Properties

Label 2023.4.a.v.1.15
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.82994 q^{2} -6.04539 q^{3} +0.00856474 q^{4} -19.0541 q^{5} +17.1081 q^{6} +7.00000 q^{7} +22.6153 q^{8} +9.54677 q^{9} +53.9220 q^{10} +12.4321 q^{11} -0.0517772 q^{12} -11.3957 q^{13} -19.8096 q^{14} +115.189 q^{15} -64.0684 q^{16} -27.0168 q^{18} +36.0415 q^{19} -0.163193 q^{20} -42.3177 q^{21} -35.1821 q^{22} +89.1121 q^{23} -136.718 q^{24} +238.059 q^{25} +32.2492 q^{26} +105.512 q^{27} +0.0599532 q^{28} +257.951 q^{29} -325.979 q^{30} +76.4937 q^{31} +0.387596 q^{32} -75.1569 q^{33} -133.379 q^{35} +0.0817656 q^{36} +217.753 q^{37} -101.995 q^{38} +68.8915 q^{39} -430.914 q^{40} +134.166 q^{41} +119.757 q^{42} +443.100 q^{43} +0.106478 q^{44} -181.905 q^{45} -252.182 q^{46} +529.146 q^{47} +387.319 q^{48} +49.0000 q^{49} -673.692 q^{50} -0.0976012 q^{52} +79.9294 q^{53} -298.592 q^{54} -236.882 q^{55} +158.307 q^{56} -217.885 q^{57} -729.985 q^{58} -529.638 q^{59} +0.986568 q^{60} +817.455 q^{61} -216.473 q^{62} +66.8274 q^{63} +511.451 q^{64} +217.135 q^{65} +212.690 q^{66} -940.437 q^{67} -538.718 q^{69} +377.454 q^{70} +604.979 q^{71} +215.903 q^{72} -493.233 q^{73} -616.227 q^{74} -1439.16 q^{75} +0.308686 q^{76} +87.0247 q^{77} -194.959 q^{78} +549.419 q^{79} +1220.77 q^{80} -895.622 q^{81} -379.682 q^{82} -127.880 q^{83} -0.362440 q^{84} -1253.95 q^{86} -1559.41 q^{87} +281.156 q^{88} -151.731 q^{89} +514.781 q^{90} -79.7699 q^{91} +0.763222 q^{92} -462.435 q^{93} -1497.45 q^{94} -686.739 q^{95} -2.34317 q^{96} -1086.93 q^{97} -138.667 q^{98} +118.686 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.82994 −1.00054 −0.500268 0.865871i \(-0.666765\pi\)
−0.500268 + 0.865871i \(0.666765\pi\)
\(3\) −6.04539 −1.16344 −0.581718 0.813390i \(-0.697619\pi\)
−0.581718 + 0.813390i \(0.697619\pi\)
\(4\) 0.00856474 0.00107059
\(5\) −19.0541 −1.70425 −0.852125 0.523338i \(-0.824686\pi\)
−0.852125 + 0.523338i \(0.824686\pi\)
\(6\) 17.1081 1.16406
\(7\) 7.00000 0.377964
\(8\) 22.6153 0.999464
\(9\) 9.54677 0.353584
\(10\) 53.9220 1.70516
\(11\) 12.4321 0.340765 0.170383 0.985378i \(-0.445500\pi\)
0.170383 + 0.985378i \(0.445500\pi\)
\(12\) −0.0517772 −0.00124557
\(13\) −11.3957 −0.243123 −0.121561 0.992584i \(-0.538790\pi\)
−0.121561 + 0.992584i \(0.538790\pi\)
\(14\) −19.8096 −0.378167
\(15\) 115.189 1.98279
\(16\) −64.0684 −1.00107
\(17\) 0 0
\(18\) −27.0168 −0.353773
\(19\) 36.0415 0.435184 0.217592 0.976040i \(-0.430180\pi\)
0.217592 + 0.976040i \(0.430180\pi\)
\(20\) −0.163193 −0.00182456
\(21\) −42.3177 −0.439738
\(22\) −35.1821 −0.340948
\(23\) 89.1121 0.807876 0.403938 0.914786i \(-0.367641\pi\)
0.403938 + 0.914786i \(0.367641\pi\)
\(24\) −136.718 −1.16281
\(25\) 238.059 1.90447
\(26\) 32.2492 0.243253
\(27\) 105.512 0.752064
\(28\) 0.0599532 0.000404646 0
\(29\) 257.951 1.65173 0.825866 0.563866i \(-0.190687\pi\)
0.825866 + 0.563866i \(0.190687\pi\)
\(30\) −325.979 −1.98385
\(31\) 76.4937 0.443183 0.221592 0.975140i \(-0.428875\pi\)
0.221592 + 0.975140i \(0.428875\pi\)
\(32\) 0.387596 0.00214118
\(33\) −75.1569 −0.396459
\(34\) 0 0
\(35\) −133.379 −0.644146
\(36\) 0.0817656 0.000378544 0
\(37\) 217.753 0.967523 0.483761 0.875200i \(-0.339270\pi\)
0.483761 + 0.875200i \(0.339270\pi\)
\(38\) −101.995 −0.435417
\(39\) 68.8915 0.282858
\(40\) −430.914 −1.70334
\(41\) 134.166 0.511053 0.255527 0.966802i \(-0.417751\pi\)
0.255527 + 0.966802i \(0.417751\pi\)
\(42\) 119.757 0.439973
\(43\) 443.100 1.57144 0.785722 0.618579i \(-0.212291\pi\)
0.785722 + 0.618579i \(0.212291\pi\)
\(44\) 0.106478 0.000364821 0
\(45\) −181.905 −0.602596
\(46\) −252.182 −0.808309
\(47\) 529.146 1.64221 0.821105 0.570777i \(-0.193358\pi\)
0.821105 + 0.570777i \(0.193358\pi\)
\(48\) 387.319 1.16468
\(49\) 49.0000 0.142857
\(50\) −673.692 −1.90549
\(51\) 0 0
\(52\) −0.0976012 −0.000260286 0
\(53\) 79.9294 0.207154 0.103577 0.994621i \(-0.466971\pi\)
0.103577 + 0.994621i \(0.466971\pi\)
\(54\) −298.592 −0.752466
\(55\) −236.882 −0.580749
\(56\) 158.307 0.377762
\(57\) −217.885 −0.506309
\(58\) −729.985 −1.65262
\(59\) −529.638 −1.16869 −0.584347 0.811504i \(-0.698649\pi\)
−0.584347 + 0.811504i \(0.698649\pi\)
\(60\) 0.986568 0.00212276
\(61\) 817.455 1.71581 0.857905 0.513809i \(-0.171766\pi\)
0.857905 + 0.513809i \(0.171766\pi\)
\(62\) −216.473 −0.443420
\(63\) 66.8274 0.133642
\(64\) 511.451 0.998927
\(65\) 217.135 0.414342
\(66\) 212.690 0.396671
\(67\) −940.437 −1.71482 −0.857408 0.514637i \(-0.827927\pi\)
−0.857408 + 0.514637i \(0.827927\pi\)
\(68\) 0 0
\(69\) −538.718 −0.939913
\(70\) 377.454 0.644491
\(71\) 604.979 1.01124 0.505618 0.862757i \(-0.331264\pi\)
0.505618 + 0.862757i \(0.331264\pi\)
\(72\) 215.903 0.353395
\(73\) −493.233 −0.790802 −0.395401 0.918509i \(-0.629394\pi\)
−0.395401 + 0.918509i \(0.629394\pi\)
\(74\) −616.227 −0.968040
\(75\) −1439.16 −2.21573
\(76\) 0.308686 0.000465905 0
\(77\) 87.0247 0.128797
\(78\) −194.959 −0.283009
\(79\) 549.419 0.782462 0.391231 0.920292i \(-0.372049\pi\)
