Properties

Label 2023.4.a.g.1.6
Level $2023$
Weight $4$
Character 2023.1
Self dual yes
Analytic conductor $119.361$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,4,-5,52,-35,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 49x^{5} + 69x^{4} + 753x^{3} - 122x^{2} - 3621x - 2536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-2.93035\) of defining polynomial
Character \(\chi\) \(=\) 2023.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.93035 q^{2} -9.43251 q^{3} +7.44766 q^{4} +8.85857 q^{5} -37.0731 q^{6} +7.00000 q^{7} -2.17089 q^{8} +61.9722 q^{9} +34.8173 q^{10} -22.3403 q^{11} -70.2501 q^{12} +26.4397 q^{13} +27.5125 q^{14} -83.5585 q^{15} -68.1136 q^{16} +243.572 q^{18} -70.7543 q^{19} +65.9756 q^{20} -66.0275 q^{21} -87.8051 q^{22} +138.445 q^{23} +20.4769 q^{24} -46.5257 q^{25} +103.917 q^{26} -329.875 q^{27} +52.1336 q^{28} -17.3234 q^{29} -328.414 q^{30} +194.239 q^{31} -250.343 q^{32} +210.725 q^{33} +62.0100 q^{35} +461.548 q^{36} -341.475 q^{37} -278.089 q^{38} -249.392 q^{39} -19.2309 q^{40} -284.332 q^{41} -259.511 q^{42} +532.685 q^{43} -166.383 q^{44} +548.985 q^{45} +544.138 q^{46} -328.545 q^{47} +642.482 q^{48} +49.0000 q^{49} -182.863 q^{50} +196.914 q^{52} -71.9054 q^{53} -1296.52 q^{54} -197.903 q^{55} -15.1962 q^{56} +667.390 q^{57} -68.0872 q^{58} +469.717 q^{59} -622.315 q^{60} -33.4619 q^{61} +763.428 q^{62} +433.805 q^{63} -439.029 q^{64} +234.218 q^{65} +828.222 q^{66} +893.096 q^{67} -1305.88 q^{69} +243.721 q^{70} -833.641 q^{71} -134.534 q^{72} +1153.84 q^{73} -1342.12 q^{74} +438.854 q^{75} -526.954 q^{76} -156.382 q^{77} -980.200 q^{78} -270.921 q^{79} -603.389 q^{80} +1438.30 q^{81} -1117.52 q^{82} -588.633 q^{83} -491.751 q^{84} +2093.64 q^{86} +163.403 q^{87} +48.4982 q^{88} +136.078 q^{89} +2157.70 q^{90} +185.078 q^{91} +1031.09 q^{92} -1832.16 q^{93} -1291.30 q^{94} -626.782 q^{95} +2361.37 q^{96} -668.732 q^{97} +192.587 q^{98} -1384.47 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{2} - 5 q^{3} + 52 q^{4} - 35 q^{5} - 51 q^{6} + 49 q^{7} - 6 q^{8} + 128 q^{9} - 18 q^{10} - 48 q^{11} + 16 q^{12} + 84 q^{13} + 28 q^{14} - 54 q^{15} + 256 q^{16} + 196 q^{18} + 156 q^{19} - 317 q^{20}+ \cdots - 7572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.93035 1.38959 0.694795 0.719208i \(-0.255495\pi\)
0.694795 + 0.719208i \(0.255495\pi\)
\(3\) −9.43251 −1.81529 −0.907643 0.419742i \(-0.862120\pi\)
−0.907643 + 0.419742i \(0.862120\pi\)
\(4\) 7.44766 0.930958
\(5\) 8.85857 0.792335 0.396167 0.918178i \(-0.370340\pi\)
0.396167 + 0.918178i \(0.370340\pi\)
\(6\) −37.0731 −2.52250
\(7\) 7.00000 0.377964
\(8\) −2.17089 −0.0959405
\(9\) 61.9722 2.29527
\(10\) 34.8173 1.10102
\(11\) −22.3403 −0.612349 −0.306175 0.951975i \(-0.599049\pi\)
−0.306175 + 0.951975i \(0.599049\pi\)
\(12\) −70.2501 −1.68995
\(13\) 26.4397 0.564081 0.282040 0.959403i \(-0.408989\pi\)
0.282040 + 0.959403i \(0.408989\pi\)
\(14\) 27.5125 0.525215
\(15\) −83.5585 −1.43831
\(16\) −68.1136 −1.06428
\(17\) 0 0
\(18\) 243.572 3.18948
\(19\) −70.7543 −0.854324 −0.427162 0.904175i \(-0.640487\pi\)
−0.427162 + 0.904175i \(0.640487\pi\)
\(20\) 65.9756 0.737630
\(21\) −66.0275 −0.686114
\(22\) −87.8051 −0.850914
\(23\) 138.445 1.25512 0.627561 0.778568i \(-0.284053\pi\)
0.627561 + 0.778568i \(0.284053\pi\)
\(24\) 20.4769 0.174159
\(25\) −46.5257 −0.372206
\(26\) 103.917 0.783840
\(27\) −329.875 −2.35128
\(28\) 52.1336 0.351869
\(29\) −17.3234 −0.110927 −0.0554635 0.998461i \(-0.517664\pi\)
−0.0554635 + 0.998461i \(0.517664\pi\)
\(30\) −328.414 −1.99867
\(31\) 194.239 1.12537 0.562684 0.826672i \(-0.309769\pi\)
0.562684 + 0.826672i \(0.309769\pi\)
\(32\) −250.343 −1.38297
\(33\) 210.725 1.11159
\(34\) 0 0
\(35\) 62.0100 0.299474
\(36\) 461.548 2.13679
\(37\) −341.475 −1.51725 −0.758623 0.651530i \(-0.774127\pi\)
−0.758623 + 0.651530i \(0.774127\pi\)
\(38\) −278.089 −1.18716
\(39\) −249.392 −1.02397
\(40\) −19.2309 −0.0760170
\(41\) −284.332 −1.08305 −0.541527 0.840683i \(-0.682154\pi\)
−0.541527 + 0.840683i \(0.682154\pi\)
\(42\) −259.511 −0.953416
\(43\) 532.685 1.88916 0.944579 0.328285i \(-0.106471\pi\)
0.944579 + 0.328285i \(0.106471\pi\)
\(44\) −166.383 −0.570071
\(45\) 548.985 1.81862
\(46\) 544.138 1.74410
\(47\) −328.545 −1.01964 −0.509821 0.860281i \(-0.670288\pi\)
−0.509821 + 0.860281i \(0.670288\pi\)
\(48\) 642.482 1.93196
\(49\) 49.0000 0.142857
\(50\) −182.863 −0.517213
\(51\) 0 0
\(52\) 196.914 0.525135
\(53\) −71.9054 −0.186358 −0.0931789 0.995649i \(-0.529703\pi\)
−0.0931789 + 0.995649i \(0.529703\pi\)
\(54\) −1296.52 −3.26731
\(55\) −197.903 −0.485186
\(56\) −15.1962 −0.0362621
\(57\) 667.390 1.55084
\(58\) −68.0872 −0.154143
\(59\) 469.717 1.03647 0.518237 0.855237i \(-0.326589\pi\)
0.518237 + 0.855237i \(0.326589\pi\)
\(60\) −622.315 −1.33901
\(61\) −33.4619 −0.0702354 −0.0351177 0.999383i \(-0.511181\pi\)
−0.0351177 + 0.999383i \(0.511181\pi\)
\(62\) 763.428 1.56380
\(63\) 433.805 0.867529
\(64\) −439.029 −0.857478
\(65\) 234.218 0.446941
