Properties

Label 2023.4.a.v.1.12
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $0$
Dimension $56$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56,8,24,240,80,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(0\)
Dimension: \(56\)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.64206 q^{2} -6.07912 q^{3} +5.26462 q^{4} -0.735620 q^{5} +22.1405 q^{6} +7.00000 q^{7} +9.96243 q^{8} +9.95570 q^{9} +2.67917 q^{10} -32.2063 q^{11} -32.0042 q^{12} +62.7330 q^{13} -25.4944 q^{14} +4.47192 q^{15} -78.4007 q^{16} -36.2593 q^{18} -33.0331 q^{19} -3.87276 q^{20} -42.5538 q^{21} +117.297 q^{22} -185.724 q^{23} -60.5628 q^{24} -124.459 q^{25} -228.478 q^{26} +103.614 q^{27} +36.8523 q^{28} +188.550 q^{29} -16.2870 q^{30} +69.3292 q^{31} +205.841 q^{32} +195.786 q^{33} -5.14934 q^{35} +52.4129 q^{36} +416.317 q^{37} +120.309 q^{38} -381.362 q^{39} -7.32856 q^{40} +308.248 q^{41} +154.984 q^{42} -376.954 q^{43} -169.554 q^{44} -7.32361 q^{45} +676.417 q^{46} +193.539 q^{47} +476.607 q^{48} +49.0000 q^{49} +453.287 q^{50} +330.265 q^{52} -234.320 q^{53} -377.370 q^{54} +23.6916 q^{55} +69.7370 q^{56} +200.812 q^{57} -686.711 q^{58} +162.432 q^{59} +23.5430 q^{60} +264.554 q^{61} -252.501 q^{62} +69.6899 q^{63} -122.480 q^{64} -46.1477 q^{65} -713.064 q^{66} -273.786 q^{67} +1129.04 q^{69} +18.7542 q^{70} -21.0261 q^{71} +99.1829 q^{72} -1105.25 q^{73} -1516.25 q^{74} +756.600 q^{75} -173.907 q^{76} -225.444 q^{77} +1388.94 q^{78} -434.602 q^{79} +57.6732 q^{80} -898.688 q^{81} -1122.66 q^{82} +598.442 q^{83} -224.030 q^{84} +1372.89 q^{86} -1146.22 q^{87} -320.853 q^{88} +895.951 q^{89} +26.6730 q^{90} +439.131 q^{91} -977.764 q^{92} -421.461 q^{93} -704.880 q^{94} +24.2998 q^{95} -1251.33 q^{96} +324.024 q^{97} -178.461 q^{98} -320.636 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{2} + 24 q^{3} + 240 q^{4} + 80 q^{5} + 68 q^{6} + 392 q^{7} + 96 q^{8} + 576 q^{9} + 80 q^{10} + 176 q^{11} + 288 q^{12} - 96 q^{13} + 56 q^{14} + 192 q^{15} + 1088 q^{16} + 216 q^{18} + 48 q^{19}+ \cdots + 6576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.64206 −1.28766 −0.643832 0.765167i \(-0.722656\pi\)
−0.643832 + 0.765167i \(0.722656\pi\)
\(3\) −6.07912 −1.16993 −0.584964 0.811060i \(-0.698891\pi\)
−0.584964 + 0.811060i \(0.698891\pi\)
\(4\) 5.26462 0.658077
\(5\) −0.735620 −0.0657959 −0.0328979 0.999459i \(-0.510474\pi\)
−0.0328979 + 0.999459i \(0.510474\pi\)
\(6\) 22.1405 1.50647
\(7\) 7.00000 0.377964
\(8\) 9.96243 0.440281
\(9\) 9.95570 0.368729
\(10\) 2.67917 0.0847229
\(11\) −32.2063 −0.882778 −0.441389 0.897316i \(-0.645514\pi\)
−0.441389 + 0.897316i \(0.645514\pi\)
\(12\) −32.0042 −0.769902
\(13\) 62.7330 1.33839 0.669193 0.743089i \(-0.266640\pi\)
0.669193 + 0.743089i \(0.266640\pi\)
\(14\) −25.4944 −0.486691
\(15\) 4.47192 0.0769764
\(16\) −78.4007 −1.22501
\(17\) 0 0
\(18\) −36.2593 −0.474799
\(19\) −33.0331 −0.398859 −0.199429 0.979912i \(-0.563909\pi\)
−0.199429 + 0.979912i \(0.563909\pi\)
\(20\) −3.87276 −0.0432988
\(21\) −42.5538 −0.442191
\(22\) 117.297 1.13672
\(23\) −185.724 −1.68374 −0.841871 0.539679i \(-0.818546\pi\)
−0.841871 + 0.539679i \(0.818546\pi\)
\(24\) −60.5628 −0.515097
\(25\) −124.459 −0.995671
\(26\) −228.478 −1.72339
\(27\) 103.614 0.738541
\(28\) 36.8523 0.248730
\(29\) 188.550 1.20734 0.603670 0.797234i \(-0.293704\pi\)
0.603670 + 0.797234i \(0.293704\pi\)
\(30\) −16.2870 −0.0991196
\(31\) 69.3292 0.401674 0.200837 0.979625i \(-0.435634\pi\)
0.200837 + 0.979625i \(0.435634\pi\)
\(32\) 205.841 1.13712
\(33\) 195.786 1.03279
\(34\) 0 0
\(35\) −5.14934 −0.0248685
\(36\) 52.4129 0.242652
\(37\) 416.317 1.84979 0.924893 0.380228i \(-0.124155\pi\)
0.924893 + 0.380228i \(0.124155\pi\)
\(38\) 120.309 0.513596
\(39\) −381.362 −1.56581
\(40\) −7.32856 −0.0289687
\(41\) 308.248 1.17415 0.587076 0.809532i \(-0.300279\pi\)
0.587076 + 0.809532i \(0.300279\pi\)
\(42\) 154.984 0.569393
\(43\) −376.954 −1.33686 −0.668430 0.743775i \(-0.733033\pi\)
−0.668430 + 0.743775i \(0.733033\pi\)
\(44\) −169.554 −0.580936
\(45\) −7.32361 −0.0242609
\(46\) 676.417 2.16809
\(47\) 193.539 0.600649 0.300325 0.953837i \(-0.402905\pi\)
0.300325 + 0.953837i \(0.402905\pi\)
\(48\) 476.607 1.43317
\(49\) 49.0000 0.142857
\(50\) 453.287 1.28209
\(51\) 0 0
\(52\) 330.265 0.880761
\(53\) −234.320 −0.607290 −0.303645 0.952785i \(-0.598204\pi\)
−0.303645 + 0.952785i \(0.598204\pi\)
\(54\) −377.370 −0.950992
\(55\) 23.6916 0.0580831
\(56\) 69.7370 0.166411
\(57\) 200.812 0.466635
\(58\) −686.711 −1.55465
\(59\) 162.432 0.358421 0.179211 0.983811i \(-0.442646\pi\)
0.179211 + 0.983811i \(0.442646\pi\)
\(60\) 23.5430 0.0506564
\(61\) 264.554 0.555289 0.277644 0.960684i \(-0.410446\pi\)
0.277644 + 0.960684i \(0.410446\pi\)
\(62\) −252.501 −0.517221
\(63\) 69.6899 0.139367
\(64\) −122.480 −0.239218
\(65\) −46.1477 −0.0880602
\(66\) −713.064 −1.32988
\(67\) −273.786 −0.499228 −0.249614 0.968345i \(-0.580304\pi\)
−0.249614 + 0.968345i \(0.580304\pi\)
\(68\) 0 0
\(69\) 1129.04 1.96986