0.391231 + 0.920292i \(0.372049\pi\)
\(80\) 1220.77 1.70607
\(81\) −895.622 −1.22856
\(82\) −379.682 −0.511327
\(83\) −127.880 −0.169116 −0.0845580 0.996419i \(-0.526948\pi\)
−0.0845580 + 0.996419i \(0.526948\pi\)
\(84\) −0.362440 −0.000470780 0
\(85\) 0 0
\(86\) −1253.95 −1.57229
\(87\) −1559.41 −1.92169
\(88\) 281.156 0.340583
\(89\) −151.731 −0.180713 −0.0903566 0.995909i \(-0.528801\pi\)
−0.0903566 + 0.995909i \(0.528801\pi\)
\(90\) 514.781 0.602918
\(91\) −79.7699 −0.0918918
\(92\) 0.763222 0.000864906 0
\(93\) −462.435 −0.515615
\(94\) −1497.45 −1.64309
\(95\) −686.739 −0.741662
\(96\) −2.34317 −0.00249113
\(97\) −1086.93 −1.13774 −0.568870 0.822427i \(-0.692619\pi\)
−0.568870 + 0.822427i \(0.692619\pi\)
\(98\) −138.667 −0.142934
\(99\) 118.686 0.120489
\(100\) 2.03891 0.00203891
\(101\) −1170.18 −1.15285 −0.576424 0.817151i \(-0.695552\pi\)
−0.576424 + 0.817151i \(0.695552\pi\)
\(102\) 0 0
\(103\) 124.416 0.119020 0.0595100 0.998228i \(-0.481046\pi\)
0.0595100 + 0.998228i \(0.481046\pi\)
\(104\) −257.717 −0.242993
\(105\) 806.326 0.749423
\(106\) −226.196 −0.207265
\(107\) 485.260 0.438428 0.219214 0.975677i \(-0.429651\pi\)
0.219214 + 0.975677i \(0.429651\pi\)
\(108\) 0.903680 0.000805154 0
\(109\) 760.519 0.668298 0.334149 0.942520i \(-0.391551\pi\)
0.334149 + 0.942520i \(0.391551\pi\)
\(110\) 670.363 0.581060
\(111\) −1316.40 −1.12565
\(112\) −448.479 −0.378369
\(113\) 150.053 0.124919 0.0624593 0.998048i \(-0.480106\pi\)
0.0624593 + 0.998048i \(0.480106\pi\)
\(114\) 616.602 0.506580
\(115\) −1697.95 −1.37682
\(116\) 2.20928 0.00176833
\(117\) −108.792 −0.0859644
\(118\) 1498.84 1.16932
\(119\) 0 0
\(120\) 2605.04 1.98172
\(121\) −1176.44 −0.883879
\(122\) −2313.35 −1.71673
\(123\) −811.085 −0.594578
\(124\) 0.655149 0.000474469 0
\(125\) −2154.23 −1.54144
\(126\) −189.118 −0.133714
\(127\) −138.570 −0.0968194 −0.0484097 0.998828i \(-0.515415\pi\)
−0.0484097 + 0.998828i \(0.515415\pi\)
\(128\) −1450.48 −1.00160
\(129\) −2678.71 −1.82828
\(130\) −614.478 −0.414564
\(131\) −526.333 −0.351038 −0.175519 0.984476i \(-0.556160\pi\)
−0.175519 + 0.984476i \(0.556160\pi\)
\(132\) −0.643700 −0.000424446 0
\(133\) 252.291 0.164484
\(134\) 2661.38 1.71573
\(135\) −2010.43 −1.28170
\(136\) 0 0
\(137\) 1482.24 0.924353 0.462177 0.886788i \(-0.347069\pi\)
0.462177 + 0.886788i \(0.347069\pi\)
\(138\) 1524.54 0.940416
\(139\) 1941.51 1.18473 0.592364 0.805671i \(-0.298195\pi\)
0.592364 + 0.805671i \(0.298195\pi\)
\(140\) −1.14235 −0.000689618 0
\(141\) −3198.90 −1.91061
\(142\) −1712.05 −1.01178
\(143\) −141.672 −0.0828479
\(144\) −611.647 −0.353962
\(145\) −4915.02 −2.81497
\(146\) 1395.82 0.791225
\(147\) −296.224 −0.166205
\(148\) 1.86500 0.00103582
\(149\) 2555.91 1.40529 0.702645 0.711541i \(-0.252002\pi\)
0.702645 + 0.711541i \(0.252002\pi\)
\(150\) 4072.73 2.21691
\(151\) 2684.62 1.44683 0.723415 0.690413i \(-0.242571\pi\)
0.723415 + 0.690413i \(0.242571\pi\)
\(152\) 815.090 0.434951
\(153\) 0 0
\(154\) −246.275 −0.128866
\(155\) −1457.52 −0.755295
\(156\) 0.590038 0.000302826 0
\(157\) 2096.12 1.06553 0.532767 0.846262i \(-0.321152\pi\)
0.532767 + 0.846262i \(0.321152\pi\)
\(158\) −1554.82 −0.782881
\(159\) −483.205 −0.241010
\(160\) −7.38529 −0.00364911
\(161\) 623.785 0.305349
\(162\) 2534.56 1.22922
\(163\) 2154.64 1.03537 0.517683 0.855573i \(-0.326795\pi\)
0.517683 + 0.855573i \(0.326795\pi\)
\(164\) 1.14910 0.000547130 0
\(165\) 1432.05 0.675665
\(166\) 361.892 0.169207
\(167\) 2039.70 0.945132 0.472566 0.881295i \(-0.343328\pi\)
0.472566 + 0.881295i \(0.343328\pi\)
\(168\) −957.028 −0.439502
\(169\) −2067.14 −0.940891
\(170\) 0 0
\(171\) 344.080 0.153874
\(172\) 3.79504 0.00168238
\(173\) 2586.41 1.13665 0.568326 0.822803i \(-0.307591\pi\)
0.568326 + 0.822803i \(0.307591\pi\)
\(174\) 4413.05 1.92271
\(175\) 1666.41 0.719821
\(176\) −796.505 −0.341130
\(177\) 3201.87 1.35970
\(178\) 429.390 0.180810
\(179\) 791.869 0.330654 0.165327 0.986239i \(-0.447132\pi\)
0.165327 + 0.986239i \(0.447132\pi\)
\(180\) −1.55797 −0.000645134 0
\(181\) 113.864 0.0467592 0.0233796 0.999727i \(-0.492557\pi\)
0.0233796 + 0.999727i \(0.492557\pi\)
\(182\) 225.744 0.0919410
\(183\) −4941.84 −1.99624
\(184\) 2015.30 0.807443
\(185\) −4149.08 −1.64890
\(186\) 1308.66 0.515891
\(187\) 0 0
\(188\) 4.53200 0.00175814
\(189\) 738.581 0.284253
\(190\) 1943.43 0.742059
\(191\) 3370.96 1.27704 0.638518 0.769607i \(-0.279548\pi\)
0.638518 + 0.769607i \(0.279548\pi\)
\(192\) −3091.92 −1.16219
\(193\) −4458.03 −1.66267 −0.831337 0.555768i \(-0.812424\pi\)
−0.831337 + 0.555768i \(0.812424\pi\)
\(194\) 3075.94 1.13835
\(195\) −1312.66 −0.482061
\(196\) 0.419672 0.000152942 0
\(197\) −1801.60 −0.651568 −0.325784 0.945444i \(-0.605628\pi\)
−0.325784 + 0.945444i \(0.605628\pi\)
\(198\) −335.875 −0.120554
\(199\) 691.389 0.246288 0.123144 0.992389i \(-0.460702\pi\)
0.123144 + 0.992389i \(0.460702\pi\)
\(200\) 5383.76 1.90345
\(201\) 5685.31 1.99508
\(202\) 3311.55 1.15346
