.772103\pi\)
\(608\) 13879.4 0.925797
\(609\) 2799.31 0.186262
\(610\) −20279.4 −1.34605
\(611\) 5190.18 0.343653
\(612\) 0 0
\(613\) −2171.69 −0.143089 −0.0715445 0.997437i \(-0.522793\pi\)
−0.0715445 + 0.997437i \(0.522793\pi\)
\(614\) 2720.11 0.178786
\(615\) 29744.3 1.95026
\(616\) −4660.62 −0.304841
\(617\) −20959.7 −1.36759 −0.683796 0.729673i \(-0.739672\pi\)
−0.683796 + 0.729673i \(0.739672\pi\)
\(618\) −10993.3 −0.715561
\(619\) −21463.0 −1.39365 −0.696826 0.717240i \(-0.745405\pi\)
−0.696826 + 0.717240i \(0.745405\pi\)
\(620\) −2080.52 −0.134767
\(621\) 25269.0 1.63287
\(622\) −5044.86 −0.325210
\(623\) 3660.56 0.235405
\(624\) 2141.97 0.137416
\(625\) −15442.7 −0.988330
\(626\) −3505.79 −0.223833
\(627\) −8366.62 −0.532904
\(628\) 12840.4 0.815902
\(629\) 0 0
\(630\) −2958.48 −0.187093
\(631\) −3171.61 −0.200095 −0.100047 0.994983i \(-0.531899\pi\)
−0.100047 + 0.994983i \(0.531899\pi\)
\(632\) 150.897 0.00949743
\(633\) 11331.0 0.711483
\(634\) −1565.81 −0.0980857
\(635\) −15330.8 −0.958085
\(636\) −10020.7 −0.624760
\(637\) 2823.04 0.175593
\(638\) −5968.23 −0.370352
\(639\) 11362.8 0.703449
\(640\) −9167.52 −0.566216
\(641\) 7114.09 0.438362 0.219181 0.975684i \(-0.429662\pi\)
0.219181 + 0.975684i \(0.429662\pi\)
\(642\) −1625.03 −0.0998987
\(643\) −5505.92 −0.337686 −0.168843 0.985643i \(-0.554003\pi\)
−0.168843 + 0.985643i \(0.554003\pi\)
\(644\) −5200.31 −0.318200
\(645\) −19873.6 −1.21321
\(646\) 0 0
\(647\) 11481.3 0.697644 0.348822 0.937189i \(-0.386582\pi\)
0.348822 + 0.937189i \(0.386582\pi\)
\(648\) −3722.96 −0.225697
\(649\) 6096.15 0.368713
\(650\) −13919.0 −0.839921
\(651\) 762.888 0.0459293
\(652\) 11865.6 0.712716
\(653\) 28543.4 1.71055 0.855275 0.518175i \(-0.173388\pi\)
0.855275 + 0.518175i \(0.173388\pi\)
\(654\) −10675.2 −0.638276
\(655\) 8448.66 0.503994
\(656\) −5343.76 −0.318047
\(657\) −9449.27 −0.561113
\(658\) −1204.91 −0.0713866
\(659\) −9752.35 −0.576476 −0.288238 0.957559i \(-0.593069\pi\)
−0.288238 + 0.957559i \(0.593069\pi\)
\(660\) 7029.95 0.414607
\(661\) 22309.4 1.31276 0.656380 0.754431i \(-0.272087\pi\)
0.656380 + 0.754431i \(0.272087\pi\)
\(662\) −6075.62 −0.356700
\(663\) 0 0
\(664\) −10081.6 −0.589220
\(665\) 9110.44 0.531260
\(666\) 965.736 0.0561884
\(667\) −18908.7 −1.09767
\(668\) 1323.29 0.0766460
\(669\) −147.271 −0.00851096
\(670\) 1471.70 0.0848605
\(671\) 18886.5 1.08660
\(672\) 4276.24 0.245475