\(70\) 18.7542 0.0320223
\(71\) −21.0261 −0.0351456 −0.0175728 0.999846i \(-0.505594\pi\)
−0.0175728 + 0.999846i \(0.505594\pi\)
\(72\) 99.1829 0.162345
\(73\) −1105.25 −1.77206 −0.886028 0.463632i \(-0.846546\pi\)
−0.886028 + 0.463632i \(0.846546\pi\)
\(74\) −1516.25 −2.38190
\(75\) 756.600 1.16486
\(76\) −173.907 −0.262480
\(77\) −225.444 −0.333659
\(78\) 1388.94 2.01624
\(79\) −434.602 −0.618944 −0.309472 0.950909i \(-0.600152\pi\)
−0.309472 + 0.950909i \(0.600152\pi\)
\(80\) 57.6732 0.0806007
\(81\) −898.688 −1.23277
\(82\) −1122.66 −1.51191
\(83\) 598.442 0.791416 0.395708 0.918376i \(-0.370499\pi\)
0.395708 + 0.918376i \(0.370499\pi\)
\(84\) −224.030 −0.290996
\(85\) 0 0
\(86\) 1372.89 1.72142
\(87\) −1146.22 −1.41250
\(88\) −320.853 −0.388671
\(89\) 895.951 1.06709 0.533543 0.845773i \(-0.320860\pi\)
0.533543 + 0.845773i \(0.320860\pi\)
\(90\) 26.6730 0.0312398
\(91\) 439.131 0.505862
\(92\) −977.764 −1.10803
\(93\) −421.461 −0.469929
\(94\) −704.880 −0.773434
\(95\) 24.2998 0.0262432
\(96\) −1251.33 −1.33035
\(97\) 324.024 0.339172 0.169586 0.985515i \(-0.445757\pi\)
0.169586 + 0.985515i \(0.445757\pi\)
\(98\) −178.461 −0.183952
\(99\) −320.636 −0.325506
\(100\) −655.228 −0.655228
\(101\) −172.147 −0.169597 −0.0847983 0.996398i \(-0.527025\pi\)
−0.0847983 + 0.996398i \(0.527025\pi\)
\(102\) 0 0
\(103\) −816.148 −0.780752 −0.390376 0.920655i \(-0.627655\pi\)
−0.390376 + 0.920655i \(0.627655\pi\)
\(104\) 624.974 0.589266
\(105\) 31.3035 0.0290943
\(106\) 853.409 0.781985
\(107\) 1220.20 1.10244 0.551220 0.834360i \(-0.314163\pi\)
0.551220 + 0.834360i \(0.314163\pi\)
\(108\) 545.490 0.486017
\(109\) −137.554 −0.120875 −0.0604373 0.998172i \(-0.519250\pi\)
−0.0604373 + 0.998172i \(0.519250\pi\)
\(110\) −86.2862 −0.0747915
\(111\) −2530.84 −2.16411
\(112\) −548.805 −0.463011
\(113\) −332.678 −0.276954 −0.138477 0.990366i \(-0.544221\pi\)
−0.138477 + 0.990366i \(0.544221\pi\)
\(114\) −731.370 −0.600869
\(115\) 136.622 0.110783
\(116\) 992.645 0.794524
\(117\) 624.551 0.493502
\(118\) −591.588 −0.461526
\(119\) 0 0
\(120\) 44.5512 0.0338913
\(121\) −293.757 −0.220704
\(122\) −963.521 −0.715025
\(123\) −1873.88 −1.37367
\(124\) 364.992 0.264333
\(125\) 183.507 0.131307
\(126\) −253.815 −0.179457
\(127\) −1990.76 −1.39096 −0.695479 0.718546i \(-0.744808\pi\)
−0.695479 + 0.718546i \(0.744808\pi\)
\(128\) −1200.65 −0.829089
\(129\) 2291.55 1.56403
\(130\) 168.073 0.113392
\(131\) 136.261 0.0908792 0.0454396 0.998967i \(-0.485531\pi\)
0.0454396 + 0.998967i \(0.485531\pi\)
\(132\) 1030.74 0.679653
\(133\) −231.232 −0.150754
\(134\) 997.145 0.642837
\(135\) −76.2208 −0.0485929
\(136\) 0 0
\(137\) 2431.06 1.51606 0.758028 0.652222i \(-0.226163\pi\)
0.758028 + 0.652222i \(0.226163\pi\)
\(138\) −4112.02 −2.53651
\(139\) 1468.74 0.896235 0.448118 0.893975i \(-0.352095\pi\)
0.448118 + 0.893975i \(0.352095\pi\)
\(140\) −27.1093 −0.0163654
\(141\) −1176.55 −0.702716
\(142\) 76.5782 0.0452557
\(143\) −2020.40 −1.18150
\(144\) −780.534 −0.451698
\(145\) −138.701 −0.0794380
\(146\) 4025.40 2.28181
\(147\) −297.877 −0.167132
\(148\) 2191.75 1.21730
\(149\) −2354.30 −1.29444 −0.647222 0.762302i \(-0.724069\pi\)
−0.647222 + 0.762302i \(0.724069\pi\)
\(150\) −2755.59 −1.49995
\(151\) −2958.11 −1.59422 −0.797110 0.603834i \(-0.793639\pi\)
−0.797110 + 0.603834i \(0.793639\pi\)
\(152\) −329.090 −0.175610
\(153\) 0 0
\(154\) 821.081 0.429640
\(155\) −51.0000 −0.0264285
\(156\) −2007.72 −1.03043
\(157\) 1622.53 0.824791 0.412396 0.911005i \(-0.364692\pi\)
0.412396 + 0.911005i \(0.364692\pi\)
\(158\) 1582.85 0.796992
\(159\) 1424.46 0.710485
\(160\) −151.421 −0.0748179
\(161\) −1300.07 −0.636395
\(162\) 3273.08 1.58739
\(163\) −473.822 −0.227685 −0.113842 0.993499i \(-0.536316\pi\)
−0.113842 + 0.993499i \(0.536316\pi\)
\(164\) 1622.81 0.772683
\(165\) −144.024 −0.0679530
\(166\) −2179.56 −1.01908
\(167\) −3947.69 −1.82923 −0.914615 0.404327i \(-0.867506\pi\)
−0.914615 + 0.404327i \(0.867506\pi\)
\(168\) −423.940 −0.194688
\(169\) 1738.43 0.791276
\(170\) 0 0
\(171\) −328.867 −0.147071
\(172\) −1984.52 −0.879757
\(173\) −3644.85 −1.60181 −0.800904 0.598793i \(-0.795647\pi\)
−0.800904 + 0.598793i \(0.795647\pi\)
\(174\) 4174.60 1.81883
\(175\) −871.212 −0.376328
\(176\) 2524.99 1.08141
\(177\) −987.444 −0.419327
\(178\) −3263.11 −1.37405
\(179\) −2600.97 −1.08606 −0.543032 0.839712i \(-0.682724\pi\)
−0.543032 + 0.839712i \(0.682724\pi\)
\(180\) −38.5560 −0.0159655
\(181\) 1409.92 0.578996 0.289498 0.957179i \(-0.406512\pi\)
0.289498 + 0.957179i \(0.406512\pi\)
\(182\) −1599.34 −0.651380
\(183\) −1608.25 −0.649648
\(184\) −1850.26 −0.741320
\(185\) −306.251 −0.121708
\(186\) 1534.99 0.605111
\(187\) 0 0
\(188\) 1018.91 0.395274
\(189\) 725.301 0.279142
\(190\) −88.5014 −0.0337925
\(191\) −4734.73 −1.79368 −0.896841 0.442352i \(-0.854144\pi\)
−0.896841 + 0.442352i \(0.854144\pi\)
\(192\) 744.568 0.279868
\(193\) −1126.36 −0.420089 −0.210044 0.977692i \(-0.567361\pi\)
−0.210044 + 0.977692i \(0.567361\pi\)