\(203\) 1805.65 0.624296
\(204\) 0 0
\(205\) −2556.41 −0.870963
\(206\) −352.089 −0.119084
\(207\) 850.733 0.285652
\(208\) 730.105 0.243383
\(209\) 448.072 0.148296
\(210\) −2281.86 −0.749824
\(211\) 766.819 0.250190 0.125095 0.992145i \(-0.460076\pi\)
0.125095 + 0.992145i \(0.460076\pi\)
\(212\) 0.684575 0.000221777 0
\(213\) −3657.33 −1.17651
\(214\) −1373.26 −0.438663
\(215\) −8442.87 −2.67814
\(216\) 2386.18 0.751661
\(217\) 535.456 0.167507
\(218\) −2152.22 −0.668656
\(219\) 2981.79 0.920048
\(220\) −2.02884 −0.000621746 0
\(221\) 0 0
\(222\) 3725.34 1.12625
\(223\) 3683.10 1.10600 0.553001 0.833181i \(-0.313483\pi\)
0.553001 + 0.833181i \(0.313483\pi\)
\(224\) 2.71317 0.000809291 0
\(225\) 2272.69 0.673390
\(226\) −424.641 −0.124985
\(227\) 4616.68 1.34987 0.674934 0.737878i \(-0.264172\pi\)
0.674934 + 0.737878i \(0.264172\pi\)
\(228\) −1.86613 −0.000542050 0
\(229\) −4567.90 −1.31815 −0.659073 0.752079i \(-0.729051\pi\)
−0.659073 + 0.752079i \(0.729051\pi\)
\(230\) 4805.10 1.37756
\(231\) −526.098 −0.149847
\(232\) 5833.63 1.65085
\(233\) −3635.14 −1.02209 −0.511043 0.859555i \(-0.670741\pi\)
−0.511043 + 0.859555i \(0.670741\pi\)
\(234\) 307.875 0.0860104
\(235\) −10082.4 −2.79874
\(236\) −4.53621 −0.00125120
\(237\) −3321.46 −0.910345
\(238\) 0 0
\(239\) 4513.28 1.22151 0.610753 0.791821i \(-0.290867\pi\)
0.610753 + 0.791821i \(0.290867\pi\)
\(240\) −7380.01 −1.98491
\(241\) 81.8676 0.0218820 0.0109410 0.999940i \(-0.496517\pi\)
0.0109410 + 0.999940i \(0.496517\pi\)
\(242\) 3329.26 0.884352
\(243\) 2565.57 0.677290
\(244\) 7.00129 0.00183693
\(245\) −933.651 −0.243464
\(246\) 2295.32 0.594896
\(247\) −410.719 −0.105803
\(248\) 1729.93 0.442946
\(249\) 773.084 0.196756
\(250\) 6096.34 1.54227
\(251\) −2491.54 −0.626551 −0.313275 0.949662i \(-0.601426\pi\)
−0.313275 + 0.949662i \(0.601426\pi\)
\(252\) 0.572359 0.000143076 0
\(253\) 1107.85 0.275296
\(254\) 392.144 0.0968712
\(255\) 0 0
\(256\) 13.1554 0.00321177
\(257\) 102.802 0.0249518 0.0124759 0.999922i \(-0.496029\pi\)
0.0124759 + 0.999922i \(0.496029\pi\)
\(258\) 7580.60 1.82925
\(259\) 1524.27 0.365689
\(260\) 1.85970 0.000443592 0
\(261\) 2462.60 0.584026
\(262\) 1489.49 0.351226
\(263\) 3365.35 0.789037 0.394518 0.918888i \(-0.370911\pi\)
0.394518 + 0.918888i \(0.370911\pi\)
\(264\) −1699.70 −0.396246
\(265\) −1522.98 −0.353042
\(266\) −713.968 −0.164572
\(267\) 917.274 0.210248
\(268\) −8.05460 −0.00183587
\(269\) −7194.88 −1.63078 −0.815390 0.578912i \(-0.803477\pi\)
−0.815390 + 0.578912i \(0.803477\pi\)
\(270\) 5689.39 1.28239
\(271\) −2609.90 −0.585019 −0.292510 0.956263i \(-0.594490\pi\)
−0.292510 + 0.956263i \(0.594490\pi\)
\(272\) 0 0
\(273\) 482.240 0.106910
\(274\) −4194.66 −0.924848
\(275\) 2959.57 0.648977
\(276\) −4.61398 −0.00100626
\(277\) 4920.27 1.06726 0.533628 0.845719i \(-0.320828\pi\)
0.533628 + 0.845719i \(0.320828\pi\)
\(278\) −5494.37 −1.18536
\(279\) 730.268 0.156703
\(280\) −3016.40 −0.643801
\(281\) 5288.45 1.12271 0.561356 0.827574i \(-0.310280\pi\)
0.561356 + 0.827574i \(0.310280\pi\)
\(282\) 9052.69 1.91163
\(283\) −1232.53 −0.258891 −0.129445 0.991587i \(-0.541320\pi\)
−0.129445 + 0.991587i \(0.541320\pi\)
\(284\) 5.18149 0.00108262
\(285\) 4151.61 0.862877
\(286\) 400.925 0.0828922
\(287\) 939.161 0.193160
\(288\) 3.70029 0.000757089 0
\(289\) 0 0
\(290\) 13909.2 2.81647
\(291\) 6570.91 1.32369
\(292\) −4.22441 −0.000846627 0
\(293\) 7435.36 1.48252 0.741260 0.671218i \(-0.234229\pi\)
0.741260 + 0.671218i \(0.234229\pi\)
\(294\) 838.297 0.166294
\(295\) 10091.8 1.99175
\(296\) 4924.54 0.967004
\(297\) 1311.73 0.256277
\(298\) −7233.07 −1.40604
\(299\) −1015.49 −0.196413
\(300\) −12.3260 −0.00237214
\(301\) 3101.70 0.593950
\(302\) −7597.32 −1.44760
\(303\) 7074.22 1.34126
\(304\) −2309.13 −0.435649
\(305\) −15575.9 −2.92417
\(306\) 0 0
\(307\) −10355.6 −1.92516 −0.962578 0.271004i \(-0.912644\pi\)
−0.962578 + 0.271004i \(0.912644\pi\)
\(308\) 0.745344 0.000137889 0
\(309\) −752.143 −0.138472
\(310\) 4124.69 0.755699
\(311\) 9478.42 1.72821 0.864103 0.503316i \(-0.167887\pi\)
0.864103 + 0.503316i \(0.167887\pi\)
\(312\) 1558.00 0.282706
\(313\) 1855.50 0.335077 0.167538 0.985866i \(-0.446418\pi\)
0.167538 + 0.985866i \(0.446418\pi\)
\(314\) −5931.90 −1.06610
\(315\) −1273.34 −0.227760
\(316\) 4.70563 0.000837698 0
\(317\) −2184.14 −0.386983 −0.193491 0.981102i \(-0.561981\pi\)
−0.193491 + 0.981102i \(0.561981\pi\)
\(318\) 1367.44 0.241139
\(319\) 3206.87 0.562853
\(320\) −9745.23 −1.70242
\(321\) −2933.59 −0.510084
\(322\) −1765.27 −0.305512
\(323\) 0 0
\(324\) −7.67077 −0.00131529
\(325\) −2712.84 −0.463020
\(326\) −6097.51 −1.03592
\(327\) −4597.64 −0.777523
\(328\) 3034.20 0.510780
\(329\) 3704.02 0.620697
\(330\) −4052.61 −0.676027
\(331\) −11621.0 −1.92975 −0.964875 0.262710i \(-0.915384\pi\)
−0.964875 + 0.262710i \(0.915384\pi\)
\(332\) −1.09526 −0.000181054 0
\(333\) 2078.84 0.342101
\(334\) −5772.24 −0.945638
\(335\) 17919.2 2.92248
\(336\) 2711.23 0.440208