\(673\) 7760.76 0.444510 0.222255 0.974989i \(-0.428658\pi\)
0.222255 + 0.974989i \(0.428658\pi\)
\(674\) 18789.0 1.07377
\(675\) 18704.9 1.06659
\(676\) −4880.88 −0.277701
\(677\) −22366.2 −1.26972 −0.634862 0.772625i \(-0.718943\pi\)
−0.634862 + 0.772625i \(0.718943\pi\)
\(678\) 2177.94 0.123368
\(679\) 1205.53 0.0681353
\(680\) 0 0
\(681\) 20934.5 1.17799
\(682\) −1626.51 −0.0913228
\(683\) 8110.06 0.454353 0.227176 0.973854i \(-0.427051\pi\)
0.227176 + 0.973854i \(0.427051\pi\)
\(684\) −4979.47 −0.278355
\(685\) 29322.7 1.63557
\(686\) −655.376 −0.0364757
\(687\) 5078.51 0.282034
\(688\) 3570.42 0.197850
\(689\) −36745.0 −2.03174
\(690\) −18696.3 −1.03153
\(691\) −7867.18 −0.433114 −0.216557 0.976270i \(-0.569483\pi\)
−0.216557 + 0.976270i \(0.569483\pi\)
\(692\) −4515.80 −0.248071
\(693\) 2755.28 0.151031
\(694\) 10151.3 0.555241
\(695\) 1620.11 0.0884233
\(696\) 9435.96 0.513892
\(697\) 0 0
\(698\) 426.424 0.0231237
\(699\) −17407.8 −0.941948
\(700\) −3849.42 −0.207849
\(701\) 8047.92 0.433617 0.216809 0.976214i \(-0.430435\pi\)
0.216809 + 0.976214i \(0.430435\pi\)
\(702\) −16284.7 −0.875536
\(703\) −2973.92 −0.159550
\(704\) −11440.3 −0.612459
\(705\) 5160.55 0.275684
\(706\) 8250.11 0.439798
\(707\) −13364.6 −0.710932
\(708\) −3394.41 −0.180183
\(709\) −15725.6 −0.832988 −0.416494 0.909139i \(-0.636741\pi\)
−0.416494 + 0.909139i \(0.636741\pi\)
\(710\) −24679.9 −1.30454
\(711\) −89.2079 −0.00470543
\(712\) 12339.1 0.649477
\(713\) −5153.15 −0.270669
\(714\) 0 0
\(715\) 25778.1 1.34832
\(716\) −15904.8 −0.830155
\(717\) −17221.4 −0.896997
\(718\) 18936.2 0.984254
\(719\) −17506.4 −0.908036 −0.454018 0.890993i \(-0.650010\pi\)
−0.454018 + 0.890993i \(0.650010\pi\)
\(720\) −2276.41 −0.117829
\(721\) −11148.5 −0.575855
\(722\) 233.750 0.0120489
\(723\) 5006.83 0.257546
\(724\) −2552.19 −0.131010
\(725\) −13996.8 −0.717004
\(726\) −3691.47 −0.188710
\(727\) 14020.8 0.715271 0.357636 0.933861i \(-0.383583\pi\)
0.357636 + 0.933861i \(0.383583\pi\)
\(728\) 9515.95 0.484457
\(729\) 16630.1 0.844898
\(730\) 20523.8 1.04058
\(731\) 0 0
\(732\) −10516.3 −0.531000
\(733\) −23109.6 −1.16449 −0.582246 0.813012i \(-0.697826\pi\)
−0.582246 + 0.813012i \(0.697826\pi\)
\(734\) −22427.2 −1.12779
\(735\) 2806.92 0.140864
\(736\) −28885.1 −1.44663
\(737\) −1370.61 −0.0685036
\(738\) 13839.5 0.690298
\(739\) 10006.8 0.498113 0.249057 0.968489i \(-0.419880\pi\)
0.249057 + 0.968489i \(0.419880\pi\)