\(194\) −1180.12 −0.436740
\(195\) 280.537 0.103024
\(196\) 257.966 0.0940110
\(197\) 2589.54 0.936532 0.468266 0.883587i \(-0.344879\pi\)
0.468266 + 0.883587i \(0.344879\pi\)
\(198\) 1167.78 0.419142
\(199\) −418.193 −0.148969 −0.0744846 0.997222i \(-0.523731\pi\)
−0.0744846 + 0.997222i \(0.523731\pi\)
\(200\) −1239.91 −0.438375
\(201\) 1664.38 0.584060
\(202\) 626.970 0.218383
\(203\) 1319.85 0.456332
\(204\) 0 0
\(205\) −226.753 −0.0772543
\(206\) 2972.46 1.00535
\(207\) −1849.01 −0.620845
\(208\) −4918.32 −1.63954
\(209\) 1063.87 0.352103
\(210\) −114.009 −0.0374637
\(211\) −2437.68 −0.795340 −0.397670 0.917528i \(-0.630181\pi\)
−0.397670 + 0.917528i \(0.630181\pi\)
\(212\) −1233.61 −0.399644
\(213\) 127.820 0.0411177
\(214\) −4444.04 −1.41957
\(215\) 277.295 0.0879598
\(216\) 1032.25 0.325166
\(217\) 485.305 0.151819
\(218\) 500.982 0.155646
\(219\) 6718.97 2.07318
\(220\) 124.727 0.0382232
\(221\) 0 0
\(222\) 9217.48 2.78665
\(223\) −3027.09 −0.909008 −0.454504 0.890745i \(-0.650183\pi\)
−0.454504 + 0.890745i \(0.650183\pi\)
\(224\) 1440.89 0.429791
\(225\) −1239.07 −0.367133
\(226\) 1211.64 0.356623
\(227\) 3437.57 1.00511 0.502554 0.864546i \(-0.332394\pi\)
0.502554 + 0.864546i \(0.332394\pi\)
\(228\) 1057.20 0.307082
\(229\) 2002.54 0.577868 0.288934 0.957349i \(-0.406699\pi\)
0.288934 + 0.957349i \(0.406699\pi\)
\(230\) −497.586 −0.142652
\(231\) 1370.50 0.390356
\(232\) 1878.42 0.531570
\(233\) 225.210 0.0633218 0.0316609 0.999499i \(-0.489920\pi\)
0.0316609 + 0.999499i \(0.489920\pi\)
\(234\) −2274.65 −0.635465
\(235\) −142.371 −0.0395202
\(236\) 855.143 0.235869
\(237\) 2642.00 0.724120
\(238\) 0 0
\(239\) −2740.22 −0.741631 −0.370816 0.928707i \(-0.620922\pi\)
−0.370816 + 0.928707i \(0.620922\pi\)
\(240\) −350.602 −0.0942969
\(241\) 6477.47 1.73133 0.865665 0.500623i \(-0.166896\pi\)
0.865665 + 0.500623i \(0.166896\pi\)
\(242\) 1069.88 0.284192
\(243\) 2665.64 0.703708
\(244\) 1392.77 0.365423
\(245\) −36.0454 −0.00939941
\(246\) 6824.77 1.76883
\(247\) −2072.27 −0.533827
\(248\) 690.688 0.176850
\(249\) −3638.00 −0.925899
\(250\) −668.344 −0.169079
\(251\) −659.198 −0.165770 −0.0828849 0.996559i \(-0.526413\pi\)
−0.0828849 + 0.996559i \(0.526413\pi\)
\(252\) 366.891 0.0917140
\(253\) 5981.47 1.48637
\(254\) 7250.49 1.79109
\(255\) 0 0
\(256\) 5352.68 1.30681
\(257\) 4277.39 1.03820 0.519098 0.854715i \(-0.326268\pi\)
0.519098 + 0.854715i \(0.326268\pi\)
\(258\) −8345.96 −2.01394
\(259\) 2914.22 0.699153
\(260\) −242.950 −0.0579504
\(261\) 1877.15 0.445182
\(262\) −496.271 −0.117022
\(263\) 2658.57 0.623324 0.311662 0.950193i \(-0.399114\pi\)
0.311662 + 0.950193i \(0.399114\pi\)
\(264\) 1950.50 0.454716
\(265\) 172.371 0.0399572
\(266\) 842.160 0.194121
\(267\) −5446.59 −1.24841
\(268\) −1441.38 −0.328530
\(269\) 7118.60 1.61349 0.806744 0.590901i \(-0.201227\pi\)
0.806744 + 0.590901i \(0.201227\pi\)
\(270\) 277.601 0.0625713
\(271\) 8364.15 1.87486 0.937428 0.348179i \(-0.113200\pi\)
0.937428 + 0.348179i \(0.113200\pi\)
\(272\) 0 0
\(273\) −2669.53 −0.591822
\(274\) −8854.08 −1.95217
\(275\) 4008.35 0.878956
\(276\) 5943.95 1.29632
\(277\) −7457.60 −1.61763 −0.808815 0.588063i \(-0.799891\pi\)
−0.808815 + 0.588063i \(0.799891\pi\)
\(278\) −5349.23 −1.15405
\(279\) 690.221 0.148109
\(280\) −51.2999 −0.0109491
\(281\) −1554.39 −0.329989 −0.164995 0.986294i \(-0.552761\pi\)
−0.164995 + 0.986294i \(0.552761\pi\)
\(282\) 4285.05 0.904862
\(283\) −1866.67 −0.392092 −0.196046 0.980595i \(-0.562810\pi\)
−0.196046 + 0.980595i \(0.562810\pi\)
\(284\) −110.694 −0.0231285
\(285\) −147.721 −0.0307027
\(286\) 7358.41 1.52137
\(287\) 2157.74 0.443788
\(288\) 2049.29 0.419290
\(289\) 0 0
\(290\) 505.159 0.102289
\(291\) −1969.78 −0.396807
\(292\) −5818.74 −1.16615
\(293\) 2675.22 0.533406 0.266703 0.963779i \(-0.414066\pi\)
0.266703 + 0.963779i \(0.414066\pi\)
\(294\) 1084.89 0.215210
\(295\) −119.488 −0.0235826
\(296\) 4147.53 0.814426
\(297\) −3337.03 −0.651967
\(298\) 8574.52 1.66681
\(299\) −11651.0 −2.25350
\(300\) 3983.21 0.766569
\(301\) −2638.68 −0.505285
\(302\) 10773.6 2.05282
\(303\) 1046.50 0.198416
\(304\) 2589.82 0.488606
\(305\) −194.611 −0.0365357
\(306\) 0 0
\(307\) −3232.31 −0.600904 −0.300452 0.953797i \(-0.597137\pi\)
−0.300452 + 0.953797i \(0.597137\pi\)
\(308\) −1186.88 −0.219573
\(309\) 4961.46 0.913423
\(310\) 185.745 0.0340310
\(311\) 8395.94 1.53084 0.765418 0.643534i \(-0.222532\pi\)
0.765418 + 0.643534i \(0.222532\pi\)
\(312\) −3799.29 −0.689399
\(313\) −5792.15 −1.04598 −0.522990 0.852339i \(-0.675183\pi\)
−0.522990 + 0.852339i \(0.675183\pi\)
\(314\) −5909.37 −1.06205
\(315\) −51.2653 −0.00916975
\(316\) −2288.02 −0.407313
\(317\) 8772.96 1.55438 0.777190 0.629266i \(-0.216644\pi\)
0.777190 + 0.629266i \(0.216644\pi\)
\(318\) −5187.98 −0.914865
\(319\) −6072.50 −1.06581
\(320\) 90.0984 0.0157395
\(321\) −7417.73 −1.28977
\(322\) 4734.92 0.819462
\(323\) 0 0
\(324\) −4731.25 −0.811257
\(325\) −7807.68 −1.33259
\(326\) 1725.69 0.293181