\(66\) 828.222 1.54465
\(67\) 893.096 1.62849 0.814246 0.580520i \(-0.197151\pi\)
0.814246 + 0.580520i \(0.197151\pi\)
\(68\) 0 0
\(69\) −1305.88 −2.27840
\(70\) 243.721 0.416146
\(71\) −833.641 −1.39345 −0.696726 0.717338i \(-0.745360\pi\)
−0.696726 + 0.717338i \(0.745360\pi\)
\(72\) −134.534 −0.220209
\(73\) 1153.84 1.84995 0.924976 0.380025i \(-0.124085\pi\)
0.924976 + 0.380025i \(0.124085\pi\)
\(74\) −1342.12 −2.10835
\(75\) 438.854 0.675661
\(76\) −526.954 −0.795339
\(77\) −156.382 −0.231446
\(78\) −980.200 −1.42289
\(79\) −270.921 −0.385835 −0.192917 0.981215i \(-0.561795\pi\)
−0.192917 + 0.981215i \(0.561795\pi\)
\(80\) −603.389 −0.843262
\(81\) 1438.30 1.97298
\(82\) −1117.52 −1.50500
\(83\) −588.633 −0.778444 −0.389222 0.921144i \(-0.627256\pi\)
−0.389222 + 0.921144i \(0.627256\pi\)
\(84\) −491.751 −0.638743
\(85\) 0 0
\(86\) 2093.64 2.62515
\(87\) 163.403 0.201364
\(88\) 48.4982 0.0587491
\(89\) 136.078 0.162070 0.0810351 0.996711i \(-0.474177\pi\)
0.0810351 + 0.996711i \(0.474177\pi\)
\(90\) 2157.70 2.52713
\(91\) 185.078 0.213202
\(92\) 1031.09 1.16846
\(93\) −1832.16 −2.04286
\(94\) −1291.30 −1.41688
\(95\) −626.782 −0.676910
\(96\) 2361.37 2.51048
\(97\) −668.732 −0.699994 −0.349997 0.936751i \(-0.613817\pi\)
−0.349997 + 0.936751i \(0.613817\pi\)
\(98\) 192.587 0.198513
\(99\) −1384.47 −1.40550
\(100\) −346.508 −0.346508
\(101\) −597.682 −0.588828 −0.294414 0.955678i \(-0.595124\pi\)
−0.294414 + 0.955678i \(0.595124\pi\)
\(102\) 0 0
\(103\) −900.623 −0.861563 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(104\) −57.3975 −0.0541182
\(105\) −584.910 −0.543632
\(106\) −282.613 −0.258961
\(107\) −1109.98 −1.00285 −0.501427 0.865200i \(-0.667191\pi\)
−0.501427 + 0.865200i \(0.667191\pi\)
\(108\) −2456.80 −2.18894
\(109\) −1663.55 −1.46183 −0.730914 0.682470i \(-0.760906\pi\)
−0.730914 + 0.682470i \(0.760906\pi\)
\(110\) −777.827 −0.674208
\(111\) 3220.96 2.75424
\(112\) −476.795 −0.402258
\(113\) 179.217 0.149198 0.0745989 0.997214i \(-0.476232\pi\)
0.0745989 + 0.997214i \(0.476232\pi\)
\(114\) 2623.08 2.15503
\(115\) 1226.42 0.994476
\(116\) −129.019 −0.103268
\(117\) 1638.52 1.29471
\(118\) 1846.15 1.44027
\(119\) 0 0
\(120\) 181.396 0.137993
\(121\) −831.913 −0.625028
\(122\) −131.517 −0.0975984
\(123\) 2681.96 1.96605
\(124\) 1446.63 1.04767
\(125\) −1519.47 −1.08725
\(126\) 1705.01 1.20551
\(127\) −2012.00 −1.40580 −0.702898 0.711291i \(-0.748111\pi\)
−0.702898 + 0.711291i \(0.748111\pi\)
\(128\) 277.211 0.191424
\(129\) −5024.56 −3.42936
\(130\) 920.558 0.621064
\(131\) 844.055 0.562943 0.281471 0.959570i \(-0.409178\pi\)
0.281471 + 0.959570i \(0.409178\pi\)
\(132\) 1569.41 1.03484
\(133\) −495.280 −0.322904
\(134\) 3510.18 2.26294
\(135\) −2922.22 −1.86300
\(136\) 0 0
\(137\) −98.9558 −0.0617107 −0.0308553 0.999524i \(-0.509823\pi\)
−0.0308553 + 0.999524i \(0.509823\pi\)
\(138\) −5132.58 −3.16605
\(139\) 1615.31 0.985675 0.492837 0.870121i \(-0.335960\pi\)
0.492837 + 0.870121i \(0.335960\pi\)
\(140\) 461.829 0.278798
\(141\) 3099.00 1.85094
\(142\) −3276.50 −1.93632
\(143\) −590.670 −0.345414
\(144\) −4221.15 −2.44279
\(145\) −153.461 −0.0878912
\(146\) 4534.99 2.57067
\(147\) −462.193 −0.259327
\(148\) −2543.19 −1.41249
\(149\) −3466.07 −1.90571 −0.952857 0.303420i \(-0.901871\pi\)
−0.952857 + 0.303420i \(0.901871\pi\)
\(150\) 1724.85 0.938890
\(151\) 573.024 0.308822 0.154411 0.988007i \(-0.450652\pi\)
0.154411 + 0.988007i \(0.450652\pi\)
\(152\) 153.600 0.0819643
\(153\) 0 0
\(154\) −614.636 −0.321615
\(155\) 1720.68 0.891667
\(156\) −1857.39 −0.953271
\(157\) 907.161 0.461142 0.230571 0.973055i \(-0.425941\pi\)
0.230571 + 0.973055i \(0.425941\pi\)
\(158\) −1064.81 −0.536152
\(159\) 678.248 0.338293
\(160\) −2217.68 −1.09577
\(161\) 969.115 0.474391
\(162\) 5653.02 2.74163
\(163\) −1014.46 −0.487478 −0.243739 0.969841i \(-0.578374\pi\)
−0.243739 + 0.969841i \(0.578374\pi\)
\(164\) −2117.61 −1.00828
\(165\) 1866.72 0.880751
\(166\) −2313.54 −1.08172
\(167\) 1444.73 0.669440 0.334720 0.942318i \(-0.391358\pi\)
0.334720 + 0.942318i \(0.391358\pi\)
\(168\) 143.338 0.0658261
\(169\) −1497.94 −0.681813
\(170\) 0 0
\(171\) −4384.80 −1.96090
\(172\) 3967.26 1.75873
\(173\) 4238.03 1.86249 0.931247 0.364388i \(-0.118722\pi\)
0.931247 + 0.364388i \(0.118722\pi\)
\(174\) 642.233 0.279813
\(175\) −325.680 −0.140681
\(176\) 1521.68 0.651708
\(177\) −4430.61 −1.88150
\(178\) 534.835 0.225211
\(179\) −4270.64 −1.78326 −0.891628 0.452768i \(-0.850436\pi\)
−0.891628 + 0.452768i \(0.850436\pi\)
\(180\) 4088.65 1.69306
\(181\) −2752.81 −1.13047 −0.565235 0.824930i \(-0.691214\pi\)
−0.565235 + 0.824930i \(0.691214\pi\)
\(182\) 727.421 0.296264
\(183\) 315.630 0.127497
\(184\) −300.548 −0.120417
\(185\) −3024.98 −1.20217
\(186\) −7201.04 −2.83874
\(187\) 0 0
\(188\) −2446.89 −0.949243
\(189\) −2309.13 −0.888699
\(190\) −2463.47 −0.940627
\(191\) −2324.42 −0.880573 −0.440286 0.897857i \(-0.645123\pi\)
−0.440286 + 0.897857i \(0.645123\pi\)
\(192\) 4141.14 1.55657