\(337\) 1359.52 0.219757 0.109878 0.993945i \(-0.464954\pi\)
0.109878 + 0.993945i \(0.464954\pi\)
\(338\) 5849.88 0.941395
\(339\) −907.130 −0.145335
\(340\) 0 0
\(341\) 950.978 0.151021
\(342\) −973.727 −0.153956
\(343\) 343.000 0.0539949
\(344\) 10020.8 1.57060
\(345\) 10264.8 1.60185
\(346\) −7319.38 −1.13726
\(347\) −5430.63 −0.840148 −0.420074 0.907490i \(-0.637996\pi\)
−0.420074 + 0.907490i \(0.637996\pi\)
\(348\) −13.3560 −0.00205734
\(349\) 11091.4 1.70118 0.850588 0.525833i \(-0.176246\pi\)
0.850588 + 0.525833i \(0.176246\pi\)
\(350\) −4715.84 −0.720207
\(351\) −1202.38 −0.182844
\(352\) 4.81863 0.000729641 0
\(353\) −12189.8 −1.83796 −0.918978 0.394309i \(-0.870984\pi\)
−0.918978 + 0.394309i \(0.870984\pi\)
\(354\) −9061.10 −1.36043
\(355\) −11527.3 −1.72340
\(356\) −1.29954 −0.000193470 0
\(357\) 0 0
\(358\) −2240.94 −0.330831
\(359\) 445.787 0.0655369 0.0327685 0.999463i \(-0.489568\pi\)
0.0327685 + 0.999463i \(0.489568\pi\)
\(360\) −4113.84 −0.602273
\(361\) −5560.01 −0.810615
\(362\) −322.227 −0.0467842
\(363\) 7112.06 1.02834
\(364\) −0.683208 −9.83787e−5 0
\(365\) 9398.11 1.34772
\(366\) 13985.1 1.99730
\(367\) −7190.02 −1.02266 −0.511330 0.859384i \(-0.670847\pi\)
−0.511330 + 0.859384i \(0.670847\pi\)
\(368\) −5709.27 −0.808740
\(369\) 1280.85 0.180700
\(370\) 11741.7 1.64978
\(371\) 559.506 0.0782968
\(372\) −3.96063 −0.000552014 0
\(373\) −9755.17 −1.35416 −0.677082 0.735907i \(-0.736756\pi\)
−0.677082 + 0.735907i \(0.736756\pi\)
\(374\) 0 0
\(375\) 13023.2 1.79337
\(376\) 11966.8 1.64133
\(377\) −2939.53 −0.401574
\(378\) −2090.14 −0.284406
\(379\) 1130.46 0.153213 0.0766064 0.997061i \(-0.475592\pi\)
0.0766064 + 0.997061i \(0.475592\pi\)
\(380\) −5.88174 −0.000794018 0
\(381\) 837.708 0.112643
\(382\) −9539.61 −1.27772
\(383\) 8218.30 1.09644 0.548219 0.836335i \(-0.315306\pi\)
0.548219 + 0.836335i \(0.315306\pi\)
\(384\) 8768.70 1.16530
\(385\) −1658.18 −0.219503
\(386\) 12616.0 1.66356
\(387\) 4230.17 0.555638
\(388\) −9.30926 −0.00121806
\(389\) −3602.96 −0.469608 −0.234804 0.972043i \(-0.575445\pi\)
−0.234804 + 0.972043i \(0.575445\pi\)
\(390\) 3714.76 0.482319
\(391\) 0 0
\(392\) 1108.15 0.142781
\(393\) 3181.89 0.408410
\(394\) 5098.43 0.651917
\(395\) −10468.7 −1.33351
\(396\) 1.01652 0.000128995 0
\(397\) −8036.29 −1.01594 −0.507972 0.861374i \(-0.669605\pi\)
−0.507972 + 0.861374i \(0.669605\pi\)
\(398\) −1956.59 −0.246420
\(399\) −1525.20 −0.191367
\(400\) −15252.0 −1.90651
\(401\) 11241.3 1.39990 0.699952 0.714190i \(-0.253205\pi\)
0.699952 + 0.714190i \(0.253205\pi\)
\(402\) −16089.1 −1.99615
\(403\) −871.700 −0.107748
\(404\) −10.0223 −0.00123423
\(405\) 17065.3 2.09378
\(406\) −5109.90 −0.624630
\(407\) 2707.12 0.329698
\(408\) 0 0
\(409\) −3601.32 −0.435388 −0.217694 0.976017i \(-0.569853\pi\)
−0.217694 + 0.976017i \(0.569853\pi\)
\(410\) 7234.49 0.871429
\(411\) −8960.73 −1.07543
\(412\) 1.06559 0.000127422 0
\(413\) −3707.46 −0.441725
\(414\) −2407.52 −0.285805
\(415\) 2436.63 0.288216
\(416\) −4.41692 −0.000520571 0
\(417\) −11737.2 −1.37836
\(418\) −1268.02 −0.148375
\(419\) −9935.38 −1.15841 −0.579207 0.815181i \(-0.696638\pi\)
−0.579207 + 0.815181i \(0.696638\pi\)
\(420\) 6.90598 0.000802326 0
\(421\) −2147.79 −0.248639 −0.124319 0.992242i \(-0.539675\pi\)
−0.124319 + 0.992242i \(0.539675\pi\)
\(422\) −2170.05 −0.250323
\(423\) 5051.64 0.580659
\(424\) 1807.63 0.207043
\(425\) 0 0
\(426\) 10350.0 1.17714
\(427\) 5722.19 0.648515
\(428\) 4.15612 0.000469378 0
\(429\) 856.466 0.0963882
\(430\) 23892.8 2.67957
\(431\) 16969.2 1.89646 0.948232 0.317580i \(-0.102870\pi\)
0.948232 + 0.317580i \(0.102870\pi\)
\(432\) −6759.97 −0.752868
\(433\) −411.427 −0.0456626 −0.0228313 0.999739i \(-0.507268\pi\)
−0.0228313 + 0.999739i \(0.507268\pi\)
\(434\) −1515.31 −0.167597
\(435\) 29713.2 3.27503
\(436\) 6.51365 0.000715475 0
\(437\) 3211.74 0.351575
\(438\) −8438.28 −0.920540
\(439\) 1562.83 0.169909 0.0849545 0.996385i \(-0.472926\pi\)
0.0849545 + 0.996385i \(0.472926\pi\)
\(440\) −5357.16 −0.580438
\(441\) 467.792 0.0505120
\(442\) 0 0
\(443\) −7046.86 −0.755771 −0.377885 0.925852i \(-0.623349\pi\)
−0.377885 + 0.925852i \(0.623349\pi\)
\(444\) −11.2746 −0.00120511
\(445\) 2891.10 0.307980
\(446\) −10422.9 −1.10659
\(447\) −15451.5 −1.63496
\(448\) 3580.15 0.377559
\(449\) 13387.4 1.40710 0.703551 0.710645i \(-0.251597\pi\)
0.703551 + 0.710645i \(0.251597\pi\)
\(450\) −6431.58 −0.673750
\(451\) 1667.96 0.174149
\(452\) 1.28517 0.000133737 0
\(453\) −16229.6 −1.68330
\(454\) −13064.9 −1.35059
\(455\) 1519.94 0.156607
\(456\) −4927.54 −0.506038
\(457\) 11716.8 1.19932 0.599658 0.800257i \(-0.295303\pi\)
0.599658 + 0.800257i \(0.295303\pi\)
\(458\) 12926.9 1.31885
\(459\) 0 0
\(460\) −14.5425 −0.00147402
\(461\) −18214.8 −1.84024 −0.920119 0.391638i \(-0.871908\pi\)
−0.920119 + 0.391638i \(0.871908\pi\)
\(462\) 1488.83 0.149928
\(463\) 6716.97 0.674221 0.337110 0.941465i \(-0.390550\pi\)
0.337110 + 0.941465i \(0.390550\pi\)
\(464\) −16526.5 −1.65350