\(327\) 836.210 0.141414
\(328\) 3070.90 0.516957
\(329\) 1354.77 0.227024
\(330\) 524.544 0.0875006
\(331\) 1897.29 0.315059 0.157529 0.987514i \(-0.449647\pi\)
0.157529 + 0.987514i \(0.449647\pi\)
\(332\) 3150.57 0.520813
\(333\) 4144.72 0.682070
\(334\) 14377.7 2.35543
\(335\) 201.402 0.0328471
\(336\) 3336.25 0.541689
\(337\) 2295.11 0.370988 0.185494 0.982645i \(-0.440612\pi\)
0.185494 + 0.982645i \(0.440612\pi\)
\(338\) −6331.48 −1.01890
\(339\) 2022.39 0.324015
\(340\) 0 0
\(341\) −2232.84 −0.354589
\(342\) 1197.76 0.189378
\(343\) 343.000 0.0539949
\(344\) −3755.38 −0.588594
\(345\) −830.542 −0.129608
\(346\) 13274.8 2.06259
\(347\) −1088.46 −0.168391 −0.0841954 0.996449i \(-0.526832\pi\)
−0.0841954 + 0.996449i \(0.526832\pi\)
\(348\) −6034.41 −0.929535
\(349\) −8916.91 −1.36765 −0.683827 0.729644i \(-0.739686\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(350\) 3173.01 0.484584
\(351\) 6500.04 0.988452
\(352\) −6629.37 −1.00383
\(353\) −352.870 −0.0532051 −0.0266025 0.999646i \(-0.508469\pi\)
−0.0266025 + 0.999646i \(0.508469\pi\)
\(354\) 3596.33 0.539952
\(355\) 15.4672 0.00231243
\(356\) 4716.84 0.702224
\(357\) 0 0
\(358\) 9472.89 1.39849
\(359\) 2905.65 0.427171 0.213585 0.976924i \(-0.431486\pi\)
0.213585 + 0.976924i \(0.431486\pi\)
\(360\) −72.9610 −0.0106816
\(361\) −5767.81 −0.840912
\(362\) −5135.00 −0.745552
\(363\) 1785.78 0.258207
\(364\) 2311.86 0.332896
\(365\) 813.046 0.116594
\(366\) 5857.36 0.836527
\(367\) 12008.6 1.70802 0.854012 0.520253i \(-0.174163\pi\)
0.854012 + 0.520253i \(0.174163\pi\)
\(368\) 14560.9 2.06260
\(369\) 3068.82 0.432945
\(370\) 1115.39 0.156719
\(371\) −1640.24 −0.229534
\(372\) −2218.83 −0.309250
\(373\) 5972.30 0.829046 0.414523 0.910039i \(-0.363948\pi\)
0.414523 + 0.910039i \(0.363948\pi\)
\(374\) 0 0
\(375\) −1115.56 −0.153619
\(376\) 1928.12 0.264455
\(377\) 11828.3 1.61589
\(378\) −2641.59 −0.359441
\(379\) 11731.1 1.58993 0.794966 0.606655i \(-0.207489\pi\)
0.794966 + 0.606655i \(0.207489\pi\)
\(380\) 127.929 0.0172701
\(381\) 12102.1 1.62732
\(382\) 17244.2 2.30966
\(383\) 2568.97 0.342737 0.171369 0.985207i \(-0.445181\pi\)
0.171369 + 0.985207i \(0.445181\pi\)
\(384\) 7298.89 0.969974
\(385\) 165.841 0.0219534
\(386\) 4102.27 0.540933
\(387\) −3752.84 −0.492939
\(388\) 1705.86 0.223201
\(389\) 3199.38 0.417006 0.208503 0.978022i \(-0.433141\pi\)
0.208503 + 0.978022i \(0.433141\pi\)
\(390\) −1021.73 −0.132660
\(391\) 0 0
\(392\) 488.159 0.0628973
\(393\) −828.346 −0.106322
\(394\) −9431.26 −1.20594
\(395\) 319.702 0.0407240
\(396\) −1688.02 −0.214208
\(397\) −9940.93 −1.25673 −0.628364 0.777920i \(-0.716275\pi\)
−0.628364 + 0.777920i \(0.716275\pi\)
\(398\) 1523.08 0.191822
\(399\) 1405.69 0.176372
\(400\) 9757.67 1.21971
\(401\) −14580.6 −1.81576 −0.907880 0.419230i \(-0.862300\pi\)
−0.907880 + 0.419230i \(0.862300\pi\)
\(402\) −6061.76 −0.752073
\(403\) 4349.23 0.537595
\(404\) −906.288 −0.111608
\(405\) 661.093 0.0811110
\(406\) −4806.98 −0.587602
\(407\) −13408.0 −1.63295
\(408\) 0 0
\(409\) −9924.06 −1.19979 −0.599894 0.800080i \(-0.704791\pi\)
−0.599894 + 0.800080i \(0.704791\pi\)
\(410\) 825.850 0.0994776
\(411\) −14778.7 −1.77368
\(412\) −4296.71 −0.513795
\(413\) 1137.02 0.135470
\(414\) 6734.20 0.799440
\(415\) −440.226 −0.0520719
\(416\) 12913.0 1.52191
\(417\) −8928.63 −1.04853
\(418\) −3874.69 −0.453391
\(419\) 646.685 0.0754000 0.0377000 0.999289i \(-0.487997\pi\)
0.0377000 + 0.999289i \(0.487997\pi\)
\(420\) 164.801 0.0191463
\(421\) 3364.64 0.389508 0.194754 0.980852i \(-0.437609\pi\)
0.194754 + 0.980852i \(0.437609\pi\)
\(422\) 8878.18 1.02413
\(423\) 1926.81 0.221477
\(424\) −2334.40 −0.267378
\(425\) 0 0
\(426\) −465.528 −0.0529458
\(427\) 1851.88 0.209879
\(428\) 6423.88 0.725490
\(429\) 12282.2 1.38227
\(430\) −1009.93 −0.113263
\(431\) 2829.51 0.316224 0.158112 0.987421i \(-0.449459\pi\)
0.158112 + 0.987421i \(0.449459\pi\)
\(432\) −8123.44 −0.904721
\(433\) −11912.4 −1.32211 −0.661053 0.750340i \(-0.729890\pi\)
−0.661053 + 0.750340i \(0.729890\pi\)
\(434\) −1767.51 −0.195491
\(435\) 843.182 0.0929367
\(436\) −724.171 −0.0795448
\(437\) 6135.03 0.671575
\(438\) −24470.9 −2.66955
\(439\) 10454.9 1.13664 0.568320 0.822807i \(-0.307593\pi\)
0.568320 + 0.822807i \(0.307593\pi\)
\(440\) 236.026 0.0255729
\(441\) 487.829 0.0526756
\(442\) 0 0
\(443\) 3285.55 0.352373 0.176186 0.984357i \(-0.443624\pi\)
0.176186 + 0.984357i \(0.443624\pi\)
\(444\) −13323.9 −1.42415
\(445\) −659.079 −0.0702098
\(446\) 11024.8 1.17050
\(447\) 14312.1 1.51440
\(448\) −857.357 −0.0904159
\(449\) 5781.14 0.607637 0.303818 0.952730i \(-0.401738\pi\)
0.303818 + 0.952730i \(0.401738\pi\)
\(450\) 4512.79 0.472744
\(451\) −9927.51 −1.03652
\(452\) −1751.42 −0.182257
\(453\) 17982.7 1.86512
\(454\) −12519.8 −1.29424
\(455\) −323.034 −0.0332836
\(456\) 2000.58 0.205451
\(457\) −11445.4 −1.17154 −0.585770 0.810478i \(-0.699208\pi\)
−0.585770 + 0.810478i \(0.699208\pi\)
\(458\) −7293.39 −0.744099
\(459\) 0 0
\(460\) 719.263 0.0729039