\(193\) −4082.15 −1.52249 −0.761243 0.648467i \(-0.775410\pi\)
−0.761243 + 0.648467i \(0.775410\pi\)
\(194\) −2628.35 −0.972704
\(195\) −2209.26 −0.811325
\(196\) 364.935 0.132994
\(197\) 1556.21 0.562818 0.281409 0.959588i \(-0.409198\pi\)
0.281409 + 0.959588i \(0.409198\pi\)
\(198\) −5441.47 −1.95307
\(199\) 1588.11 0.565718 0.282859 0.959161i \(-0.408717\pi\)
0.282859 + 0.959161i \(0.408717\pi\)
\(200\) 101.002 0.0357096
\(201\) −8424.13 −2.95618
\(202\) −2349.10 −0.818229
\(203\) −121.264 −0.0419264
\(204\) 0 0
\(205\) −2518.77 −0.858141
\(206\) −3539.76 −1.19722
\(207\) 8579.74 2.88084
\(208\) −1800.90 −0.600337
\(209\) 1580.67 0.523145
\(210\) −2298.90 −0.755425
\(211\) −3817.62 −1.24557 −0.622786 0.782393i \(-0.713999\pi\)
−0.622786 + 0.782393i \(0.713999\pi\)
\(212\) −535.527 −0.173491
\(213\) 7863.33 2.52951
\(214\) −4362.59 −1.39355
\(215\) 4718.83 1.49684
\(216\) 716.121 0.225583
\(217\) 1359.67 0.425349
\(218\) −6538.33 −2.03134
\(219\) −10883.6 −3.35819
\(220\) −1473.91 −0.451687
\(221\) 0 0
\(222\) 12659.5 3.82725
\(223\) −2007.16 −0.602731 −0.301366 0.953509i \(-0.597442\pi\)
−0.301366 + 0.953509i \(0.597442\pi\)
\(224\) −1752.40 −0.522712
\(225\) −2883.30 −0.854311
\(226\) 704.388 0.207324
\(227\) −3538.83 −1.03471 −0.517357 0.855769i \(-0.673084\pi\)
−0.517357 + 0.855769i \(0.673084\pi\)
\(228\) 4970.50 1.44377
\(229\) 2724.21 0.786117 0.393058 0.919514i \(-0.371417\pi\)
0.393058 + 0.919514i \(0.371417\pi\)
\(230\) 4820.28 1.38191
\(231\) 1475.07 0.420141
\(232\) 37.6072 0.0106424
\(233\) −5172.45 −1.45433 −0.727164 0.686463i \(-0.759162\pi\)
−0.727164 + 0.686463i \(0.759162\pi\)
\(234\) 6439.98 1.79912
\(235\) −2910.44 −0.807898
\(236\) 3498.29 0.964913
\(237\) 2555.46 0.700401
\(238\) 0 0
\(239\) −1423.64 −0.385305 −0.192652 0.981267i \(-0.561709\pi\)
−0.192652 + 0.981267i \(0.561709\pi\)
\(240\) 5691.47 1.53076
\(241\) −4759.79 −1.27222 −0.636110 0.771598i \(-0.719458\pi\)
−0.636110 + 0.771598i \(0.719458\pi\)
\(242\) −3269.71 −0.868532
\(243\) −4660.15 −1.23024
\(244\) −249.213 −0.0653862
\(245\) 434.070 0.113191
\(246\) 10541.1 2.73201
\(247\) −1870.72 −0.481908
\(248\) −421.671 −0.107968
\(249\) 5552.29 1.41310
\(250\) −5972.06 −1.51083
\(251\) 1644.01 0.413421 0.206711 0.978402i \(-0.433724\pi\)
0.206711 + 0.978402i \(0.433724\pi\)
\(252\) 3230.83 0.807632
\(253\) −3092.90 −0.768573
\(254\) −7907.87 −1.95348
\(255\) 0 0
\(256\) 4601.76 1.12348
\(257\) −6166.93 −1.49682 −0.748410 0.663236i \(-0.769182\pi\)
−0.748410 + 0.663236i \(0.769182\pi\)
\(258\) −19748.3 −4.76540
\(259\) −2390.32 −0.573465
\(260\) 1744.37 0.416083
\(261\) −1073.57 −0.254607
\(262\) 3317.43 0.782259
\(263\) −1068.30 −0.250472 −0.125236 0.992127i \(-0.539969\pi\)
−0.125236 + 0.992127i \(0.539969\pi\)
\(264\) −457.459 −0.106646
\(265\) −636.979 −0.147658
\(266\) −1946.63 −0.448704
\(267\) −1283.56 −0.294204
\(268\) 6651.47 1.51606
\(269\) −2342.64 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(270\) −11485.4 −2.58880
\(271\) 3281.52 0.735564 0.367782 0.929912i \(-0.380117\pi\)
0.367782 + 0.929912i \(0.380117\pi\)
\(272\) 0 0
\(273\) −1745.75 −0.387024
\(274\) −388.931 −0.0857525
\(275\) 1039.40 0.227920
\(276\) −9725.78 −2.12110
\(277\) −6980.15 −1.51407 −0.757033 0.653376i \(-0.773352\pi\)
−0.757033 + 0.653376i \(0.773352\pi\)
\(278\) 6348.74 1.36968
\(279\) 12037.4 2.58302
\(280\) −134.617 −0.0287317
\(281\) −2256.65 −0.479077 −0.239538 0.970887i \(-0.576996\pi\)
−0.239538 + 0.970887i \(0.576996\pi\)
\(282\) 12180.2 2.57205
\(283\) 5009.33 1.05220 0.526102 0.850421i \(-0.323653\pi\)
0.526102 + 0.850421i \(0.323653\pi\)
\(284\) −6208.68 −1.29724
\(285\) 5912.12 1.22879
\(286\) −2321.54 −0.479984
\(287\) −1990.32 −0.409356
\(288\) −15514.3 −3.17427
\(289\) 0 0
\(290\) −603.155 −0.122133
\(291\) 6307.82 1.27069
\(292\) 8593.39 1.72223
\(293\) −4319.30 −0.861215 −0.430608 0.902539i \(-0.641701\pi\)
−0.430608 + 0.902539i \(0.641701\pi\)
\(294\) −1816.58 −0.360357
\(295\) 4161.02 0.821234
\(296\) 741.302 0.145565
\(297\) 7369.50 1.43980
\(298\) −13622.9 −2.64816
\(299\) 3660.44 0.707990
\(300\) 3268.44 0.629011
\(301\) 3728.80 0.714034
\(302\) 2252.19 0.429135
\(303\) 5637.64 1.06889
\(304\) 4819.33 0.909236
\(305\) −296.425 −0.0556500
\(306\) 0 0
\(307\) 9601.85 1.78504 0.892518 0.451011i \(-0.148937\pi\)
0.892518 + 0.451011i \(0.148937\pi\)
\(308\) −1164.68 −0.215467
\(309\) 8495.13 1.56398
\(310\) 6762.88 1.23905
\(311\) 1010.42 0.184230 0.0921148 0.995748i \(-0.470637\pi\)
0.0921148 + 0.995748i \(0.470637\pi\)
\(312\) 541.403 0.0982400
\(313\) −3636.85 −0.656763 −0.328381 0.944545i \(-0.606503\pi\)
−0.328381 + 0.944545i \(0.606503\pi\)
\(314\) 3565.46 0.640798
\(315\) 3842.89 0.687373
\(316\) −2017.72 −0.359196
\(317\) 8639.17 1.53068 0.765338 0.643629i \(-0.222572\pi\)
0.765338 + 0.643629i \(0.222572\pi\)
\(318\) 2665.75 0.470088
\(319\) 387.010 0.0679260
\(320\) −3889.16 −0.679409
\(321\) 10469.8 1.82047
\(322\) 3808.96 0.659209
\(323\) 0 0
\(324\) 10712.0 1.83676
