Properties

Label 2023.4.a.g
Level $2023$
Weight $4$
Character orbit 2023.a
Self dual yes
Analytic conductor $119.361$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2023,4,Mod(1,2023)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2023, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2023.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2023 = 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2023.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,4,-5,52,-35,-51] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(119.360863942\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 49x^{5} + 69x^{4} + 753x^{3} - 122x^{2} - 3621x - 2536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + (\beta_{3} + \beta_{2} - 1) q^{3} + (\beta_{4} + \beta_{3} - \beta_{2} + 7) q^{4} + (\beta_{6} + \beta_{4} + \beta_{2} - 5) q^{5} + ( - 2 \beta_{6} + \beta_{5} - \beta_{4} + \cdots - 8) q^{6}+ \cdots + ( - 58 \beta_{6} - 38 \beta_{5} + \cdots - 1118) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 4 q^{2} - 5 q^{3} + 52 q^{4} - 35 q^{5} - 51 q^{6} + 49 q^{7} - 6 q^{8} + 128 q^{9} - 18 q^{10} - 48 q^{11} + 16 q^{12} + 84 q^{13} + 28 q^{14} - 54 q^{15} + 256 q^{16} + 196 q^{18} + 156 q^{19} - 317 q^{20}+ \cdots - 7572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 49x^{5} + 69x^{4} + 753x^{3} - 122x^{2} - 3621x - 2536 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -119\nu^{6} + 490\nu^{5} + 4678\nu^{4} - 12834\nu^{3} - 51049\nu^{2} + 78837\nu + 155733 ) / 10291 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 589\nu^{6} - 3636\nu^{5} - 17533\nu^{4} + 100190\nu^{3} + 137827\nu^{2} - 608483\nu - 430864 ) / 20582 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -827\nu^{6} + 4616\nu^{5} + 26889\nu^{4} - 125858\nu^{3} - 219343\nu^{2} + 724993\nu + 454182 ) / 20582 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -960\nu^{6} + 5769\nu^{5} + 31512\nu^{4} - 164416\nu^{3} - 304244\nu^{2} + 1031032\nu + 1054405 ) / 10291 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -1028\nu^{6} + 6049\nu^{5} + 32715\nu^{4} - 164399\nu^{3} - 293721\nu^{2} + 965821\nu + 893471 ) / 10291 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} - \beta_{2} + 2\beta _1 + 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{6} - \beta_{5} + \beta_{4} + 7\beta_{3} - 4\beta_{2} + 21\beta _1 + 27 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 8\beta_{6} + 2\beta_{5} + 32\beta_{4} + 62\beta_{3} - 43\beta_{2} + 84\beta _1 + 343 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 128\beta_{6} - 21\beta_{5} + 84\beta_{4} + 388\beta_{3} - 268\beta_{2} + 656\beta _1 + 1363 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 518\beta_{6} + 100\beta_{5} + 1067\beta_{4} + 2851\beta_{3} - 2020\beta_{2} + 3543\beta _1 + 11487 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
6.60698
4.18404
3.11723
−0.827361
−2.77278
−2.93035
−4.37776
−5.60698 5.36988 23.4382 −12.6276 −30.1088 7.00000 −86.5615 1.83559 70.8026
1.2 −3.18404 1.42027 2.13811 11.4559 −4.52221 7.00000 18.6645 −24.9828 −36.4761
1.3 −2.11723 −8.38428 −3.51733 −10.3793 17.7515 7.00000 24.3849 43.2962 21.9754
1.4 1.82736 10.3277 −4.66075 −9.18809 18.8724 7.00000 −23.1358 79.6609 −16.7900
1.5 3.77278 −4.49237 6.23387 −19.9390 −16.9487 7.00000 −6.66322 −6.81863 −75.2256
1.6 3.93035 −9.43251 7.44766 8.85857 −37.0731 7.00000 −2.17089 61.9722 34.8173
1.7 5.37776 0.191325 20.9203 −3.18044 1.02890 7.00000 69.4820 −26.9634 −17.1036
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2023.4.a.g 7
17.b even 2 1 119.4.a.d 7
51.c odd 2 1 1071.4.a.o 7
68.d odd 2 1 1904.4.a.p 7
119.d odd 2 1 833.4.a.f 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.4.a.d 7 17.b even 2 1
833.4.a.f 7 119.d odd 2 1
1071.4.a.o 7 51.c odd 2 1
1904.4.a.p 7 68.d odd 2 1
2023.4.a.g 7 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2023))\):

\( T_{2}^{7} - 4T_{2}^{6} - 46T_{2}^{5} + 186T_{2}^{4} + 514T_{2}^{3} - 2037T_{2}^{2} - 1586T_{2} + 5508 \) Copy content Toggle raw display
\( T_{3}^{7} + 5T_{3}^{6} - 146T_{3}^{5} - 685T_{3}^{4} + 4670T_{3}^{3} + 14223T_{3}^{2} - 30871T_{3} + 5354 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - 4 T^{6} + \cdots + 5508 \) Copy content Toggle raw display
$3$ \( T^{7} + 5 T^{6} + \cdots + 5354 \) Copy content Toggle raw display
$5$ \( T^{7} + 35 T^{6} + \cdots + 7749964 \) Copy content Toggle raw display
$7$ \( (T - 7)^{7} \) Copy content Toggle raw display
$11$ \( T^{7} + \cdots - 34663527936 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 13756569984 \) Copy content Toggle raw display
$17$ \( T^{7} \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots - 3100949967360 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 426071334454272 \) Copy content Toggle raw display
$29$ \( T^{7} + \cdots - 394911043338240 \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 229799266689312 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 20\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots + 39\!\cdots\!78 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 26\!\cdots\!12 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 20\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 33\!\cdots\!18 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots - 22\!\cdots\!20 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots - 72\!\cdots\!28 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots - 52\!\cdots\!68 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 16\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 44\!\cdots\!34 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 165111753621760 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 31\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots - 11\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots - 36\!\cdots\!26 \) Copy content Toggle raw display
show more
show less