\(461\) −1438.84 −0.145365 −0.0726827 0.997355i \(-0.523156\pi\)
−0.0726827 + 0.997355i \(0.523156\pi\)
\(462\) −4991.45 −0.502647
\(463\) 9137.07 0.917139 0.458570 0.888658i \(-0.348362\pi\)
0.458570 + 0.888658i \(0.348362\pi\)
\(464\) −14782.5 −1.47901
\(465\) 310.035 0.0309194
\(466\) −820.228 −0.0815372
\(467\) 3003.70 0.297633 0.148817 0.988865i \(-0.452454\pi\)
0.148817 + 0.988865i \(0.452454\pi\)
\(468\) 3288.02 0.324763
\(469\) −1916.50 −0.188690
\(470\) 518.524 0.0508888
\(471\) −9863.57 −0.964946
\(472\) 1618.22 0.157806
\(473\) 12140.3 1.18015
\(474\) −9622.33 −0.932422
\(475\) 4111.26 0.397132
\(476\) 0 0
\(477\) −2332.82 −0.223926
\(478\) 9980.04 0.954971
\(479\) −4784.77 −0.456412 −0.228206 0.973613i \(-0.573286\pi\)
−0.228206 + 0.973613i \(0.573286\pi\)
\(480\) 920.505 0.0875314
\(481\) 26116.8 2.47573
\(482\) −23591.4 −2.22937
\(483\) 7903.25 0.744535
\(484\) −1546.52 −0.145240
\(485\) −238.359 −0.0223161
\(486\) −9708.44 −0.906139
\(487\) −867.346 −0.0807048 −0.0403524 0.999186i \(-0.512848\pi\)
−0.0403524 + 0.999186i \(0.512848\pi\)
\(488\) 2635.60 0.244483
\(489\) 2880.42 0.266374
\(490\) 131.280 0.0121033
\(491\) 5793.56 0.532504 0.266252 0.963903i \(-0.414215\pi\)
0.266252 + 0.963903i \(0.414215\pi\)
\(492\) −9865.24 −0.903983
\(493\) 0 0
\(494\) 7547.32 0.687389
\(495\) 235.866 0.0214170
\(496\) −5435.46 −0.492055
\(497\) −147.182 −0.0132838
\(498\) 13249.8 1.19225
\(499\) 8742.03 0.784262 0.392131 0.919909i \(-0.371738\pi\)
0.392131 + 0.919909i \(0.371738\pi\)
\(500\) 966.094 0.0864101
\(501\) 23998.5 2.14006
\(502\) 2400.84 0.213456
\(503\) 15513.4 1.37516 0.687581 0.726108i \(-0.258673\pi\)
0.687581 + 0.726108i \(0.258673\pi\)
\(504\) 694.281 0.0613605
\(505\) 126.635 0.0111588
\(506\) −21784.9 −1.91394
\(507\) −10568.1 −0.925735
\(508\) −10480.6 −0.915358
\(509\) −11863.0 −1.03304 −0.516522 0.856274i \(-0.672774\pi\)
−0.516522 + 0.856274i \(0.672774\pi\)
\(510\) 0 0
\(511\) −7736.77 −0.669774
\(512\) −9889.59 −0.853637
\(513\) −3422.70 −0.294573
\(514\) −15578.5 −1.33685
\(515\) 600.375 0.0513703
\(516\) 12064.1 1.02925
\(517\) −6233.16 −0.530240
\(518\) −10613.8 −0.900274
\(519\) 22157.5 1.87400
\(520\) −459.743 −0.0387713
\(521\) 10291.0 0.865371 0.432685 0.901545i \(-0.357566\pi\)
0.432685 + 0.901545i \(0.357566\pi\)
\(522\) −6836.69 −0.573245
\(523\) 13001.8 1.08705 0.543525 0.839393i \(-0.317089\pi\)
0.543525 + 0.839393i \(0.317089\pi\)
\(524\) 717.362 0.0598055
\(525\) 5296.20 0.440277
\(526\) −9682.67 −0.802632
\(527\) 0 0
\(528\) −15349.7 −1.26517
\(529\) 22326.3 1.83499
\(530\) −627.785 −0.0514514
\(531\) 1617.12 0.132160
\(532\) −1217.35 −0.0992080
\(533\) 19337.3 1.57147
\(534\) 19836.8 1.60753
\(535\) −897.602 −0.0725359
\(536\) −2727.57 −0.219801
\(537\) 15811.6 1.27062
\(538\) −25926.4 −2.07763
\(539\) −1578.11 −0.126111
\(540\) −401.273 −0.0319779
\(541\) 794.987 0.0631777 0.0315889 0.999501i \(-0.489943\pi\)
0.0315889 + 0.999501i \(0.489943\pi\)
\(542\) −30462.8 −2.41418
\(543\) −8571.05 −0.677383
\(544\) 0 0
\(545\) 101.188 0.00795304
\(546\) 9722.60 0.762067
\(547\) 17667.8 1.38102 0.690511 0.723322i \(-0.257386\pi\)
0.690511 + 0.723322i \(0.257386\pi\)
\(548\) 12798.6 0.997682
\(549\) 2633.82 0.204751
\(550\) −14598.7 −1.13180
\(551\) −6228.40 −0.481558
\(552\) 11247.9 0.867291
\(553\) −3042.22 −0.233939
\(554\) 27161.0 2.08296
\(555\) 1861.74 0.142390
\(556\) 7732.34 0.589792
\(557\) −13613.8 −1.03561 −0.517804 0.855499i \(-0.673250\pi\)
−0.517804 + 0.855499i \(0.673250\pi\)
\(558\) −2513.83 −0.190715
\(559\) −23647.5 −1.78923
\(560\) 403.712 0.0304642
\(561\) 0 0
\(562\) 5661.18 0.424915
\(563\) −11486.5 −0.859858 −0.429929 0.902863i \(-0.641461\pi\)
−0.429929 + 0.902863i \(0.641461\pi\)
\(564\) −6194.06 −0.462442
\(565\) 244.725 0.0182224
\(566\) 6798.52 0.504882
\(567\) −6290.82 −0.465943
\(568\) −209.471 −0.0154739
\(569\) −13577.4 −1.00034 −0.500171 0.865926i \(-0.666730\pi\)
−0.500171 + 0.865926i \(0.666730\pi\)
\(570\) 538.011 0.0395347
\(571\) 3590.99 0.263184 0.131592 0.991304i \(-0.457991\pi\)
0.131592 + 0.991304i \(0.457991\pi\)
\(572\) −10636.6 −0.777516
\(573\) 28783.0 2.09848
\(574\) −7858.61 −0.571449
\(575\) 23115.0 1.67645
\(576\) −1219.37 −0.0882067
\(577\) 12933.1 0.933125 0.466562 0.884488i \(-0.345492\pi\)
0.466562 + 0.884488i \(0.345492\pi\)
\(578\) 0 0
\(579\) 6847.27 0.491473
\(580\) −730.209 −0.0522764
\(581\) 4189.09 0.299127
\(582\) 7174.07 0.510953
\(583\) 7546.58 0.536102
\(584\) −11011.0 −0.780203
\(585\) −459.432 −0.0324704
\(586\) −9743.32 −0.686848
\(587\) 10241.5 0.720124 0.360062 0.932928i \(-0.382756\pi\)
0.360062 + 0.932928i \(0.382756\pi\)
\(588\) −1568.21 −0.109986
\(589\) −2290.16 −0.160211
\(590\) 435.184 0.0303665
\(591\) −15742.1 −1.09567
\(592\) −32639.5 −2.26601
\(593\) 21175.2 1.46638 0.733190 0.680024i \(-0.238031\pi\)
0.733190 + 0.680024i \(0.238031\pi\)
\(594\) 12153.7 0.839514
\(595\) 0 0
\(596\) −12394.5 −0.851844
\(597\) 2542.24 0.174283
\(598\) 42433.7 2.90174