\(325\) −1230.13 −0.209954
\(326\) −3987.20 −0.677394
\(327\) 15691.4 2.65364
\(328\) 617.252 0.103909
\(329\) −2299.81 −0.385388
\(330\) 7336.86 1.22388
\(331\) −2084.40 −0.346131 −0.173065 0.984910i \(-0.555367\pi\)
−0.173065 + 0.984910i \(0.555367\pi\)
\(332\) −4383.94 −0.724699
\(333\) −21161.9 −3.48248
\(334\) 5678.29 0.930246
\(335\) 7911.55 1.29031
\(336\) 4497.38 0.730214
\(337\) 6271.39 1.01372 0.506861 0.862028i \(-0.330806\pi\)
0.506861 + 0.862028i \(0.330806\pi\)
\(338\) −5887.44 −0.947440
\(339\) −1690.47 −0.270837
\(340\) 0 0
\(341\) −4339.35 −0.689118
\(342\) −17233.8 −2.72484
\(343\) 343.000 0.0539949
\(344\) −1156.40 −0.181247
\(345\) −11568.3 −1.80526
\(346\) 16656.9 2.58810
\(347\) −6748.32 −1.04400 −0.522001 0.852945i \(-0.674814\pi\)
−0.522001 + 0.852945i \(0.674814\pi\)
\(348\) 1216.97 0.187461
\(349\) 5436.30 0.833806 0.416903 0.908951i \(-0.363115\pi\)
0.416903 + 0.908951i \(0.363115\pi\)
\(350\) −1280.04 −0.195488
\(351\) −8721.79 −1.32631
\(352\) 5592.74 0.846858
\(353\) −2470.44 −0.372489 −0.186244 0.982503i \(-0.559632\pi\)
−0.186244 + 0.982503i \(0.559632\pi\)
\(354\) −17413.9 −2.61451
\(355\) −7384.87 −1.10408
\(356\) 1013.46 0.150881
\(357\) 0 0
\(358\) −16785.1 −2.47799
\(359\) −3608.58 −0.530512 −0.265256 0.964178i \(-0.585456\pi\)
−0.265256 + 0.964178i \(0.585456\pi\)
\(360\) −1191.78 −0.174479
\(361\) −1852.83 −0.270131
\(362\) −10819.5 −1.57089
\(363\) 7847.02 1.13461
\(364\) 1378.40 0.198482
\(365\) 10221.4 1.46578
\(366\) 1240.54 0.177169
\(367\) 5029.56 0.715370 0.357685 0.933842i \(-0.383566\pi\)
0.357685 + 0.933842i \(0.383566\pi\)
\(368\) −9429.99 −1.33579
\(369\) −17620.7 −2.48590
\(370\) −11889.2 −1.67052
\(371\) −503.338 −0.0704366
\(372\) −13645.3 −1.90182
\(373\) 8843.15 1.22756 0.613781 0.789476i \(-0.289648\pi\)
0.613781 + 0.789476i \(0.289648\pi\)
\(374\) 0 0
\(375\) 14332.4 1.97366
\(376\) 713.233 0.0978250
\(377\) −458.026 −0.0625717
\(378\) −9075.67 −1.23493
\(379\) 12892.4 1.74733 0.873667 0.486525i \(-0.161736\pi\)
0.873667 + 0.486525i \(0.161736\pi\)
\(380\) −4668.06 −0.630175
\(381\) 18978.2 2.55192
\(382\) −9135.80 −1.22363
\(383\) −5211.84 −0.695333 −0.347666 0.937618i \(-0.613026\pi\)
−0.347666 + 0.937618i \(0.613026\pi\)
\(384\) −2614.80 −0.347489
\(385\) −1385.32 −0.183383
\(386\) −16044.3 −2.11563
\(387\) 33011.7 4.33612
\(388\) −4980.49 −0.651665
\(389\) −4139.68 −0.539563 −0.269781 0.962922i \(-0.586951\pi\)
−0.269781 + 0.962922i \(0.586951\pi\)
\(390\) −8683.17 −1.12741
\(391\) 0 0
\(392\) −106.373 −0.0137058
\(393\) −7961.56 −1.02190
\(394\) 6116.44 0.782085
\(395\) −2399.97 −0.305710
\(396\) −10311.1 −1.30846
\(397\) −12133.5 −1.53391 −0.766953 0.641703i \(-0.778228\pi\)
−0.766953 + 0.641703i \(0.778228\pi\)
\(398\) 6241.82 0.786116
\(399\) 4671.73 0.586163
\(400\) 3169.04 0.396130
\(401\) 2192.48 0.273035 0.136518 0.990638i \(-0.456409\pi\)
0.136518 + 0.990638i \(0.456409\pi\)
\(402\) −33109.8 −4.10788
\(403\) 5135.62 0.634798
\(404\) −4451.33 −0.548174
\(405\) 12741.3 1.56326
\(406\) −476.610 −0.0582605
\(407\) 7628.63 0.929084
\(408\) 0 0
\(409\) −13267.8 −1.60404 −0.802019 0.597299i \(-0.796241\pi\)
−0.802019 + 0.597299i \(0.796241\pi\)
\(410\) −9899.67 −1.19246
\(411\) 933.401 0.112023
\(412\) −6707.53 −0.802079
\(413\) 3288.02 0.391750
\(414\) 33721.4 4.00318
\(415\) −5214.45 −0.616788
\(416\) −6619.00 −0.780104
\(417\) −15236.4 −1.78928
\(418\) 6212.59 0.726956
\(419\) −2475.03 −0.288576 −0.144288 0.989536i \(-0.546089\pi\)
−0.144288 + 0.989536i \(0.546089\pi\)
\(420\) −4356.21 −0.506098
\(421\) 12506.8 1.44785 0.723925 0.689879i \(-0.242336\pi\)
0.723925 + 0.689879i \(0.242336\pi\)
\(422\) −15004.6 −1.73083
\(423\) −20360.6 −2.34035
\(424\) 156.098 0.0178793
\(425\) 0 0
\(426\) 30905.6 3.51498
\(427\) −234.234 −0.0265465
\(428\) −8266.72 −0.933614
\(429\) 5571.49 0.627026
\(430\) 18546.7 2.08000
\(431\) −5659.14 −0.632462 −0.316231 0.948682i \(-0.602417\pi\)
−0.316231 + 0.948682i \(0.602417\pi\)
\(432\) 22469.0 2.50241
\(433\) −14602.7 −1.62069 −0.810347 0.585950i \(-0.800721\pi\)
−0.810347 + 0.585950i \(0.800721\pi\)
\(434\) 5344.00 0.591060
\(435\) 1447.52 0.159548
\(436\) −12389.6 −1.36090
\(437\) −9795.58 −1.07228
\(438\) −42776.3 −4.66651
\(439\) 2832.32 0.307925 0.153963 0.988077i \(-0.450796\pi\)
0.153963 + 0.988077i \(0.450796\pi\)
\(440\) 429.624 0.0465489
\(441\) 3036.64 0.327895
\(442\) 0 0
\(443\) −689.867 −0.0739877 −0.0369939 0.999315i \(-0.511778\pi\)
−0.0369939 + 0.999315i \(0.511778\pi\)
\(444\) 23988.6 2.56408
\(445\) 1205.46 0.128414
\(446\) −7888.83 −0.837549
\(447\) 32693.7 3.45942
\(448\) −3073.20 −0.324096
\(449\) 3658.88 0.384573 0.192286 0.981339i \(-0.438410\pi\)
0.192286 + 0.981339i \(0.438410\pi\)
\(450\) −11332.4 −1.18714
\(451\) 6352.05 0.663207
\(452\) 1334.75 0.138897
\(453\) −5405.06 −0.560600
\(454\) −13908.8 −1.43783
\(455\) 1639.52 0.168928
\(456\) −1448.83 −0.148789
\(457\) 4852.75 0.496723 0.248361 0.968667i \(-0.420108\pi\)
0.248361 + 0.968667i \(0.420108\pi\)