\(465\) 8811.27 0.878738
\(466\) 10287.2 1.02263
\(467\) 15598.0 1.54559 0.772793 0.634659i \(-0.218859\pi\)
0.772793 + 0.634659i \(0.218859\pi\)
\(468\) −0.931776 −9.20328e−5 0
\(469\) −6583.06 −0.648140
\(470\) 28532.6 2.80024
\(471\) −12671.9 −1.23968
\(472\) −11977.9 −1.16807
\(473\) 5508.67 0.535494
\(474\) 9399.52 0.910832
\(475\) 8580.00 0.828794
\(476\) 0 0
\(477\) 763.068 0.0732463
\(478\) −12772.3 −1.22216
\(479\) 6987.73 0.666550 0.333275 0.942830i \(-0.391846\pi\)
0.333275 + 0.942830i \(0.391846\pi\)
\(480\) 44.6469 0.00424551
\(481\) −2481.45 −0.235227
\(482\) −231.680 −0.0218937
\(483\) −3771.02 −0.355254
\(484\) −10.0759 −0.000946274 0
\(485\) 20710.4 1.93899
\(486\) −7260.42 −0.677653
\(487\) 15387.8 1.43180 0.715902 0.698201i \(-0.246016\pi\)
0.715902 + 0.698201i \(0.246016\pi\)
\(488\) 18487.0 1.71489
\(489\) −13025.7 −1.20458
\(490\) 2642.18 0.243595
\(491\) 2418.05 0.222251 0.111125 0.993806i \(-0.464554\pi\)
0.111125 + 0.993806i \(0.464554\pi\)
\(492\) −6.94674 −0.000636551 0
\(493\) 0 0
\(494\) 1162.31 0.105860
\(495\) −2261.46 −0.205344
\(496\) −4900.83 −0.443657
\(497\) 4234.85 0.382211
\(498\) −2187.78 −0.196861
\(499\) 6632.84 0.595043 0.297522 0.954715i \(-0.403840\pi\)
0.297522 + 0.954715i \(0.403840\pi\)
\(500\) −18.4504 −0.00165025
\(501\) −12330.8 −1.09960
\(502\) 7050.90 0.626886
\(503\) 12133.2 1.07553 0.537766 0.843094i \(-0.319268\pi\)
0.537766 + 0.843094i \(0.319268\pi\)
\(504\) 1511.32 0.133571
\(505\) 22296.8 1.96474
\(506\) −3135.15 −0.275444
\(507\) 12496.7 1.09467
\(508\) −1.18681 −0.000103654 0
\(509\) −4404.74 −0.383569 −0.191785 0.981437i \(-0.561427\pi\)
−0.191785 + 0.981437i \(0.561427\pi\)
\(510\) 0 0
\(511\) −3452.63 −0.298895
\(512\) 11566.6 0.998389
\(513\) 3802.80 0.327286
\(514\) −290.924 −0.0249652
\(515\) −2370.63 −0.202840
\(516\) −22.9425 −0.00195734
\(517\) 6578.40 0.559609
\(518\) −4313.59 −0.365885
\(519\) −15635.8 −1.32242
\(520\) 4910.57 0.414120
\(521\) 13542.5 1.13878 0.569391 0.822067i \(-0.307179\pi\)
0.569391 + 0.822067i \(0.307179\pi\)
\(522\) −6969.00 −0.584339
\(523\) −5483.81 −0.458490 −0.229245 0.973369i \(-0.573626\pi\)
−0.229245 + 0.973369i \(0.573626\pi\)
\(524\) −4.50791 −0.000375818 0
\(525\) −10074.1 −0.837466
\(526\) −9523.75 −0.789459
\(527\) 0 0
\(528\) 4815.19 0.396883
\(529\) −4226.04 −0.347336
\(530\) 4309.95 0.353231
\(531\) −5056.33 −0.413232
\(532\) 2.16080 0.000176095 0
\(533\) −1528.91 −0.124249
\(534\) −2595.83 −0.210361
\(535\) −9246.19 −0.747192
\(536\) −21268.3 −1.71390
\(537\) −4787.16 −0.384695
\(538\) 20361.1 1.63165
\(539\) 609.173 0.0486808
\(540\) −17.2188 −0.00137218
\(541\) −12134.7 −0.964347 −0.482174 0.876076i \(-0.660153\pi\)
−0.482174 + 0.876076i \(0.660153\pi\)
\(542\) 7385.87 0.585332
\(543\) −688.350 −0.0544014
\(544\) 0 0
\(545\) −14491.0 −1.13895
\(546\) −1364.71 −0.106968
\(547\) 11.9363 0.000933018 0 0.000466509 1.00000i \(-0.499852\pi\)
0.000466509 1.00000i \(0.499852\pi\)
\(548\) 12.6950 0.000989606 0
\(549\) 7804.05 0.606683
\(550\) −8375.40 −0.649324
\(551\) 9296.94 0.718808
\(552\) −12183.3 −0.939409
\(553\) 3845.94 0.295743
\(554\) −13924.1 −1.06783
\(555\) 25082.8 1.91839
\(556\) 16.6286 0.00126836
\(557\) 15599.2 1.18664 0.593321 0.804966i \(-0.297816\pi\)
0.593321 + 0.804966i \(0.297816\pi\)
\(558\) −2066.62 −0.156786
\(559\) −5049.44 −0.382054
\(560\) 8545.36 0.644835
\(561\) 0 0
\(562\) −14966.0 −1.12331
\(563\) 17866.7 1.33746 0.668732 0.743504i \(-0.266837\pi\)
0.668732 + 0.743504i \(0.266837\pi\)
\(564\) −27.3977 −0.00204548
\(565\) −2859.13 −0.212893
\(566\) 3487.97 0.259029
\(567\) −6269.35 −0.464353
\(568\) 13681.8 1.01069
\(569\) −5035.23 −0.370980 −0.185490 0.982646i \(-0.559387\pi\)
−0.185490 + 0.982646i \(0.559387\pi\)
\(570\) −11748.8 −0.863339
\(571\) −8838.82 −0.647799 −0.323899 0.946092i \(-0.604994\pi\)
−0.323899 + 0.946092i \(0.604994\pi\)
\(572\) −1.21339 −8.86963e−5 0
\(573\) −20378.8 −1.48575
\(574\) −2657.77 −0.193263
\(575\) 21213.9 1.53857
\(576\) 4882.70 0.353205
\(577\) 7247.92 0.522938 0.261469 0.965212i \(-0.415793\pi\)
0.261469 + 0.965212i \(0.415793\pi\)
\(578\) 0 0
\(579\) 26950.6 1.93442
\(580\) −42.0958 −0.00301368
\(581\) −895.159 −0.0639199
\(582\) −18595.3 −1.32440
\(583\) 993.691 0.0705908
\(584\) −11154.6 −0.790378
\(585\) 2072.94 0.146505
\(586\) −21041.6 −1.48331
\(587\) 881.106 0.0619542 0.0309771 0.999520i \(-0.490138\pi\)
0.0309771 + 0.999520i \(0.490138\pi\)
\(588\) −2.53708 −0.000177938 0
\(589\) 2756.95 0.192866
\(590\) −28559.1 −1.99281
\(591\) 10891.4 0.758058
\(592\) −13951.1 −0.968557
\(593\) −1540.15 −0.106655 −0.0533275 0.998577i \(-0.516983\pi\)
−0.0533275 + 0.998577i \(0.516983\pi\)
\(594\) −3712.12 −0.256414
\(595\) 0 0
\(596\) 21.8907 0.00150449
\(597\) −4179.72 −0.286540
\(598\) 2873.79 0.196518
\(599\) −12524.3 −0.854305 −0.427153 0.904180i \(-0.640483\pi\)
−0.427153 + 0.904180i \(0.640483\pi\)
\(600\) −32547.0 −2.21454
\(601\) −7292.80 −0.494974 −0.247487 0.968891i \(-0.579605\pi\)