\(599\) −14663.1 −1.00020 −0.500099 0.865968i \(-0.666703\pi\)
−0.500099 + 0.865968i \(0.666703\pi\)
\(600\) 7537.58 0.512867
\(601\) −3880.89 −0.263402 −0.131701 0.991289i \(-0.542044\pi\)
−0.131701 + 0.991289i \(0.542044\pi\)
\(602\) 9610.23 0.650637
\(603\) −2725.73 −0.184080
\(604\) −15573.3 −1.04912
\(605\) 216.093 0.0145214
\(606\) −3811.43 −0.255493
\(607\) −570.656 −0.0381585 −0.0190793 0.999818i \(-0.506073\pi\)
−0.0190793 + 0.999818i \(0.506073\pi\)
\(608\) −6799.56 −0.453551
\(609\) −8023.53 −0.533875
\(610\) 708.785 0.0470457
\(611\) 12141.3 0.803901
\(612\) 0 0
\(613\) 4023.93 0.265130 0.132565 0.991174i \(-0.457679\pi\)
0.132565 + 0.991174i \(0.457679\pi\)
\(614\) 11772.3 0.773762
\(615\) 1378.46 0.0903820
\(616\) −2245.97 −0.146904
\(617\) −1888.25 −0.123206 −0.0616030 0.998101i \(-0.519621\pi\)
−0.0616030 + 0.998101i \(0.519621\pi\)
\(618\) −18070.0 −1.17618
\(619\) −27267.7 −1.77057 −0.885284 0.465051i \(-0.846036\pi\)
−0.885284 + 0.465051i \(0.846036\pi\)
\(620\) −268.495 −0.0173920
\(621\) −19243.6 −1.24351
\(622\) −30578.5 −1.97120
\(623\) 6271.65 0.403320
\(624\) 29899.0 1.91814
\(625\) 15422.4 0.987031
\(626\) 21095.4 1.34687
\(627\) −6467.41 −0.411935
\(628\) 8542.02 0.542776
\(629\) 0 0
\(630\) 186.711 0.0118075
\(631\) −13639.8 −0.860523 −0.430262 0.902704i \(-0.641579\pi\)
−0.430262 + 0.902704i \(0.641579\pi\)
\(632\) −4329.70 −0.272510
\(633\) 14818.9 0.930490
\(634\) −31951.7 −2.00152
\(635\) 1464.45 0.0915193
\(636\) 7499.24 0.467554
\(637\) 3073.92 0.191198
\(638\) 22116.4 1.37241
\(639\) −209.329 −0.0129592
\(640\) 883.222 0.0545506
\(641\) 8582.79 0.528861 0.264430 0.964405i \(-0.414816\pi\)
0.264430 + 0.964405i \(0.414816\pi\)
\(642\) 27015.8 1.66079
\(643\) −12537.9 −0.768966 −0.384483 0.923132i \(-0.625620\pi\)
−0.384483 + 0.923132i \(0.625620\pi\)
\(644\) −6844.35 −0.418797
\(645\) −1685.71 −0.102907
\(646\) 0 0
\(647\) −5026.97 −0.305457 −0.152728 0.988268i \(-0.548806\pi\)
−0.152728 + 0.988268i \(0.548806\pi\)
\(648\) −8953.12 −0.542765
\(649\) −5231.33 −0.316406
\(650\) 28436.1 1.71593
\(651\) −2950.22 −0.177617
\(652\) −2494.49 −0.149834
\(653\) −3193.86 −0.191402 −0.0957010 0.995410i \(-0.530509\pi\)
−0.0957010 + 0.995410i \(0.530509\pi\)
\(654\) −3045.53 −0.182094
\(655\) −100.236 −0.00597947
\(656\) −24166.9 −1.43835
\(657\) −11003.6 −0.653409
\(658\) −4934.16 −0.292331
\(659\) 27591.3 1.63096 0.815481 0.578784i \(-0.196473\pi\)
0.815481 + 0.578784i \(0.196473\pi\)
\(660\) −758.231 −0.0447183
\(661\) 28203.5 1.65959 0.829794 0.558070i \(-0.188458\pi\)
0.829794 + 0.558070i \(0.188458\pi\)
\(662\) −6910.04 −0.405689
\(663\) 0 0
\(664\) 5961.94 0.348446
\(665\) 170.099 0.00991901
\(666\) −15095.3 −0.878277
\(667\) −35018.2 −2.03285
\(668\) −20783.1 −1.20377
\(669\) 18402.0 1.06347
\(670\) −733.520 −0.0422960
\(671\) −8520.28 −0.490197
\(672\) −8759.32 −0.502825
\(673\) 1286.62 0.0736934 0.0368467 0.999321i \(-0.488269\pi\)
0.0368467 + 0.999321i \(0.488269\pi\)
\(674\) −8358.95 −0.477707
\(675\) −12895.7 −0.735343
\(676\) 9152.19 0.520721
\(677\) 5662.54 0.321461 0.160730 0.986998i \(-0.448615\pi\)
0.160730 + 0.986998i \(0.448615\pi\)
\(678\) −7365.68 −0.417223
\(679\) 2268.17 0.128195
\(680\) 0 0
\(681\) −20897.4 −1.17590
\(682\) 8132.13 0.456591
\(683\) 21299.4 1.19326 0.596631 0.802516i \(-0.296506\pi\)
0.596631 + 0.802516i \(0.296506\pi\)
\(684\) −1731.36 −0.0967840
\(685\) −1788.34 −0.0997502
\(686\) −1249.23 −0.0695273
\(687\) −12173.7 −0.676063
\(688\) 29553.5 1.63767
\(689\) −14699.6 −0.812788
\(690\) 3024.88 0.166892
\(691\) −27147.7 −1.49457 −0.747286 0.664503i \(-0.768643\pi\)
−0.747286 + 0.664503i \(0.768643\pi\)
\(692\) −19188.7 −1.05411
\(693\) −2244.45 −0.123030
\(694\) 3964.24 0.216831
\(695\) −1080.43 −0.0589686
\(696\) −11419.1 −0.621898
\(697\) 0 0
\(698\) 32475.9 1.76108
\(699\) −1369.08 −0.0740819
\(700\) −4586.60 −0.247653
\(701\) −21492.8 −1.15802 −0.579010 0.815320i \(-0.696561\pi\)
−0.579010 + 0.815320i \(0.696561\pi\)
\(702\) −23673.6 −1.27279
\(703\) −13752.2 −0.737803
\(704\) 3944.61 0.211176
\(705\) 865.490 0.0462358
\(706\) 1285.18 0.0685103
\(707\) −1205.03 −0.0641015
\(708\) −5198.51 −0.275949
\(709\) −13610.8 −0.720966 −0.360483 0.932766i \(-0.617388\pi\)
−0.360483 + 0.932766i \(0.617388\pi\)
\(710\) −56.3325 −0.00297763
\(711\) −4326.77 −0.228223
\(712\) 8925.85 0.469818
\(713\) −12876.1 −0.676315
\(714\) 0 0
\(715\) 1486.24 0.0777376
\(716\) −13693.1 −0.714714
\(717\) 16658.1 0.867654
\(718\) −10582.6 −0.550052
\(719\) 15101.1 0.783277 0.391638 0.920119i \(-0.371908\pi\)
0.391638 + 0.920119i \(0.371908\pi\)
\(720\) 574.176 0.0297198
\(721\) −5713.04 −0.295097
\(722\) 21006.7 1.08281
\(723\) −39377.3 −2.02553
\(724\) 7422.67 0.381024
\(725\) −23466.7 −1.20211
\(726\) −6503.93 −0.332484
\(727\) 2541.87 0.129674 0.0648369 0.997896i \(-0.479347\pi\)
0.0648369 + 0.997896i \(0.479347\pi\)
\(728\) 4374.81 0.222722
\(729\) 8059.81 0.409481
\(730\) −2961.17 −0.150134
\(731\) 0 0
\(732\) −8466.84 −0.427518