\(458\) 10707.1 1.09238
\(459\) 0 0
\(460\) 9134.00 0.925815
\(461\) 14413.7 1.45621 0.728105 0.685466i \(-0.240402\pi\)
0.728105 + 0.685466i \(0.240402\pi\)
\(462\) 5797.55 0.583824
\(463\) 2377.15 0.238608 0.119304 0.992858i \(-0.461934\pi\)
0.119304 + 0.992858i \(0.461934\pi\)
\(464\) 1179.96 0.118057
\(465\) −16230.3 −1.61863
\(466\) −20329.6 −2.02092
\(467\) −3789.21 −0.375468 −0.187734 0.982220i \(-0.560114\pi\)
−0.187734 + 0.982220i \(0.560114\pi\)
\(468\) 12203.2 1.20532
\(469\) 6251.67 0.615512
\(470\) −11439.0 −1.12265
\(471\) −8556.80 −0.837105
\(472\) −1019.70 −0.0994398
\(473\) −11900.3 −1.15682
\(474\) 10043.9 0.973269
\(475\) 3291.90 0.317984
\(476\) 0 0
\(477\) −4456.13 −0.427741
\(478\) −5595.42 −0.535415
\(479\) 6696.56 0.638776 0.319388 0.947624i \(-0.396523\pi\)
0.319388 + 0.947624i \(0.396523\pi\)
\(480\) 20918.3 1.98914
\(481\) −9028.48 −0.855849
\(482\) −18707.6 −1.76786
\(483\) −9141.18 −0.861156
\(484\) −6195.80 −0.581875
\(485\) −5924.01 −0.554630
\(486\) −18316.0 −1.70953
\(487\) 157.846 0.0146872 0.00734362 0.999973i \(-0.497662\pi\)
0.00734362 + 0.999973i \(0.497662\pi\)
\(488\) 72.6420 0.00673842
\(489\) 9568.94 0.884913
\(490\) 1706.05 0.157288
\(491\) 13786.7 1.26718 0.633591 0.773668i \(-0.281580\pi\)
0.633591 + 0.773668i \(0.281580\pi\)
\(492\) 19974.4 1.83031
\(493\) 0 0
\(494\) −7352.59 −0.669653
\(495\) −12264.5 −1.11363
\(496\) −13230.3 −1.19770
\(497\) −5835.49 −0.526675
\(498\) 21822.4 1.96363
\(499\) 16222.9 1.45539 0.727693 0.685903i \(-0.240592\pi\)
0.727693 + 0.685903i \(0.240592\pi\)
\(500\) −11316.5 −1.01218
\(501\) −13627.4 −1.21523
\(502\) 6461.52 0.574486
\(503\) 9374.24 0.830968 0.415484 0.909601i \(-0.363612\pi\)
0.415484 + 0.909601i \(0.363612\pi\)
\(504\) −941.741 −0.0832311
\(505\) −5294.61 −0.466549
\(506\) −12156.2 −1.06800
\(507\) 14129.4 1.23769
\(508\) −14984.7 −1.30874
\(509\) 2374.04 0.206734 0.103367 0.994643i \(-0.467038\pi\)
0.103367 + 0.994643i \(0.467038\pi\)
\(510\) 0 0
\(511\) 8076.87 0.699216
\(512\) 15868.9 1.36975
\(513\) 23340.1 2.00875
\(514\) −24238.2 −2.07997
\(515\) −7978.23 −0.682646
\(516\) −37421.2 −3.19259
\(517\) 7339.78 0.624377
\(518\) −9394.81 −0.796880
\(519\) −39975.2 −3.38096
\(520\) −508.460 −0.0428797
\(521\) −3619.07 −0.304327 −0.152164 0.988355i \(-0.548624\pi\)
−0.152164 + 0.988355i \(0.548624\pi\)
\(522\) −4219.51 −0.353799
\(523\) 1960.92 0.163949 0.0819743 0.996634i \(-0.473877\pi\)
0.0819743 + 0.996634i \(0.473877\pi\)
\(524\) 6286.24 0.524076
\(525\) 3071.98 0.255376
\(526\) −4198.79 −0.348053
\(527\) 0 0
\(528\) −14353.2 −1.18304
\(529\) 7000.03 0.575329
\(530\) −2503.55 −0.205184
\(531\) 29109.4 2.37898
\(532\) −3688.68 −0.300610
\(533\) −7517.65 −0.610930
\(534\) −5044.83 −0.408823
\(535\) −9832.79 −0.794596
\(536\) −1938.81 −0.156238
\(537\) 40282.9 3.23712
\(538\) −9207.40 −0.737842
\(539\) −1094.67 −0.0874785
\(540\) −21763.7 −1.73437
\(541\) −12020.5 −0.955272 −0.477636 0.878558i \(-0.658506\pi\)
−0.477636 + 0.878558i \(0.658506\pi\)
\(542\) 12897.5 1.02213
\(543\) 25965.9 2.05213
\(544\) 0 0
\(545\) −14736.7 −1.15826
\(546\) −6861.40 −0.537804
\(547\) −16516.4 −1.29102 −0.645512 0.763750i \(-0.723356\pi\)
−0.645512 + 0.763750i \(0.723356\pi\)
\(548\) −736.989 −0.0574500
\(549\) −2073.71 −0.161209
\(550\) 4085.20 0.316715
\(551\) 1225.71 0.0947675
\(552\) 2834.92 0.218591
\(553\) −1896.44 −0.145832
\(554\) −27434.4 −2.10393
\(555\) 28533.1 2.18228
\(556\) 12030.3 0.917622
\(557\) −2504.68 −0.190533 −0.0952665 0.995452i \(-0.530370\pi\)
−0.0952665 + 0.995452i \(0.530370\pi\)
\(558\) 47311.3 3.58933
\(559\) 14084.0 1.06564
\(560\) −4223.73 −0.318723
\(561\) 0 0
\(562\) −8869.44 −0.665720
\(563\) −3051.24 −0.228410 −0.114205 0.993457i \(-0.536432\pi\)
−0.114205 + 0.993457i \(0.536432\pi\)
\(564\) 23080.3 1.72315
\(565\) 1587.61 0.118215
\(566\) 19688.4 1.46213
\(567\) 10068.1 0.745715
\(568\) 1809.74 0.133688
\(569\) −641.900 −0.0472932 −0.0236466 0.999720i \(-0.507528\pi\)
−0.0236466 + 0.999720i \(0.507528\pi\)
\(570\) 23236.7 1.70751
\(571\) 9690.89 0.710248 0.355124 0.934819i \(-0.384439\pi\)
0.355124 + 0.934819i \(0.384439\pi\)
\(572\) −4399.11 −0.321566
\(573\) 21925.1 1.59849
\(574\) −7822.67 −0.568836
\(575\) −6441.26 −0.467164
\(576\) −27207.5 −1.96814
\(577\) 22461.3 1.62058 0.810292 0.586026i \(-0.199308\pi\)
0.810292 + 0.586026i \(0.199308\pi\)
\(578\) 0 0
\(579\) 38504.9 2.76375
\(580\) −1142.92 −0.0818230
\(581\) −4120.43 −0.294224
\(582\) 24791.9 1.76574
\(583\) 1606.39 0.114116
\(584\) −2504.85 −0.177485
\(585\) 14515.0 1.02585
\(586\) −16976.4 −1.19674
\(587\) 2755.77 0.193770 0.0968849 0.995296i \(-0.469112\pi\)
0.0968849 + 0.995296i \(0.469112\pi\)
\(588\) −3442.26 −0.241422
\(589\) −13743.3 −0.961428
\(590\) 16354.3 1.14118
\(591\) −14678.9 −1.02168
\(592\) 23259.1 1.61477
\(593\) 18946.4 1.31203 0.656015 0.754747i \(-0.272241\pi\)
0.656015 + 0.754747i \(0.272241\pi\)
\(594\) 28964.7 2.00073
\(595\) 0 0
\(596\) −25814.1 −1.77414
\(597\) −14979.8 −1.02694