−0.247487 + 0.968891i \(0.579605\pi\)
\(602\) −8777.63 −0.594268
\(603\) −8978.14 −0.606332
\(604\) 22.9931 0.00154897
\(605\) 22416.1 1.50635
\(606\) −20019.6 −1.34198
\(607\) −22734.7 −1.52022 −0.760111 0.649794i \(-0.774855\pi\)
−0.760111 + 0.649794i \(0.774855\pi\)
\(608\) 13.9695 0.000931809 0
\(609\) −10915.9 −0.726329
\(610\) 44078.8 2.92573
\(611\) −6029.99 −0.399259
\(612\) 0 0
\(613\) −13218.7 −0.870960 −0.435480 0.900198i \(-0.643421\pi\)
−0.435480 + 0.900198i \(0.643421\pi\)
\(614\) 29305.6 1.92619
\(615\) 15454.5 1.01331
\(616\) 1968.09 0.128728
\(617\) 23085.4 1.50629 0.753145 0.657854i \(-0.228536\pi\)
0.753145 + 0.657854i \(0.228536\pi\)
\(618\) 2128.52 0.138546
\(619\) −8169.60 −0.530475 −0.265238 0.964183i \(-0.585450\pi\)
−0.265238 + 0.964183i \(0.585450\pi\)
\(620\) −12.4833 −0.000808613 0
\(621\) 9402.36 0.607575
\(622\) −26823.4 −1.72913
\(623\) −1062.12 −0.0683032
\(624\) −4413.77 −0.283161
\(625\) 11289.6 0.722531
\(626\) −5250.96 −0.335256
\(627\) −2708.77 −0.172533
\(628\) 17.9527 0.00114075
\(629\) 0 0
\(630\) 3603.46 0.227882
\(631\) 15440.3 0.974119 0.487059 0.873369i \(-0.338069\pi\)
0.487059 + 0.873369i \(0.338069\pi\)
\(632\) 12425.3 0.782043
\(633\) −4635.72 −0.291080
\(634\) 6180.99 0.387190
\(635\) 2640.32 0.165004
\(636\) −4.13852 −0.000258024 0
\(637\) −558.389 −0.0347319
\(638\) −9075.25 −0.563155
\(639\) 5775.59 0.357557
\(640\) 27637.5 1.70698
\(641\) 15819.3 0.974765 0.487382 0.873189i \(-0.337952\pi\)
0.487382 + 0.873189i \(0.337952\pi\)
\(642\) 8301.88 0.510357
\(643\) 254.478 0.0156075 0.00780374 0.999970i \(-0.497516\pi\)
0.00780374 + 0.999970i \(0.497516\pi\)
\(644\) 5.34255 0.000326904 0
\(645\) 51040.5 3.11584
\(646\) 0 0
\(647\) 4865.23 0.295629 0.147814 0.989015i \(-0.452776\pi\)
0.147814 + 0.989015i \(0.452776\pi\)
\(648\) −20254.7 −1.22790
\(649\) −6584.51 −0.398251
\(650\) 7677.19 0.463268
\(651\) −3237.04 −0.194884
\(652\) 18.4539 0.00110845
\(653\) −20286.4 −1.21572 −0.607862 0.794042i \(-0.707973\pi\)
−0.607862 + 0.794042i \(0.707973\pi\)
\(654\) 13011.0 0.777939
\(655\) 10028.8 0.598256
\(656\) −8595.80 −0.511600
\(657\) −4708.78 −0.279615
\(658\) −10482.2 −0.621029
\(659\) −19377.3 −1.14542 −0.572709 0.819758i \(-0.694108\pi\)
−0.572709 + 0.819758i \(0.694108\pi\)
\(660\) 12.2651 0.000723362 0
\(661\) −31223.6 −1.83730 −0.918651 0.395070i \(-0.870721\pi\)
−0.918651 + 0.395070i \(0.870721\pi\)
\(662\) 32886.7 1.93078
\(663\) 0 0
\(664\) −2892.04 −0.169025
\(665\) −4807.17 −0.280322
\(666\) −5882.98 −0.342284
\(667\) 22986.5 1.33440
\(668\) 17.4695 0.00101185
\(669\) −22265.8 −1.28676
\(670\) −50710.2 −2.92404
\(671\) 10162.7 0.584689
\(672\) −16.4022 −0.000941559 0
\(673\) −3179.56 −0.182114 −0.0910572 0.995846i \(-0.529025\pi\)
−0.0910572 + 0.995846i \(0.529025\pi\)
\(674\) −3847.38 −0.219874
\(675\) 25117.9 1.43228
\(676\) −17.7045 −0.00100731
\(677\) 19143.9 1.08679 0.543397 0.839476i \(-0.317138\pi\)
0.543397 + 0.839476i \(0.317138\pi\)
\(678\) 2567.12 0.145413
\(679\) −7608.50 −0.430026
\(680\) 0 0
\(681\) −27909.7 −1.57049
\(682\) −2691.21 −0.151102
\(683\) 9159.45 0.513143 0.256571 0.966525i \(-0.417407\pi\)
0.256571 + 0.966525i \(0.417407\pi\)
\(684\) 2.94696 0.000164736 0
\(685\) −28242.8 −1.57533
\(686\) −970.670 −0.0540238
\(687\) 27614.7 1.53358
\(688\) −28388.7 −1.57313
\(689\) −910.852 −0.0503638
\(690\) −29048.7 −1.60270
\(691\) −30368.3 −1.67187 −0.835937 0.548825i \(-0.815075\pi\)
−0.835937 + 0.548825i \(0.815075\pi\)
\(692\) 22.1519 0.00121689
\(693\) 830.805 0.0455406
\(694\) 15368.4 0.840598
\(695\) −36993.8 −2.01907
\(696\) −35266.6 −1.92066
\(697\) 0 0
\(698\) −31388.1 −1.70209
\(699\) 21975.8 1.18913
\(700\) 14.2724 0.000770635 0
\(701\) −29510.8 −1.59002 −0.795012 0.606593i \(-0.792536\pi\)
−0.795012 + 0.606593i \(0.792536\pi\)
\(702\) 3402.66 0.182942
\(703\) 7848.15 0.421050
\(704\) 6358.41 0.340400
\(705\) 60952.1 3.25615
\(706\) 34496.5 1.83894
\(707\) −8191.28 −0.435735
\(708\) 27.4232 0.00145569
\(709\) 30766.2 1.62969 0.814845 0.579678i \(-0.196822\pi\)
0.814845 + 0.579678i \(0.196822\pi\)
\(710\) 32621.6 1.72432
\(711\) 5245.18 0.276666
\(712\) −3431.44 −0.180616
\(713\) 6816.52 0.358037
\(714\) 0 0
\(715\) 2699.44 0.141194
\(716\) 6.78215 0.000353996 0
\(717\) −27284.5 −1.42114
\(718\) −1261.55 −0.0655720
\(719\) −33888.2 −1.75774 −0.878872 0.477058i \(-0.841703\pi\)
−0.878872 + 0.477058i \(0.841703\pi\)
\(720\) 11654.4 0.603240
\(721\) 870.911 0.0449853
\(722\) 15734.5 0.811049
\(723\) −494.922 −0.0254583
\(724\) 0.975212 5.00601e−5 0
\(725\) 61407.4 3.14567
\(726\) −20126.7 −1.02889
\(727\) 4424.80 0.225732 0.112866 0.993610i \(-0.463997\pi\)
0.112866 + 0.993610i \(0.463997\pi\)
\(728\) −1804.02 −0.0918426
\(729\) 8671.90 0.440578
\(730\) −26596.1 −1.34845
\(731\) 0 0
\(732\) −42.3255 −0.00213715
\(733\) 16009.3 0.806706 0.403353 0.915045i \(-0.367845\pi\)
0.403353 + 0.915045i \(0.367845\pi\)
\(734\) 20347.3 1.02321
\(735\) 5644.28 0.283255
\(736\) 34.5395 0.00172981