\(733\) −6613.18 −0.333238 −0.166619 0.986021i \(-0.553285\pi\)
−0.166619 + 0.986021i \(0.553285\pi\)
\(734\) −43736.1 −2.19936
\(735\) 219.124 0.0109966
\(736\) −38229.5 −1.91462
\(737\) 8817.62 0.440707
\(738\) −11176.8 −0.557487
\(739\) −14151.4 −0.704422 −0.352211 0.935921i \(-0.614570\pi\)
−0.352211 + 0.935921i \(0.614570\pi\)
\(740\) −1612.29 −0.0800934
\(741\) 12597.6 0.624538
\(742\) 5973.86 0.295563
\(743\) 31300.8 1.54551 0.772755 0.634704i \(-0.218878\pi\)
0.772755 + 0.634704i \(0.218878\pi\)
\(744\) −4198.77 −0.206901
\(745\) 1731.87 0.0851690
\(746\) −21751.5 −1.06753
\(747\) 5957.91 0.291819
\(748\) 0 0
\(749\) 8541.39 0.416683
\(750\) 4062.94 0.197810
\(751\) 21798.7 1.05918 0.529592 0.848253i \(-0.322345\pi\)
0.529592 + 0.848253i \(0.322345\pi\)
\(752\) −15173.6 −0.735803
\(753\) 4007.34 0.193939
\(754\) −43079.5 −2.08072
\(755\) 2176.04 0.104893
\(756\) 3818.43 0.183697
\(757\) 31100.5 1.49322 0.746610 0.665262i \(-0.231680\pi\)
0.746610 + 0.665262i \(0.231680\pi\)
\(758\) −42725.2 −2.04730
\(759\) −36362.0 −1.73894
\(760\) 242.085 0.0115544
\(761\) 17649.7 0.840736 0.420368 0.907354i \(-0.361901\pi\)
0.420368 + 0.907354i \(0.361901\pi\)
\(762\) −44076.6 −2.09544
\(763\) −962.881 −0.0456863
\(764\) −24926.6 −1.18038
\(765\) 0 0
\(766\) −9356.36 −0.441330
\(767\) 10189.9 0.479706
\(768\) −32539.6 −1.52887
\(769\) −33607.0 −1.57594 −0.787970 0.615714i \(-0.788868\pi\)
−0.787970 + 0.615714i \(0.788868\pi\)
\(770\) −604.003 −0.0282685
\(771\) −26002.8 −1.21461
\(772\) −5929.85 −0.276451
\(773\) 18841.8 0.876707 0.438353 0.898803i \(-0.355562\pi\)
0.438353 + 0.898803i \(0.355562\pi\)
\(774\) 13668.1 0.634740
\(775\) −8628.64 −0.399935
\(776\) 3228.07 0.149331
\(777\) −17715.9 −0.817958
\(778\) −11652.4 −0.536963
\(779\) −10182.4 −0.468321
\(780\) 1476.92 0.0677978
\(781\) 677.171 0.0310257
\(782\) 0 0
\(783\) 19536.5 0.891670
\(784\) −3841.64 −0.175002
\(785\) −1193.57 −0.0542678
\(786\) 3016.89 0.136907
\(787\) −4863.69 −0.220295 −0.110147 0.993915i \(-0.535132\pi\)
−0.110147 + 0.993915i \(0.535132\pi\)
\(788\) 13632.9 0.616311
\(789\) −16161.7 −0.729244
\(790\) −1164.38 −0.0524388
\(791\) −2328.75 −0.104679
\(792\) −3194.31 −0.143314
\(793\) 16596.3 0.743191
\(794\) 36205.5 1.61824
\(795\) −1047.86 −0.0467470
\(796\) −2201.62 −0.0980333
\(797\) 35226.2 1.56559 0.782795 0.622279i \(-0.213793\pi\)
0.782795 + 0.622279i \(0.213793\pi\)
\(798\) −5119.59 −0.227107
\(799\) 0 0
\(800\) −25618.7 −1.13220
\(801\) 8919.81 0.393466
\(802\) 53103.4 2.33809
\(803\) 35596.1 1.56433
\(804\) 8762.31 0.384357
\(805\) 956.354 0.0418721
\(806\) −15840.2 −0.692241
\(807\) −43274.8 −1.88766
\(808\) −1715.00 −0.0746703
\(809\) 22023.2 0.957100 0.478550 0.878060i \(-0.341163\pi\)
0.478550 + 0.878060i \(0.341163\pi\)
\(810\) −2407.74 −0.104444
\(811\) −1882.97 −0.0815290 −0.0407645 0.999169i \(-0.512979\pi\)
−0.0407645 + 0.999169i \(0.512979\pi\)
\(812\) 6948.51 0.300302
\(813\) −50846.7 −2.19344
\(814\) 48832.8 2.10269
\(815\) 348.553 0.0149807
\(816\) 0 0
\(817\) 12452.0 0.533218
\(818\) 36144.0 1.54492
\(819\) 4371.86 0.186526
\(820\) −1193.77 −0.0508393
\(821\) −23579.7 −1.00236 −0.501180 0.865343i \(-0.667101\pi\)
−0.501180 + 0.865343i \(0.667101\pi\)
\(822\) 53825.0 2.28390
\(823\) 23585.3 0.998943 0.499472 0.866330i \(-0.333527\pi\)
0.499472 + 0.866330i \(0.333527\pi\)
\(824\) −8130.82 −0.343751
\(825\) −24367.3 −1.02831
\(826\) −4141.11 −0.174440
\(827\) 11879.3 0.499497 0.249749 0.968311i \(-0.419652\pi\)
0.249749 + 0.968311i \(0.419652\pi\)
\(828\) −9734.32 −0.408564
\(829\) −30188.9 −1.26478 −0.632391 0.774650i \(-0.717926\pi\)
−0.632391 + 0.774650i \(0.717926\pi\)
\(830\) 1603.33 0.0670511
\(831\) 45335.6 1.89251
\(832\) −7683.52 −0.320166
\(833\) 0 0
\(834\) 32518.6 1.35015
\(835\) 2904.00 0.120356
\(836\) 5600.88 0.231711
\(837\) 7183.50 0.296653
\(838\) −2355.27 −0.0970899
\(839\) −31302.3 −1.28805 −0.644025 0.765004i \(-0.722737\pi\)
−0.644025 + 0.765004i \(0.722737\pi\)
\(840\) 311.859 0.0128097
\(841\) 11162.2 0.457672
\(842\) −12254.2 −0.501555
\(843\) 9449.31 0.386063
\(844\) −12833.5 −0.523395
\(845\) −1278.83 −0.0520627
\(846\) −7017.57 −0.285188
\(847\) −2056.30 −0.0834181
\(848\) 18370.9 0.743937
\(849\) 11347.7 0.458719
\(850\) 0 0
\(851\) −77319.9 −3.11456
\(852\) 672.923 0.0270587
\(853\) −30088.3 −1.20774 −0.603870 0.797083i \(-0.706375\pi\)
−0.603870 + 0.797083i \(0.706375\pi\)
\(854\) −6744.65 −0.270254
\(855\) 241.922 0.00967666
\(856\) 12156.1 0.485384
\(857\) 23044.9 0.918552 0.459276 0.888294i \(-0.348109\pi\)
0.459276 + 0.888294i \(0.348109\pi\)
\(858\) −44732.7 −1.77989
\(859\) 49288.0 1.95772 0.978862 0.204524i \(-0.0655647\pi\)
0.978862 + 0.204524i \(0.0655647\pi\)
\(860\) 1459.85 0.0578843
\(861\) −13117.1 −0.519199
\(862\) −10305.2 −0.407190
\(863\) 27315.2 1.07743 0.538714 0.842488i \(-0.318910\pi\)
0.538714 + 0.842488i \(0.318910\pi\)
\(864\) 21328.1 0.839810
\(865\) 2681.22 0.105392
\(866\) 43385.6 1.70243
\(867\) 0 0
\(868\) 2554.94 0.0999083
\(869\) 13996.9 0.546390