\(598\) 14386.8 0.983814
\(599\) 17975.5 1.22614 0.613070 0.790029i \(-0.289934\pi\)
0.613070 + 0.790029i \(0.289934\pi\)
\(600\) −952.703 −0.0648232
\(601\) −8801.27 −0.597357 −0.298678 0.954354i \(-0.596546\pi\)
−0.298678 + 0.954354i \(0.596546\pi\)
\(602\) 14655.5 0.992214
\(603\) 55347.1 3.73782
\(604\) 4267.69 0.287500
\(605\) −7369.56 −0.495231
\(606\) 22157.9 1.48532
\(607\) −10986.3 −0.734631 −0.367315 0.930096i \(-0.619723\pi\)
−0.367315 + 0.930096i \(0.619723\pi\)
\(608\) 17712.9 1.18150
\(609\) 1143.82 0.0761085
\(610\) −1165.05 −0.0773306
\(611\) −8686.62 −0.575160
\(612\) 0 0
\(613\) −4473.68 −0.294764 −0.147382 0.989080i \(-0.547085\pi\)
−0.147382 + 0.989080i \(0.547085\pi\)
\(614\) 37738.6 2.48047
\(615\) 23758.4 1.55777
\(616\) 339.487 0.0222051
\(617\) 6126.50 0.399746 0.199873 0.979822i \(-0.435947\pi\)
0.199873 + 0.979822i \(0.435947\pi\)
\(618\) 33388.8 2.17329
\(619\) 1433.55 0.0930844 0.0465422 0.998916i \(-0.485180\pi\)
0.0465422 + 0.998916i \(0.485180\pi\)
\(620\) 12815.1 0.830105
\(621\) −45669.6 −2.95114
\(622\) 3971.29 0.256003
\(623\) 952.547 0.0612568
\(624\) 16987.0 1.08978
\(625\) −7644.64 −0.489257
\(626\) −14294.1 −0.912631
\(627\) −14909.7 −0.949657
\(628\) 6756.23 0.429304
\(629\) 0 0
\(630\) 15103.9 0.955166
\(631\) −387.780 −0.0244648 −0.0122324 0.999925i \(-0.503894\pi\)
−0.0122324 + 0.999925i \(0.503894\pi\)
\(632\) 588.138 0.0370172
\(633\) 36009.7 2.26107
\(634\) 33955.0 2.12701
\(635\) −17823.4 −1.11386
\(636\) 5051.36 0.314936
\(637\) 1295.54 0.0805830
\(638\) 1521.09 0.0943893
\(639\) −51662.6 −3.19834
\(640\) 2455.69 0.151672
\(641\) 2957.71 0.182251 0.0911253 0.995839i \(-0.470954\pi\)
0.0911253 + 0.995839i \(0.470954\pi\)
\(642\) 41150.2 2.52970
\(643\) −12435.4 −0.762679 −0.381339 0.924435i \(-0.624537\pi\)
−0.381339 + 0.924435i \(0.624537\pi\)
\(644\) 7217.64 0.441638
\(645\) −44510.4 −2.71720
\(646\) 0 0
\(647\) −13556.5 −0.823743 −0.411872 0.911242i \(-0.635125\pi\)
−0.411872 + 0.911242i \(0.635125\pi\)
\(648\) −3122.39 −0.189288
\(649\) −10493.6 −0.634684
\(650\) −4834.83 −0.291750
\(651\) −12825.1 −0.772130
\(652\) −7555.38 −0.453822
\(653\) 14638.4 0.877254 0.438627 0.898669i \(-0.355465\pi\)
0.438627 + 0.898669i \(0.355465\pi\)
\(654\) 61672.9 3.68746
\(655\) 7477.12 0.446039
\(656\) 19366.9 1.15267
\(657\) 71505.8 4.24613
\(658\) −9039.07 −0.535532
\(659\) 6764.02 0.399831 0.199916 0.979813i \(-0.435933\pi\)
0.199916 + 0.979813i \(0.435933\pi\)
\(660\) 13902.7 0.819942
\(661\) −13961.6 −0.821549 −0.410774 0.911737i \(-0.634742\pi\)
−0.410774 + 0.911737i \(0.634742\pi\)
\(662\) −8192.44 −0.480979
\(663\) 0 0
\(664\) 1277.86 0.0746843
\(665\) −4387.47 −0.255848
\(666\) −83173.8 −4.83922
\(667\) −2398.34 −0.139227
\(668\) 10759.8 0.623220
\(669\) 18932.5 1.09413
\(670\) 31095.2 1.79300
\(671\) 747.548 0.0430086
\(672\) 16529.6 0.948871
\(673\) −9308.34 −0.533151 −0.266575 0.963814i \(-0.585892\pi\)
−0.266575 + 0.963814i \(0.585892\pi\)
\(674\) 24648.8 1.40866
\(675\) 15347.7 0.875160
\(676\) −11156.2 −0.634739
\(677\) 10440.6 0.592709 0.296354 0.955078i \(-0.404229\pi\)
0.296354 + 0.955078i \(0.404229\pi\)
\(678\) −6644.14 −0.376352
\(679\) −4681.12 −0.264573
\(680\) 0 0
\(681\) 33380.0 1.87830
\(682\) −17055.2 −0.957591
\(683\) 14822.6 0.830412 0.415206 0.909727i \(-0.363710\pi\)
0.415206 + 0.909727i \(0.363710\pi\)
\(684\) −32656.5 −1.82551
\(685\) −876.607 −0.0488955
\(686\) 1348.11 0.0750308
\(687\) −25696.1 −1.42703
\(688\) −36283.1 −2.01058
\(689\) −1901.16 −0.105121
\(690\) −45467.3 −2.50857
\(691\) 10908.5 0.600547 0.300274 0.953853i \(-0.402922\pi\)
0.300274 + 0.953853i \(0.402922\pi\)
\(692\) 31563.4 1.73390
\(693\) −9691.32 −0.531231
\(694\) −26523.3 −1.45073
\(695\) 14309.3 0.780984
\(696\) −354.730 −0.0193190
\(697\) 0 0
\(698\) 21366.6 1.15865
\(699\) 48789.2 2.64002
\(700\) −2425.56 −0.130968
\(701\) 10608.7 0.571592 0.285796 0.958291i \(-0.407742\pi\)
0.285796 + 0.958291i \(0.407742\pi\)
\(702\) −34279.7 −1.84303
\(703\) 24160.8 1.29622
\(704\) 9808.01 0.525076
\(705\) 27452.7 1.46657
\(706\) −9709.71 −0.517606
\(707\) −4183.78 −0.222556
\(708\) −32997.7 −1.75159
\(709\) −32294.4 −1.71064 −0.855318 0.518103i \(-0.826638\pi\)
−0.855318 + 0.518103i \(0.826638\pi\)
\(710\) −29025.1 −1.53422
\(711\) −16789.5 −0.885593
\(712\) −295.410 −0.0155491
\(713\) 26891.4 1.41247
\(714\) 0 0
\(715\) −5232.49 −0.273684
\(716\) −31806.3 −1.66014
\(717\) 13428.5 0.699439
\(718\) −14183.0 −0.737193
\(719\) 29131.4 1.51101 0.755505 0.655142i \(-0.227391\pi\)
0.755505 + 0.655142i \(0.227391\pi\)
\(720\) −37393.3 −1.93551
\(721\) −6304.36 −0.325640
\(722\) −7282.26 −0.375371
\(723\) 44896.7 2.30944
\(724\) −20502.0 −1.05242
\(725\) 805.986 0.0412877
\(726\) 30841.5 1.57664
\(727\) 27738.0 1.41506 0.707528 0.706685i \(-0.249810\pi\)
0.707528 + 0.706685i \(0.249810\pi\)
\(728\) −401.783 −0.0204548
\(729\) 5122.76 0.260263
\(730\) 40173.5 2.03683
\(731\) 0 0
\(732\) 2350.70 0.118695
\(733\) −5036.56 −0.253792 −0.126896 0.991916i \(-0.540501\pi\)