\(737\) −11691.6 −0.584350
\(738\) −3624.73 −0.180797
\(739\) 7490.73 0.372870 0.186435 0.982467i \(-0.440307\pi\)
0.186435 + 0.982467i \(0.440307\pi\)
\(740\) −35.5358 −0.00176530
\(741\) 2482.96 0.123095
\(742\) −1583.37 −0.0783387
\(743\) −1961.39 −0.0968457 −0.0484228 0.998827i \(-0.515420\pi\)
−0.0484228 + 0.998827i \(0.515420\pi\)
\(744\) −10458.1 −0.515339
\(745\) −48700.5 −2.39496
\(746\) 27606.5 1.35489
\(747\) −1220.84 −0.0597967
\(748\) 0 0
\(749\) 3396.82 0.165710
\(750\) −36854.8 −1.79433
\(751\) 13401.7 0.651177 0.325588 0.945512i \(-0.394438\pi\)
0.325588 + 0.945512i \(0.394438\pi\)
\(752\) −33901.6 −1.64397
\(753\) 15062.3 0.728952
\(754\) 8318.69 0.401789
\(755\) −51153.0 −2.46576
\(756\) 6.32576 0.000304320 0
\(757\) −7212.75 −0.346303 −0.173152 0.984895i \(-0.555395\pi\)
−0.173152 + 0.984895i \(0.555395\pi\)
\(758\) −3199.13 −0.153295
\(759\) −6697.39 −0.320290
\(760\) −15530.8 −0.741265
\(761\) −36579.0 −1.74243 −0.871213 0.490905i \(-0.836666\pi\)
−0.871213 + 0.490905i \(0.836666\pi\)
\(762\) −2370.66 −0.112703
\(763\) 5323.63 0.252593
\(764\) 28.8714 0.00136719
\(765\) 0 0
\(766\) −23257.3 −1.09702
\(767\) 6035.59 0.284136
\(768\) −79.5297 −0.00373669
\(769\) 26039.3 1.22107 0.610534 0.791990i \(-0.290955\pi\)
0.610534 + 0.791990i \(0.290955\pi\)
\(770\) 4692.54 0.219620
\(771\) −621.479 −0.0290299
\(772\) −38.1819 −0.00178005
\(773\) 17507.0 0.814597 0.407299 0.913295i \(-0.366471\pi\)
0.407299 + 0.913295i \(0.366471\pi\)
\(774\) −11971.1 −0.555935
\(775\) 18210.0 0.844028
\(776\) −24581.2 −1.13713
\(777\) −9214.81 −0.425456
\(778\) 10196.2 0.469859
\(779\) 4835.55 0.222402
\(780\) −11.2426 −0.000516091 0
\(781\) 7521.16 0.344594
\(782\) 0 0
\(783\) 27216.8 1.24221
\(784\) −3139.35 −0.143010
\(785\) −39939.7 −1.81594
\(786\) −9004.56 −0.408629
\(787\) −36203.6 −1.63980 −0.819899 0.572509i \(-0.805970\pi\)
−0.819899 + 0.572509i \(0.805970\pi\)
\(788\) −15.4303 −0.000697564 0
\(789\) −20344.9 −0.917994
\(790\) 29625.8 1.33422
\(791\) 1050.37 0.0472148
\(792\) 2684.13 0.120425
\(793\) −9315.47 −0.417153
\(794\) 22742.2 1.01649
\(795\) 9207.03 0.410742
\(796\) 5.92157 0.000263674 0
\(797\) 8657.44 0.384771 0.192385 0.981319i \(-0.438378\pi\)
0.192385 + 0.981319i \(0.438378\pi\)
\(798\) 4316.22 0.191469
\(799\) 0 0
\(800\) 92.2705 0.00407782
\(801\) −1448.54 −0.0638973
\(802\) −31812.1 −1.40065
\(803\) −6131.92 −0.269478
\(804\) 48.6932 0.00213592
\(805\) −11885.7 −0.520390
\(806\) 2466.86 0.107806
\(807\) 43495.9 1.89731
\(808\) −26464.0 −1.15223
\(809\) 7213.71 0.313499 0.156749 0.987638i \(-0.449899\pi\)
0.156749 + 0.987638i \(0.449899\pi\)
\(810\) −48293.7 −2.09490
\(811\) −11663.3 −0.504997 −0.252498 0.967597i \(-0.581252\pi\)
−0.252498 + 0.967597i \(0.581252\pi\)
\(812\) 15.4650 0.000668367 0
\(813\) 15777.9 0.680633
\(814\) −7661.00 −0.329875
\(815\) −41054.7 −1.76452
\(816\) 0 0
\(817\) 15970.0 0.683868
\(818\) 10191.5 0.435621
\(819\) −761.545 −0.0324915
\(820\) −21.8950 −0.000932446 0
\(821\) 5985.64 0.254446 0.127223 0.991874i \(-0.459394\pi\)
0.127223 + 0.991874i \(0.459394\pi\)
\(822\) 25358.3 1.07600
\(823\) 6169.70 0.261315 0.130657 0.991428i \(-0.458291\pi\)
0.130657 + 0.991428i \(0.458291\pi\)
\(824\) 2813.70 0.118956
\(825\) −17891.7 −0.755043
\(826\) 10491.9 0.441961
\(827\) 5294.00 0.222600 0.111300 0.993787i \(-0.464499\pi\)
0.111300 + 0.993787i \(0.464499\pi\)
\(828\) 7.28630 0.000305817 0
\(829\) −8856.63 −0.371054 −0.185527 0.982639i \(-0.559399\pi\)
−0.185527 + 0.982639i \(0.559399\pi\)
\(830\) −6895.53 −0.288370
\(831\) −29744.9 −1.24169
\(832\) −5828.34 −0.242862
\(833\) 0 0
\(834\) 33215.6 1.37909
\(835\) −38864.7 −1.61074
\(836\) 3.83762 0.000158764 0
\(837\) 8070.98 0.333302
\(838\) 28116.5 1.15903
\(839\) −27056.7 −1.11335 −0.556675 0.830730i \(-0.687923\pi\)
−0.556675 + 0.830730i \(0.687923\pi\)
\(840\) 18235.3 0.749021
\(841\) 42149.6 1.72822
\(842\) 6078.12 0.248772
\(843\) −31970.7 −1.30620
\(844\) 6.56761 0.000267851 0
\(845\) 39387.4 1.60351
\(846\) −14295.8 −0.580970
\(847\) −8235.10 −0.334075
\(848\) −5120.95 −0.207375
\(849\) 7451.10 0.301203
\(850\) 0 0
\(851\) 19404.4 0.781639
\(852\) −31.3241 −0.00125956
\(853\) −16062.8 −0.644760 −0.322380 0.946610i \(-0.604483\pi\)
−0.322380 + 0.946610i \(0.604483\pi\)
\(854\) −16193.4 −0.648862
\(855\) −6556.14 −0.262240
\(856\) 10974.3 0.438193
\(857\) 3326.12 0.132576 0.0662882 0.997801i \(-0.478884\pi\)
0.0662882 + 0.997801i \(0.478884\pi\)
\(858\) −2423.75 −0.0964398
\(859\) 21523.5 0.854914 0.427457 0.904036i \(-0.359410\pi\)
0.427457 + 0.904036i \(0.359410\pi\)
\(860\) −72.3110 −0.00286719
\(861\) −5677.60 −0.224729
\(862\) −48021.7 −1.89748
\(863\) 23115.1 0.911760 0.455880 0.890041i \(-0.349325\pi\)
0.455880 + 0.890041i \(0.349325\pi\)
\(864\) 40.8959 0.00161031
\(865\) −49281.6 −1.93714
\(866\) 1164.31 0.0456871
\(867\) 0 0
\(868\) 4.58604 0.000179332 0
\(869\) 6830.44 0.266636
\(870\) −84086.6 −3.27679
\(871\) 10716.9 0.416911
\(872\) 17199.4 0.667940