\(740\) 2498.80 0.124132
\(741\) 17082.8 0.846898
\(742\) 8530.45 0.422052
\(743\) −23020.2 −1.13665 −0.568324 0.822805i \(-0.692408\pi\)
−0.568324 + 0.822805i \(0.692408\pi\)
\(744\) 2571.56 0.126718
\(745\) −48973.3 −2.40838
\(746\) 12280.7 0.602719
\(747\) 5960.07 0.291924
\(748\) 0 0
\(749\) −1647.97 −0.0803945
\(750\) −157.849 −0.00768513
\(751\) −7372.82 −0.358240 −0.179120 0.983827i \(-0.557325\pi\)
−0.179120 + 0.983827i \(0.557325\pi\)
\(752\) −927.125 −0.0449585
\(753\) −24138.2 −1.16818
\(754\) 12185.8 0.588568
\(755\) 8184.54 0.394524
\(756\) −4503.67 −0.216663
\(757\) 8747.05 0.419970 0.209985 0.977705i \(-0.432659\pi\)
0.209985 + 0.977705i \(0.432659\pi\)
\(758\) −13381.0 −0.641185
\(759\) 17412.2 0.832702
\(760\) 30709.7 1.46573
\(761\) 10210.9 0.486395 0.243197 0.969977i \(-0.421804\pi\)
0.243197 + 0.969977i \(0.421804\pi\)
\(762\) 6673.55 0.317267
\(763\) −10825.8 −0.513659
\(764\) −4412.92 −0.208971
\(765\) 0 0
\(766\) −11109.6 −0.524028
\(767\) −12447.0 −0.585964
\(768\) 15708.0 0.738039
\(769\) −890.499 −0.0417584 −0.0208792 0.999782i \(-0.506647\pi\)
−0.0208792 + 0.999782i \(0.506647\pi\)
\(770\) −5984.47 −0.280085
\(771\) −12942.1 −0.604539
\(772\) −14392.4 −0.670974
\(773\) −6290.28 −0.292685 −0.146343 0.989234i \(-0.546750\pi\)
−0.146343 + 0.989234i \(0.546750\pi\)
\(774\) −9246.85 −0.429420
\(775\) −3814.52 −0.176802
\(776\) 4063.61 0.187984
\(777\) −916.263 −0.0423047
\(778\) −15293.1 −0.704737
\(779\) −42617.9 −1.96014
\(780\) −14353.6 −0.658899
\(781\) 22984.8 1.05309
\(782\) 0 0
\(783\) −16375.7 −0.747407
\(784\) −504.281 −0.0229720
\(785\) 46815.6 2.12856
\(786\) −3677.73 −0.166896
\(787\) 11597.6 0.525298 0.262649 0.964891i \(-0.415404\pi\)
0.262649 + 0.964891i \(0.415404\pi\)
\(788\) −13429.8 −0.607128
\(789\) 21779.5 0.982725
\(790\) 193.760 0.00872615
\(791\) 2208.68 0.0992812
\(792\) 9287.55 0.416690
\(793\) −38562.1 −1.72683
\(794\) 19091.7 0.853322
\(795\) −36535.2 −1.62990
\(796\) −3886.99 −0.173079
\(797\) 231.692 0.0102973 0.00514866 0.999987i \(-0.498361\pi\)
0.00514866 + 0.999987i \(0.498361\pi\)
\(798\) −3965.81 −0.175925
\(799\) 0 0
\(800\) −21381.6 −0.944943
\(801\) −7294.66 −0.321778
\(802\) −17137.0 −0.754524
\(803\) −19114.2 −0.840005
\(804\) 763.175 0.0334765
\(805\) −18960.2 −0.830134
\(806\) 3320.96 0.145132
\(807\) −7522.56 −0.328137
\(808\) −45049.8 −1.96144
\(809\) 11846.2 0.514821 0.257410 0.966302i \(-0.417131\pi\)