−0.126896 + 0.991916i \(0.540501\pi\)
\(734\) 19767.9 0.994070
\(735\) −4094.37 −0.205473
\(736\) −34658.8 −1.73579
\(737\) −19952.0 −0.997206
\(738\) −69255.4 −3.45437
\(739\) −8573.21 −0.426753 −0.213376 0.976970i \(-0.568446\pi\)
−0.213376 + 0.976970i \(0.568446\pi\)
\(740\) −22529.0 −1.11917
\(741\) 17645.6 0.874800
\(742\) −1978.29 −0.0978780
\(743\) 39607.6 1.95567 0.977835 0.209377i \(-0.0671435\pi\)
0.977835 + 0.209377i \(0.0671435\pi\)
\(744\) 3977.41 0.195993
\(745\) −30704.4 −1.50996
\(746\) 34756.7 1.70581
\(747\) −36478.9 −1.78674
\(748\) 0 0
\(749\) −7769.83 −0.379043
\(750\) 56331.5 2.74258
\(751\) 745.217 0.0362095 0.0181048 0.999836i \(-0.494237\pi\)
0.0181048 + 0.999836i \(0.494237\pi\)
\(752\) 22378.4 1.08518
\(753\) −15507.1 −0.750478
\(754\) −1800.20 −0.0869490
\(755\) 5076.18 0.244690
\(756\) −17197.6 −0.827341
\(757\) −30762.6 −1.47699 −0.738497 0.674257i \(-0.764464\pi\)
−0.738497 + 0.674257i \(0.764464\pi\)
\(758\) 50671.8 2.42808
\(759\) 29173.8 1.39518
\(760\) 1360.67 0.0649431
\(761\) −29341.3 −1.39766 −0.698831 0.715287i \(-0.746296\pi\)
−0.698831 + 0.715287i \(0.746296\pi\)
\(762\) 74591.0 3.54612
\(763\) −11644.8 −0.552519
\(764\) −17311.5 −0.819776
\(765\) 0 0
\(766\) −20484.4 −0.966227
\(767\) 12419.2 0.584655
\(768\) −43406.2 −2.03943
\(769\) 2295.12 0.107626 0.0538128 0.998551i \(-0.482863\pi\)
0.0538128 + 0.998551i \(0.482863\pi\)
\(770\) −5444.79 −0.254827
\(771\) 58169.6 2.71716
\(772\) −30402.5 −1.41737
\(773\) 20671.9 0.961858 0.480929 0.876759i \(-0.340299\pi\)
0.480929 + 0.876759i \(0.340299\pi\)
\(774\) 129747. 6.02542
\(775\) −9037.12 −0.418868
\(776\) 1451.74 0.0671578
\(777\) 22546.7 1.04100
\(778\) −16270.4 −0.749770
\(779\) 20117.7 0.925279
\(780\) −16453.8 −0.755309
\(781\) 18623.8 0.853279
\(782\) 0 0
\(783\) 5714.57 0.260820
\(784\) −3337.57 −0.152039
\(785\) 8036.15 0.365379
\(786\) −31291.7 −1.42002
\(787\) −13292.8 −0.602079 −0.301040 0.953612i \(-0.597334\pi\)
−0.301040 + 0.953612i \(0.597334\pi\)
\(788\) 11590.1 0.523959
\(789\) 10076.7 0.454678
\(790\) −9432.72 −0.424812
\(791\) 1254.52 0.0563915
\(792\) 3005.54 0.134845
\(793\) −884.723 −0.0396184
\(794\) −47688.8 −2.13150
\(795\) 6008.31 0.268041
\(796\) 11827.7 0.526660
\(797\) −13226.2 −0.587826 −0.293913 0.955832i \(-0.594958\pi\)
−0.293913 + 0.955832i \(0.594958\pi\)
\(798\) 18361.6 0.814526
\(799\) 0 0
\(800\) 11647.4 0.514748
\(801\) 8433.05 0.371994
\(802\) 8617.21 0.379407
\(803\) −25777.0 −1.13282
\(804\) −62740.1 −2.75208
\(805\) 8584.97 0.375877
\(806\) 20184.8 0.882108
\(807\) 22097.0 0.963878
\(808\) 1297.50 0.0564924
\(809\) −20227.3 −0.879052 −0.439526 0.898230i \(-0.644854\pi\)
−0.439526 + 0.898230i \(0.644854\pi\)
\(810\) 50077.7 2.17229
\(811\) 13696.5 0.593034 0.296517 0.955028i \(-0.404175\pi\)
0.296517 + 0.955028i \(0.404175\pi\)
\(812\) −903.133 −0.0390317
\(813\) −30952.9 −1.33526
\(814\) 29983.2 1.29105
\(815\) −8986.70 −0.386246
\(816\) 0 0
\(817\) −37689.8 −1.61395
\(818\) −52147.2 −2.22895
\(819\) 11469.7 0.489356
\(820\) −18759.0 −0.798893
\(821\) 4423.08 0.188022 0.0940112 0.995571i \(-0.470031\pi\)
0.0940112 + 0.995571i \(0.470031\pi\)
\(822\) 3668.59 0.155665
\(823\) −21330.0 −0.903422 −0.451711 0.892164i \(-0.649186\pi\)
−0.451711 + 0.892164i \(0.649186\pi\)
\(824\) 1955.15 0.0826588
\(825\) −9804.12 −0.413740
\(826\) 12923.1 0.544372
\(827\) 4359.67 0.183314 0.0916570 0.995791i \(-0.470784\pi\)
0.0916570 + 0.995791i \(0.470784\pi\)
\(828\) 63899.0 2.68194
\(829\) 27874.3 1.16781 0.583905 0.811822i \(-0.301524\pi\)
0.583905 + 0.811822i \(0.301524\pi\)
\(830\) −20494.6 −0.857082
\(831\) 65840.3 2.74846
\(832\) −11607.8 −0.483687
\(833\) 0 0
\(834\) −59884.5 −2.48637
\(835\) 12798.2 0.530420
\(836\) 11772.3 0.487025
\(837\) −64074.7 −2.64605
\(838\) −9727.75 −0.401002
\(839\) −40422.6 −1.66334 −0.831670 0.555270i \(-0.812615\pi\)
−0.831670 + 0.555270i \(0.812615\pi\)
\(840\) 1269.77 0.0521563
\(841\) −24088.9 −0.987695
\(842\) 49156.2 2.01192
\(843\) 21285.9 0.869662
\(844\) −28432.3 −1.15957
\(845\) −13269.6 −0.540224
\(846\) −80024.4 −3.25212
\(847\) −5823.39 −0.236238
\(848\) 4897.74 0.198336
\(849\) −47250.6 −1.91005
\(850\) 0 0
\(851\) −47275.5 −1.90433
\(852\) 58563.4 2.35487
\(853\) 8470.48 0.340004 0.170002 0.985444i \(-0.445623\pi\)
0.170002 + 0.985444i \(0.445623\pi\)
\(854\) −920.620 −0.0368887
\(855\) −38843.0 −1.55369
\(856\) 2409.63 0.0962143
\(857\) −29290.0 −1.16748 −0.583739 0.811942i \(-0.698411\pi\)
−0.583739 + 0.811942i \(0.698411\pi\)
\(858\) 21897.9 0.871309
\(859\) −38954.3 −1.54727 −0.773635 0.633632i \(-0.781563\pi\)
−0.773635 + 0.633632i \(0.781563\pi\)
\(860\) 35144.3 1.39350
\(861\) 18773.7 0.743098
\(862\) −22242.4 −0.878862
\(863\) −18804.3 −0.741721 −0.370860 0.928689i \(-0.620937\pi\)
−0.370860 + 0.928689i \(0.620937\pi\)
\(864\) 82582.1 3.25173
\(865\) 37542.9 1.47572
\(866\) −57393.7 −2.25210
\(867\) 0 0
\(868\) 10126.4 0.395982
\(869\) 6052.44 0.236266
\(870\) 5689.26 0.221706