\(870\) −3070.92 −0.119671
\(871\) −17175.4 −0.668159
\(872\) −1370.38 −0.0532188
\(873\) 3225.89 0.125063
\(874\) −22344.2 −0.864762
\(875\) 1284.55 0.0496293
\(876\) 35372.8 1.36431
\(877\) 25724.5 0.990485 0.495243 0.868755i \(-0.335079\pi\)
0.495243 + 0.868755i \(0.335079\pi\)
\(878\) −38077.4 −1.46361
\(879\) −16263.0 −0.624046
\(880\) −1857.44 −0.0711525
\(881\) 14406.5 0.550929 0.275465 0.961311i \(-0.411168\pi\)
0.275465 + 0.961311i \(0.411168\pi\)
\(882\) −1776.70 −0.0678285
\(883\) 11914.3 0.454075 0.227037 0.973886i \(-0.427096\pi\)
0.227037 + 0.973886i \(0.427096\pi\)
\(884\) 0 0
\(885\) 726.383 0.0275900
\(886\) −11966.2 −0.453737
\(887\) −39206.4 −1.48413 −0.742065 0.670328i \(-0.766153\pi\)
−0.742065 + 0.670328i \(0.766153\pi\)
\(888\) −25213.3 −0.952819
\(889\) −13935.4 −0.525733
\(890\) 2400.41 0.0904066
\(891\) 28943.4 1.08826
\(892\) −15936.5 −0.598197
\(893\) −6393.18 −0.239574
\(894\) −52125.6 −1.95004
\(895\) 1913.32 0.0714585
\(896\) −8404.54 −0.313366
\(897\) 70827.9 2.63643
\(898\) −21055.3 −0.782432
\(899\) 13072.0 0.484958
\(900\) −6523.25 −0.241602
\(901\) 0 0
\(902\) 36156.6 1.33468
\(903\) 16040.8 0.591147
\(904\) −3314.29 −0.121937
\(905\) −1037.16 −0.0380955
\(906\) −65494.0 −2.40165
\(907\) −26831.7 −0.982283 −0.491142 0.871080i \(-0.663420\pi\)
−0.491142 + 0.871080i \(0.663420\pi\)
\(908\) 18097.5 0.661439
\(909\) −1713.84 −0.0625353
\(910\) 1176.51 0.0428581
\(911\) 4405.66 0.160226 0.0801131 0.996786i \(-0.474472\pi\)
0.0801131 + 0.996786i \(0.474472\pi\)
\(912\) −15743.8 −0.571634
\(913\) −19273.6 −0.698645
\(914\) 41684.9 1.50855
\(915\) 1183.06 0.0427441
\(916\) 10542.6 0.380282
\(917\) 953.826 0.0343491
\(918\) 0 0
\(919\) −6547.68 −0.235025 −0.117513 0.993071i \(-0.537492\pi\)
−0.117513 + 0.993071i \(0.537492\pi\)
\(920\) 1361.09 0.0487758
\(921\) 19649.6 0.703013
\(922\) 5240.35 0.187182
\(923\) −1319.03 −0.0470383
\(924\) 7215.16 0.256885
\(925\) −51814.3 −1.84178
\(926\) −33277.8 −1.18097
\(927\) −8125.33 −0.287886
\(928\) 38811.3 1.37289
\(929\) −12420.1 −0.438632 −0.219316 0.975654i \(-0.570383\pi\)
−0.219316 + 0.975654i \(0.570383\pi\)
\(930\) −1129.17 −0.0398138
\(931\) −1618.62 −0.0569798
\(932\) 1185.64 0.0416707
\(933\) −51039.9 −1.79097
\(934\) −10939.7 −0.383251
\(935\) 0 0
\(936\) 6222.05 0.217280
\(937\) 18965.1 0.661218 0.330609 0.943768i \(-0.392746\pi\)
0.330609 + 0.943768i \(0.392746\pi\)
\(938\) 6980.01 0.242970
\(939\) 35211.2 1.22372
\(940\) −749.529 −0.0260074
\(941\) 37572.2 1.30162 0.650808 0.759243i \(-0.274430\pi\)
0.650808 + 0.759243i \(0.274430\pi\)
\(942\) 35923.7 1.24253
\(943\) −57248.9 −1.97697
\(944\) −12734.8 −0.439070
\(945\) −533.546 −0.0183664
\(946\) −44215.7 −1.51964
\(947\) 29832.7 1.02369 0.511844 0.859078i \(-0.328962\pi\)
0.511844 + 0.859078i \(0.328962\pi\)
\(948\) 13909.1 0.476527
\(949\) −69335.9 −2.37169
\(950\) −14973.5 −0.511372
\(951\) −53331.9 −1.81851
\(952\) 0 0
\(953\) 10086.1 0.342834 0.171417 0.985199i \(-0.445165\pi\)
0.171417 + 0.985199i \(0.445165\pi\)
\(954\) 8496.28 0.288341
\(955\) 3482.97 0.118017
\(956\) −14426.2 −0.488051
\(957\) 36915.4 1.24692
\(958\) 17426.4 0.587706
\(959\) 17017.4 0.573015
\(960\) −547.719 −0.0184141
\(961\) −24984.5 −0.838658
\(962\) −95119.1 −3.18790
\(963\) 12147.9 0.406502
\(964\) 34101.4 1.13935
\(965\) 828.572 0.0276401
\(966\) −28784.1 −0.958711
\(967\) 18781.5 0.624583 0.312291 0.949986i \(-0.398903\pi\)
0.312291 + 0.949986i \(0.398903\pi\)
\(968\) −2926.53 −0.0971717
\(969\) 0 0
\(970\) 868.118 0.0287357
\(971\) −14106.2 −0.466209 −0.233105 0.972452i \(-0.574888\pi\)
−0.233105 + 0.972452i \(0.574888\pi\)
\(972\) 14033.6 0.463094
\(973\) 10281.2 0.338745
\(974\) 3158.93 0.103921
\(975\) 47463.8 1.55904
\(976\) −20741.2 −0.680235
\(977\) −49111.2 −1.60819 −0.804097 0.594497i \(-0.797351\pi\)
−0.804097 + 0.594497i \(0.797351\pi\)
\(978\) −10490.7 −0.343001
\(979\) −28855.2 −0.941999
\(980\) −189.765 −0.00618554
\(981\) −1369.45 −0.0445700
\(982\) −21100.5 −0.685686
\(983\) −20614.4 −0.668867 −0.334433 0.942419i \(-0.608545\pi\)
−0.334433 + 0.942419i \(0.608545\pi\)
\(984\) −18668.4 −0.604802
\(985\) −1904.92 −0.0616199
\(986\) 0 0
\(987\) −8235.82 −0.265602
\(988\) −10909.7 −0.351299
\(989\) 70009.3 2.25093
\(990\) −859.039 −0.0275778
\(991\) 5123.38 0.164228 0.0821138 0.996623i \(-0.473833\pi\)
0.0821138 + 0.996623i \(0.473833\pi\)
\(992\) 14270.8 0.456752
\(993\) −11533.8 −0.368596
\(994\) 536.048 0.0171050
\(995\) 307.631 0.00980156
\(996\) −19152.7 −0.609313
\(997\) 31441.4 0.998755 0.499377 0.866385i \(-0.333562\pi\)
0.499377 + 0.866385i \(0.333562\pi\)
\(998\) −31839.0 −1.00987
\(999\) 43136.4 1.36614
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.v.1.12 56
17.10 odd 16 119.4.k.a.15.23 yes 112
17.12 odd 16 119.4.k.a.8.23 112
17.16 even 2 2023.4.a.u.1.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.k.a.8.23 112 17.12 odd 16
119.4.k.a.15.23 yes 112 17.10 odd 16
2023.4.a.u.1.12 56 17.16 even 2
2023.4.a.v.1.12 56 1.1 even 1 trivial