0.257410 + 0.966302i \(0.417131\pi\)
\(810\) −4780.46 −0.207368
\(811\) −25322.4 −1.09641 −0.548206 0.836343i \(-0.684689\pi\)
−0.548206 + 0.836343i \(0.684689\pi\)
\(812\) 3370.08 0.145649
\(813\) 18005.2 0.776714
\(814\) 1953.51 0.0841160
\(815\) 43261.5 1.85937
\(816\) 0 0
\(817\) 28475.1 1.21936
\(818\) 17425.8 0.744840
\(819\) −5625.66 −0.240020
\(820\) 35809.2 1.52501
\(821\) 2529.16 0.107513 0.0537565 0.998554i \(-0.482881\pi\)
0.0537565 + 0.998554i \(0.482881\pi\)
\(822\) −12764.3 −0.541613
\(823\) −24803.7 −1.05055 −0.525275 0.850932i \(-0.676038\pi\)
−0.525275 + 0.850932i \(0.676038\pi\)
\(824\) −37579.5 −1.58877
\(825\) 12889.0 0.543924
\(826\) 2889.60 0.121722
\(827\) −30192.9 −1.26954 −0.634770 0.772701i \(-0.718905\pi\)
−0.634770 + 0.772701i \(0.718905\pi\)
\(828\) 10363.0 0.434951
\(829\) 12774.3 0.535187 0.267594 0.963532i \(-0.413772\pi\)
0.267594 + 0.963532i \(0.413772\pi\)
\(830\) −12945.3 −0.541370
\(831\) −6062.00 −0.253055
\(832\) 23358.5 0.973328
\(833\) 0 0
\(834\) −705.239 −0.0292811
\(835\) 4824.67 0.199958
\(836\) −10072.6 −0.416707
\(837\) −4462.83 −0.184299
\(838\) 12279.3 0.506181
\(839\) −15261.8 −0.628006 −0.314003 0.949422i \(-0.601670\pi\)
−0.314003 + 0.949422i \(0.601670\pi\)
\(840\) 9461.63 0.388640
\(841\) −12135.1 −0.497565
\(842\) −10426.2 −0.426736
\(843\) 10660.1 0.435531
\(844\) 13641.4 0.556348
\(845\) −17795.6 −0.724480
\(846\) 2401.12 0.0975792
\(847\) −3743.57 −0.151866
\(848\) 6563.79 0.265803
\(849\) −23074.0 −0.932743
\(850\) 0 0
\(851\) 6189.16 0.249309
\(852\) −12798.2 −0.514624
\(853\) −12238.3 −0.491242 −0.245621 0.969366i \(-0.578992\pi\)
−0.245621 + 0.969366i \(0.578992\pi\)
\(854\) 8952.29 0.358713
\(855\) −18155.0 −0.726186
\(856\) −5555.01 −0.221806
\(857\) 15895.1 0.633567 0.316784 0.948498i \(-0.397397\pi\)
0.316784 + 0.948498i \(0.397397\pi\)
\(858\) −11221.3 −0.446492
\(859\) 20083.0 0.797698 0.398849 0.917017i \(-0.369410\pi\)
0.398849 + 0.917017i \(0.369410\pi\)
\(860\) −23925.8 −0.948679
\(861\) −13130.6 −0.519731
\(862\) 16905.4 0.667980
\(863\) −31483.2 −1.24183 −0.620915 0.783878i \(-0.713239\pi\)
−0.620915 + 0.783878i \(0.713239\pi\)
\(864\) −25015.6 −0.985010
\(865\) −16464.5 −0.647178
\(866\) 2665.07 0.104576
\(867\) 0 0
\(868\) 918.441 0.0359147
\(869\) −180.451 −0.00704418
\(870\) 12116.2 0.472159
\(871\) 2798.49 0.108867
\(872\) −36491.9 −1.41717
\(873\) −2402.34 −0.0931349
\(874\) 26788.2 1.03676