\(871\) 23613.2 0.918601
\(872\) 3611.38 0.140248
\(873\) −41442.8 −1.60667
\(874\) −38500.1 −1.49003
\(875\) −10636.3 −0.410940
\(876\) −81057.2 −3.12634
\(877\) −12939.6 −0.498222 −0.249111 0.968475i \(-0.580138\pi\)
−0.249111 + 0.968475i \(0.580138\pi\)
\(878\) 11132.0 0.427889
\(879\) 40741.8 1.56335
\(880\) 13479.9 0.516371
\(881\) −33770.6 −1.29144 −0.645720 0.763574i \(-0.723443\pi\)
−0.645720 + 0.763574i \(0.723443\pi\)
\(882\) 11935.0 0.455639
\(883\) −18647.4 −0.710686 −0.355343 0.934736i \(-0.615636\pi\)
−0.355343 + 0.934736i \(0.615636\pi\)
\(884\) 0 0
\(885\) −39248.9 −1.49078
\(886\) −2711.42 −0.102813
\(887\) −20404.3 −0.772388 −0.386194 0.922418i \(-0.626210\pi\)
−0.386194 + 0.922418i \(0.626210\pi\)
\(888\) −6992.34 −0.264243
\(889\) −14084.0 −0.531341
\(890\) 4737.87 0.178442
\(891\) −32132.0 −1.20815
\(892\) −14948.6 −0.561117
\(893\) 23246.0 0.871104
\(894\) 128498. 4.80717
\(895\) −37831.8 −1.41294
\(896\) 1940.48 0.0723513
\(897\) −34527.1 −1.28520
\(898\) 14380.7 0.534398
\(899\) −3364.89 −0.124834
\(900\) −21473.8 −0.795328
\(901\) 0 0
\(902\) 24965.8 0.921586
\(903\) −35171.9 −1.29618
\(904\) −389.061 −0.0143141
\(905\) −24386.0 −0.895710
\(906\) −21243.8 −0.779003
\(907\) 36787.9 1.34677 0.673386 0.739291i \(-0.264839\pi\)
0.673386 + 0.739291i \(0.264839\pi\)
\(908\) −26356.0 −0.963276
\(909\) −37039.7 −1.35152
\(910\) 6443.91 0.234740
\(911\) −12593.4 −0.458001 −0.229001 0.973426i \(-0.573546\pi\)
−0.229001 + 0.973426i \(0.573546\pi\)
\(912\) −45458.4 −1.65052
\(913\) 13150.2 0.476680
\(914\) 19073.0 0.690240
\(915\) 2796.03 0.101021
\(916\) 20289.0 0.731841
\(917\) 5908.39 0.212772
\(918\) 0 0
\(919\) 15168.4 0.544460 0.272230 0.962232i \(-0.412239\pi\)
0.272230 + 0.962232i \(0.412239\pi\)
\(920\) −2662.43 −0.0954105
\(921\) −90569.5 −3.24035
\(922\) 56650.9 2.02353
\(923\) −22041.2 −0.786019
\(924\) 10985.8 0.391134
\(925\) 15887.4 0.564728
\(926\) 9343.01 0.331566
\(927\) −55813.5 −1.97752
\(928\) 4336.81 0.153408
\(929\) 7327.73 0.258789 0.129395 0.991593i \(-0.458697\pi\)
0.129395 + 0.991593i \(0.458697\pi\)
\(930\) −63790.9 −2.24923
\(931\) −3466.96 −0.122046
\(932\) −38522.7 −1.35392
\(933\) −9530.75 −0.334430
\(934\) −14892.9 −0.521747
\(935\) 0 0
\(936\) −3557.05 −0.124216
\(937\) 33511.5 1.16838 0.584190 0.811617i \(-0.301412\pi\)
0.584190 + 0.811617i \(0.301412\pi\)
\(938\) 24571.3 0.855309
\(939\) 34304.6 1.19221
\(940\) −21675.9 −0.752118
\(941\) −1024.08 −0.0354773 −0.0177387 0.999843i \(-0.505647\pi\)
−0.0177387 + 0.999843i \(0.505647\pi\)
\(942\) −33631.2 −1.16323
\(943\) −39364.4 −1.35936
\(944\) −31994.1 −1.10309
\(945\) −20455.5 −0.704147
\(946\) −46772.5 −1.60751
\(947\) 3511.72 0.120502 0.0602512 0.998183i \(-0.480810\pi\)
0.0602512 + 0.998183i \(0.480810\pi\)
\(948\) 19032.2 0.652043
\(949\) 30507.1 1.04352
\(950\) 12938.3 0.441868
\(951\) −81489.0 −2.77862
\(952\) 0 0
\(953\) 12692.7 0.431435 0.215718 0.976456i \(-0.430791\pi\)
0.215718 + 0.976456i \(0.430791\pi\)
\(954\) −17514.2 −0.594384
\(955\) −20591.1 −0.697708
\(956\) −10602.8 −0.358702
\(957\) −3650.47 −0.123305
\(958\) 26319.8 0.887636
\(959\) −692.691 −0.0233244
\(960\) 36684.6 1.23332
\(961\) 7937.86 0.266452
\(962\) −35485.1 −1.18928
\(963\) −68787.6 −2.30182
\(964\) −35449.3 −1.18438
\(965\) −36162.0 −1.20632
\(966\) −35928.1 −1.19665
\(967\) 14772.8 0.491273 0.245637 0.969362i \(-0.421003\pi\)
0.245637 + 0.969362i \(0.421003\pi\)
\(968\) 1805.99 0.0599655
\(969\) 0 0
\(970\) −23283.4 −0.770707
\(971\) −57034.1 −1.88497 −0.942487 0.334242i \(-0.891520\pi\)
−0.942487 + 0.334242i \(0.891520\pi\)
\(972\) −34707.2 −1.14530
\(973\) 11307.2 0.372550
\(974\) 620.390 0.0204092
\(975\) 11603.2 0.381127
\(976\) 2279.21 0.0747498
\(977\) 10574.4 0.346270 0.173135 0.984898i \(-0.444610\pi\)
0.173135 + 0.984898i \(0.444610\pi\)
\(978\) 37609.3 1.22966
\(979\) −3040.02 −0.0992436
\(980\) 3232.81 0.105376
\(981\) −103094. −3.35528
\(982\) 54186.7 1.76086
\(983\) −47250.6 −1.53312 −0.766562 0.642171i \(-0.778034\pi\)
−0.766562 + 0.642171i \(0.778034\pi\)
\(984\) −5822.24 −0.188624
\(985\) 13785.8 0.445940
\(986\) 0 0
\(987\) 21693.0 0.699590
\(988\) −13932.5 −0.448636
\(989\) 73747.6 2.37112
\(990\) −48203.6 −1.54749
\(991\) −5984.02 −0.191815 −0.0959075 0.995390i \(-0.530575\pi\)
−0.0959075 + 0.995390i \(0.530575\pi\)
\(992\) −48626.5 −1.55634
\(993\) 19661.2 0.628326
\(994\) −22935.5 −0.731862
\(995\) 14068.4 0.448238
\(996\) 41351.5 1.31554
\(997\) −27756.7 −0.881709 −0.440855 0.897579i \(-0.645325\pi\)
−0.440855 + 0.897579i \(0.645325\pi\)
\(998\) 63761.8 2.02239
\(999\) 112644. 3.56746
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2023.4.a.g.1.6 7
17.16 even 2 119.4.a.d.1.6 7
51.50 odd 2 1071.4.a.o.1.2 7
68.67 odd 2 1904.4.a.p.1.1 7
119.118 odd 2 833.4.a.f.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
119.4.a.d.1.6 7 17.16 even 2
833.4.a.f.1.6 7 119.118 odd 2
1071.4.a.o.1.2 7 51.50 odd 2
1904.4.a.p.1.1 7 68.67 odd 2
2023.4.a.g.1.6 7 1.1 even 1 trivial