\(873\) −10376.7 −0.402287
\(874\) −9089.03 −0.351763
\(875\) −15079.6 −0.582610
\(876\) 25.5382 0.000984996 0
\(877\) −39192.2 −1.50904 −0.754520 0.656277i \(-0.772130\pi\)
−0.754520 + 0.656277i \(0.772130\pi\)
\(878\) −4422.73 −0.170000
\(879\) −44949.7 −1.72482
\(880\) 15176.7 0.581371
\(881\) −3511.36 −0.134280 −0.0671400 0.997744i \(-0.521387\pi\)
−0.0671400 + 0.997744i \(0.521387\pi\)
\(882\) −1323.82 −0.0505390
\(883\) 22388.9 0.853279 0.426640 0.904422i \(-0.359697\pi\)
0.426640 + 0.904422i \(0.359697\pi\)
\(884\) 0 0
\(885\) −61008.7 −2.31727
\(886\) 19942.2 0.756175
\(887\) 13858.0 0.524583 0.262292 0.964989i \(-0.415522\pi\)
0.262292 + 0.964989i \(0.415522\pi\)
\(888\) −29770.8 −1.12505
\(889\) −969.987 −0.0365943
\(890\) −8181.64 −0.308145
\(891\) −11134.5 −0.418652
\(892\) 31.5448 0.00118408
\(893\) 19071.2 0.714664
\(894\) 43726.7 1.63584
\(895\) −15088.4 −0.563517
\(896\) −10153.3 −0.378570
\(897\) 6139.06 0.228514
\(898\) −37885.5 −1.40786
\(899\) 19731.6 0.732020
\(900\) 19.4650 0.000720926 0
\(901\) 0 0
\(902\) −4720.24 −0.174243
\(903\) −18751.0 −0.691023
\(904\) 3393.49 0.124852
\(905\) −2169.57 −0.0796894
\(906\) 45928.8 1.68420
\(907\) 18692.1 0.684299 0.342150 0.939645i \(-0.388845\pi\)
0.342150 + 0.939645i \(0.388845\pi\)
\(908\) 39.5407 0.00144516
\(909\) −11171.5 −0.407628
\(910\) −4301.35 −0.156690
\(911\) −2438.93 −0.0886997 −0.0443499 0.999016i \(-0.514122\pi\)
−0.0443499 + 0.999016i \(0.514122\pi\)
\(912\) 13959.6 0.506850
\(913\) −1589.81 −0.0576289
\(914\) −33157.8 −1.19996
\(915\) 94162.2 3.40208
\(916\) −39.1229 −0.00141120
\(917\) −3684.33 −0.132680
\(918\) 0 0
\(919\) −16453.0 −0.590570 −0.295285 0.955409i \(-0.595415\pi\)
−0.295285 + 0.955409i \(0.595415\pi\)
\(920\) −38399.6 −1.37609
\(921\) 62603.4 2.23980
\(922\) 51546.9 1.84122
\(923\) −6894.16 −0.245855
\(924\) −4.50590 −0.000160425 0
\(925\) 51837.9 1.84262
\(926\) −19008.6 −0.674581
\(927\) 1187.77 0.0420836
\(928\) 99.9806 0.00353666
\(929\) 14795.7 0.522531 0.261266 0.965267i \(-0.415860\pi\)
0.261266 + 0.965267i \(0.415860\pi\)
\(930\) −24935.4 −0.879208
\(931\) 1766.04 0.0621691
\(932\) −31.1340 −0.00109424
\(933\) −57300.8 −2.01066
\(934\) −44141.3 −1.54641
\(935\) 0 0
\(936\) −2460.37 −0.0859183
\(937\) −23609.8 −0.823157 −0.411578 0.911374i \(-0.635022\pi\)
−0.411578 + 0.911374i \(0.635022\pi\)
\(938\) 18629.7 0.648487
\(939\) −11217.2 −0.389841
\(940\) −86.3531 −0.00299631
\(941\) 16274.8 0.563806 0.281903 0.959443i \(-0.409034\pi\)
0.281903 + 0.959443i \(0.409034\pi\)
\(942\) 35860.7 1.24034
\(943\) 11955.8 0.412868
\(944\) 33933.1 1.16994
\(945\) −14073.0 −0.484439
\(946\) −15589.2 −0.535781
\(947\) −52352.8 −1.79645 −0.898225 0.439536i \(-0.855143\pi\)
−0.898225 + 0.439536i \(0.855143\pi\)
\(948\) −28.4474 −0.000974608 0
\(949\) 5620.73 0.192262
\(950\) −24280.9 −0.829238
\(951\) 13204.0 0.450230
\(952\) 0 0
\(953\) −6452.24 −0.219316 −0.109658 0.993969i \(-0.534976\pi\)
−0.109658 + 0.993969i \(0.534976\pi\)
\(954\) −2159.44 −0.0732855
\(955\) −64230.5 −2.17639
\(956\) 38.6551 0.00130773
\(957\) −19386.8 −0.654844
\(958\) −19774.9 −0.666907
\(959\) 10375.7 0.349373
\(960\) 58913.7 1.98066
\(961\) −23939.7 −0.803589
\(962\) 7022.34 0.235353
\(963\) 4632.66 0.155021
\(964\) 0.701174 2.34267e−5 0
\(965\) 84943.8 2.83361
\(966\) 10671.8 0.355444
\(967\) 18493.5 0.615005 0.307503 0.951547i \(-0.400507\pi\)
0.307503 + 0.951547i \(0.400507\pi\)
\(968\) −26605.6 −0.883405
\(969\) 0 0
\(970\) −58609.3 −1.94003
\(971\) −57561.9 −1.90242 −0.951209 0.308546i \(-0.900157\pi\)
−0.951209 + 0.308546i \(0.900157\pi\)
\(972\) 21.9735 0.000725102 0
\(973\) 13590.6 0.447785
\(974\) −43546.6 −1.43257
\(975\) 16400.2 0.538694
\(976\) −52373.1 −1.71764
\(977\) −23551.1 −0.771204 −0.385602 0.922665i \(-0.626006\pi\)
−0.385602 + 0.922665i \(0.626006\pi\)
\(978\) 36861.8 1.20523
\(979\) −1886.34 −0.0615808
\(980\) −7.99647 −0.000260651 0
\(981\) 7260.50 0.236300
\(982\) −6842.95 −0.222370
\(983\) −8593.21 −0.278821 −0.139410 0.990235i \(-0.544521\pi\)
−0.139410 + 0.990235i \(0.544521\pi\)
\(984\) −18342.9 −0.594259
\(985\) 34327.9 1.11043
\(986\) 0 0
\(987\) −22392.3 −0.722142
\(988\) −3.51770 −0.000113272 0
\(989\) 39485.6 1.26953
\(990\) 6399.80 0.205454
\(991\) 21895.7 0.701855 0.350927 0.936403i \(-0.385866\pi\)
0.350927 + 0.936403i \(0.385866\pi\)
\(992\) 29.6486 0.000948937 0
\(993\) 70253.4 2.24514
\(994\) −11984.4 −0.382416
\(995\) −13173.8 −0.419736
\(996\) 6.62126 0.000210645 0
\(997\) 10773.4 0.342222 0.171111 0.985252i \(-0.445264\pi\)
0.171111 + 0.985252i \(0.445264\pi\)
\(998\) −18770.5 −0.595362
\(999\) 22975.4 0.727639
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.v.1.15 56
17.11 odd 16 119.4.k.a.36.8 112
17.14 odd 16 119.4.k.a.43.8 yes 112
17.16 even 2 2023.4.a.u.1.15 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.k.a.36.8 112 17.11 odd 16
119.4.k.a.43.8 yes 112 17.14 odd 16
2023.4.a.u.1.15 56 17.16 even 2
2023.4.a.v.1.15 56 1.1 even 1 trivial