\(875\) −160.077 −0.00618468
\(876\) 10643.0 0.410495
\(877\) 10154.6 0.390989 0.195495 0.980705i \(-0.437369\pi\)
0.195495 + 0.980705i \(0.437369\pi\)
\(878\) −17938.5 −0.689515
\(879\) 25165.9 0.965671
\(880\) −4604.77 −0.176394
\(881\) −18592.9 −0.711022 −0.355511 0.934672i \(-0.615693\pi\)
−0.355511 + 0.934672i \(0.615693\pi\)
\(882\) 1306.01 0.0498591
\(883\) 29151.1 1.11100 0.555500 0.831517i \(-0.312527\pi\)
0.555500 + 0.831517i \(0.312527\pi\)
\(884\) 0 0
\(885\) −12375.9 −0.470070
\(886\) 6005.35 0.227713
\(887\) 30725.1 1.16308 0.581538 0.813519i \(-0.302451\pi\)
0.581538 + 0.813519i \(0.302451\pi\)
\(888\) −3088.56 −0.116718
\(889\) 6767.74 0.255324
\(890\) 15844.0 0.596733
\(891\) 4452.12 0.167398
\(892\) −177.300 −0.00665520
\(893\) −7394.08 −0.277081
\(894\) 21318.3 0.797528
\(895\) −57988.5 −2.16574
\(896\) 4046.98 0.150893
\(897\) −35551.7 −1.32334
\(898\) −30400.7 −1.12971
\(899\) 3339.52 0.123893
\(900\) 7671.02 0.284112
\(901\) 0 0
\(902\) 27994.9 1.03340
\(903\) 8773.15 0.323314
\(904\) 7445.05 0.273914
\(905\) −9305.22 −0.341786
\(906\) −3562.76 −0.130645
\(907\) 35086.2 1.28448 0.642238 0.766506i \(-0.278006\pi\)
0.642238 + 0.766506i \(0.278006\pi\)
\(908\) 25203.0 0.921137
\(909\) 26632.6 0.971781
\(910\) 12218.9 0.445114
\(911\) −8601.50 −0.312821 −0.156411 0.987692i \(-0.549992\pi\)
−0.156411 + 0.987692i \(0.549992\pi\)
\(912\) −3051.51 −0.110796
\(913\) 12056.1 0.437021
\(914\) 29971.0 1.08463
\(915\) −38342.0 −1.38530
\(916\) 6114.01 0.220538
\(917\) −3729.64 −0.134311
\(918\) 0 0
\(919\) −51964.6 −1.86524 −0.932619 0.360862i \(-0.882483\pi\)
−0.932619 + 0.360862i \(0.882483\pi\)
\(920\) −63911.3 −2.29032
\(921\) 5142.86 0.183999
\(922\) 12877.5 0.459976
\(923\) −46929.8 −1.67358
\(924\) −3103.35 −0.110490
\(925\) 4581.41 0.162849
\(926\) −13608.3 −0.482934
\(927\) 22216.4 0.787143
\(928\) 18719.1 0.662161
\(929\) −13563.7 −0.479020 −0.239510 0.970894i \(-0.576987\pi\)
−0.239510 + 0.970894i \(0.576987\pi\)
\(930\) 3302.01 0.116427
\(931\) −4021.78 −0.141577
\(932\) −20957.2 −0.736562
\(933\) −9538.24 −0.334692
\(934\) 21341.8 0.747670
\(935\) 0 0
\(936\) −18963.1 −0.662210
\(937\) 36010.7 1.25552 0.627758 0.778409i \(-0.283973\pi\)
0.627758 + 0.778409i \(0.283973\pi\)
\(938\) −649.676 −0.0226148
\(939\) −6628.35 −0.230360
\(940\) 6212.79 0.215573
\(941\) −14082.1 −0.487847 −0.243923 0.969795i \(-0.578435\pi\)
−0.243923 + 0.969795i \(0.578435\pi\)
