Properties

Label 2-2023-1.1-c3-0-114
Degree $2$
Conductor $2023$
Sign $-1$
Analytic cond. $119.360$
Root an. cond. $10.9252$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.11·2-s − 8.38·3-s − 3.51·4-s − 10.3·5-s + 17.7·6-s + 7·7-s + 24.3·8-s + 43.2·9-s + 21.9·10-s − 48.1·11-s + 29.4·12-s − 53.1·13-s − 14.8·14-s + 87.0·15-s − 23.4·16-s − 91.6·18-s + 93.7·19-s + 36.5·20-s − 58.6·21-s + 101.·22-s − 74.3·23-s − 204.·24-s − 17.2·25-s + 112.·26-s − 136.·27-s − 24.6·28-s − 306.·29-s + ⋯
L(s)  = 1  − 0.748·2-s − 1.61·3-s − 0.439·4-s − 0.928·5-s + 1.20·6-s + 0.377·7-s + 1.07·8-s + 1.60·9-s + 0.694·10-s − 1.31·11-s + 0.709·12-s − 1.13·13-s − 0.282·14-s + 1.49·15-s − 0.367·16-s − 1.20·18-s + 1.13·19-s + 0.408·20-s − 0.609·21-s + 0.987·22-s − 0.673·23-s − 1.73·24-s − 0.138·25-s + 0.848·26-s − 0.973·27-s − 0.166·28-s − 1.96·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2023\)    =    \(7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(119.360\)
Root analytic conductor: \(10.9252\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2023,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - 7T \)
17 \( 1 \)
good2 \( 1 + 2.11T + 8T^{2} \)
3 \( 1 + 8.38T + 27T^{2} \)
5 \( 1 + 10.3T + 125T^{2} \)
11 \( 1 + 48.1T + 1.33e3T^{2} \)
13 \( 1 + 53.1T + 2.19e3T^{2} \)
19 \( 1 - 93.7T + 6.85e3T^{2} \)
23 \( 1 + 74.3T + 1.21e4T^{2} \)
29 \( 1 + 306.T + 2.43e4T^{2} \)
31 \( 1 + 115.T + 2.97e4T^{2} \)
37 \( 1 - 316.T + 5.06e4T^{2} \)
41 \( 1 + 29.2T + 6.89e4T^{2} \)
43 \( 1 - 65.2T + 7.95e4T^{2} \)
47 \( 1 + 565.T + 1.03e5T^{2} \)
53 \( 1 + 432.T + 1.48e5T^{2} \)
59 \( 1 + 617.T + 2.05e5T^{2} \)
61 \( 1 - 583.T + 2.26e5T^{2} \)
67 \( 1 - 370.T + 3.00e5T^{2} \)
71 \( 1 - 688.T + 3.57e5T^{2} \)
73 \( 1 - 527.T + 3.89e5T^{2} \)
79 \( 1 + 75.1T + 4.93e5T^{2} \)
83 \( 1 - 1.02e3T + 5.71e5T^{2} \)
89 \( 1 - 546.T + 7.04e5T^{2} \)
97 \( 1 + 280.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.036086004440395525660279685593, −7.74028016097620066819136103183, −7.13519890464525651821844614282, −5.83411374660545465240912326096, −5.09321309811867529084046934623, −4.68634183394659320236973847825, −3.60737163385825799078504844198, −1.94254848477640514308519138716, −0.60280739319928890607183630458, 0, 0.60280739319928890607183630458, 1.94254848477640514308519138716, 3.60737163385825799078504844198, 4.68634183394659320236973847825, 5.09321309811867529084046934623, 5.83411374660545465240912326096, 7.13519890464525651821844614282, 7.74028016097620066819136103183, 8.036086004440395525660279685593

Graph of the $Z$-function along the critical line