\(942\) −20379.0 −0.704867
\(943\) 88694.1 3.06286
\(944\) 2223.41 0.0766589
\(945\) −16420.3 −0.565239
\(946\) −18704.7 −0.642856
\(947\) 37827.2 1.29801 0.649007 0.760783i \(-0.275185\pi\)
0.649007 + 0.760783i \(0.275185\pi\)
\(948\) 100.478 0.00344236
\(949\) 39026.8 1.33495
\(950\) 19829.4 0.677213
\(951\) −2960.46 −0.100946
\(952\) 0 0
\(953\) 35976.8 1.22288 0.611438 0.791292i \(-0.290591\pi\)
0.611438 + 0.791292i \(0.290591\pi\)
\(954\) −16999.2 −0.576908
\(955\) −16089.4 −0.545173
\(956\) −20732.9 −0.701412
\(957\) −11284.0 −0.381151
\(958\) −35190.1 −1.18678
\(959\) −12944.4 −0.435869
\(960\) 23225.1 0.780821
\(961\) −28880.9 −0.969450
\(962\) −3988.63 −0.133678
\(963\) 3284.02 0.109892
\(964\) 6027.72 0.201390
\(965\) −52474.1 −1.75047
\(966\) 8253.43 0.274896
\(967\) −41254.5 −1.37193 −0.685965 0.727635i \(-0.740620\pi\)
−0.685965 + 0.727635i \(0.740620\pi\)
\(968\) −12618.9 −0.418995
\(969\) 0 0
\(970\) 5217.88 0.172717
\(971\) −39640.6 −1.31012 −0.655061 0.755576i \(-0.727357\pi\)
−0.655061 + 0.755576i \(0.727357\pi\)
\(972\) 14892.3 0.491431
\(973\) −715.192 −0.0235642
\(974\) −7756.17 −0.255158
\(975\) −26316.5 −0.864412
\(976\) 6888.37 0.225913
\(977\) 23299.1 0.762953 0.381477 0.924378i \(-0.375416\pi\)
0.381477 + 0.924378i \(0.375416\pi\)
\(978\) −18831.9 −0.615723
\(979\) −14755.8 −0.481713
\(980\) 3379.25 0.110149
\(981\) 21573.4 0.702126
\(982\) −10902.3 −0.354283
\(983\) 10453.2 0.339171 0.169586 0.985515i \(-0.445757\pi\)
0.169586 + 0.985515i \(0.445757\pi\)
\(984\) −44260.8 −1.43392
\(985\) −48964.7 −1.58390
\(986\) 0 0
\(987\) −2278.11 −0.0734682
\(988\) 20565.9 0.662237
\(989\) −59260.8 −1.90534
\(990\) 11925.7 0.382851
\(991\) 10554.9 0.338332 0.169166 0.985588i \(-0.445893\pi\)
0.169166 + 0.985588i \(0.445893\pi\)
\(992\) 5101.48 0.163278
\(993\) −11487.1 −0.367101
\(994\) 10894.9 0.347651
\(995\) −14171.9 −0.451536
\(996\) −6713.01 −0.213564
\(997\) −51756.4 −1.64407 −0.822037 0.569434i \(-0.807163\pi\)
−0.822037 + 0.569434i \(0.807163\pi\)
\(998\) −30099.6 −0.954697
\(999\) 5360.06 0.169755
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.v.1.20 56
17.5 odd 16 119.4.k.a.8.19 112
17.7 odd 16 119.4.k.a.15.19 yes 112
17.16 even 2 2023.4.a.u.1.20 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.k.a.8.19 112 17.5 odd 16
119.4.k.a.15.19 yes 112 17.7 odd 16
2023.4.a.u.1.20 56 17.16 even 2
2023.4.a.v.1.20 56 1.1 even 1 trivial